Distributed Computing

, Volume 19, Issue 5–6, pp 403–418 | Cite as

Randomized leader election

  • Murali Krishna Ramanathan
  • Ronaldo A. Ferreira
  • Suresh Jagannathan
  • Ananth Grama
  • Wojciech Szpankowski
Original Paper


We present an efficient randomized algorithm for leader election in large-scale distributed systems. The proposed algorithm is optimal in message complexity (O(n) for a set of n total processes), has round complexity logarithmic in the number of processes in the system, and provides high probabilistic guarantees on the election of a unique leader. The algorithm relies on a balls and bins abstraction and works in two phases. The main novelty of the work is in the first phase where the number of contending processes is reduced in a controlled manner. Probabilistic quorums are used to determine a winner in the second phase. We discuss, in detail, the synchronous version of the algorithm, provide extensions to an asynchronous version and examine the impact of failures.


Negative Response Mutual Exclusion Unique Leader Leader Election Message Complexity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Agrawal D., Egecioglu Ö. and Abbadi A.E. (1997). Billiard quorums on the grid. Inf. Process. Lett. 64(1): 9–16 CrossRefGoogle Scholar
  2. 2.
    Bawa, M., Garcia-Molina, H., Gionis, A., Motwani, R.: Estimating aggregates on a peer-to-peer network. Technical Report, CS Department, Stanford University (2003)Google Scholar
  3. 3.
    Boyd S., Diaconis P. and Xiao L. (2004). Fastest mixing markov chain on a graph. SIAM Rev. 46(4): 667–689 MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Cidon, I., Mokryn, O.: Propagation and leader election in a multihop broadcast environment. In: DISC ’98 Proceedings of the 12th international symposium on distributed computing, pp. 104–118, Springer, London (1998)Google Scholar
  5. 5.
    Dolev D., Dwork C. and Stockmeyer L. (1987). On the minimal synchronism needed for distributed consensus. J. ACM 34(1): 77–97 MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Ferreira R.A., Grama A. and Jagannathan S. (2006). Plethora: a locality enhancing peer-to-peer network. J. Parallel Distrib. Comput. 66(2): 257–273 MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Ferreira, R.A., Ramanathan, M.K., Grama, A., Jagannathan, S.: Randomized protocols for duplicate elimination in peer-to-peer storage systems. In: Proceedings of The Fifth IEEE international conference on peer-to-peer computing, Konstanz, Germany (2005)Google Scholar
  8. 8.
    Fetzer C. and Cristian F. (1999). A highly available local leader election service. IEEE Trans. Softw. Eng. 25(5): 603–618 CrossRefGoogle Scholar
  9. 9.
    Frederickson G.N. and Lynch N.A. (1987). Electing a leader in a synchronous ring. J. ACM 34(1): 98–115 MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Gkantsidis, C., Mihail, M., Saberi, A.: Random walks in peer-to-peer networks. In: Proceedings of IEEE INFOCOM, 2004, Hong Kong (2004)Google Scholar
  11. 11.
    Gnutella. Scholar
  12. 12.
    Gupta, I., Renesse, R., Birman, K.P.: A probabilistically correct leader election protocol for large groups. In: DISC ’00 Proceedings of the 14th international conference on distributed computing, pp. 89–103, Springer, London (2000)Google Scholar
  13. 13.
    Hastings W. (1970). Monte carlo sampling methods using markov chains and their applications. Biometrika 57: 97–109 MATHCrossRefGoogle Scholar
  14. 14.
    Horowitz K. and Malkhi D. (2003). Estimating network size from local information. IPL J. 88(5): 237–243 MathSciNetGoogle Scholar
  15. 15.
    Joung Y. (2000). Asynchronous group mutual exclusion. Distrib. Comput. 13(4): 189–206 CrossRefGoogle Scholar
  16. 16.
    King, V., Saia, J.: Choosing a random peer. In: PODC ’04 Proceedings of the twenty-third annual ACM symposium on principles of distributed computing. pp. 125–130, New York (2004)Google Scholar
  17. 17.
    Kushilevitz, E., Rabin, M.O.: Randomized mutual exclusion algorithms revisited. In: PODC ’92 Proceedings of the eleventh annual ACM symposium on principles of distributed computing. pp. 275–283 (1992)Google Scholar
  18. 18.
    Lin, S., Lian, Q., Chen, M., Zhang, Z.: A practical distributed mutual exclusion protocol in dynamic peer-to-peer systems. In IPTPS, pp. 11–21 (2004)Google Scholar
  19. 19.
    Lynch, N.A.: Distributed algorithms. Morgan Kaufmann Publishers, Inc. (1996)Google Scholar
  20. 20.
    Maekawa M. (1985). A \({\sqrt{N}}\) algorithm for mutual exclusion in decentralized systems. ACM Trans. Comput. Syst. 3(2): 145–159 CrossRefGoogle Scholar
  21. 21.
    Malkhi D., Reiter M., Wool A. and Wright R. (2001). Probabilistic quorum systems. Inform. Comput. 170(2): 184–206 MATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Metropolis N., Rosenbluth A., Rosenbluth M., Teller A. and Teller E. (1953). Equations of state calculations by fast computing machines. J. Chem. Phys. 21: 1087–1092 CrossRefGoogle Scholar
  23. 23.
    Mullender S.J. and Vitanyi P.M.B. (1988). Distributed match-making. Algorithmica 3: 367–391 MATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Psaltoulis, D., Kostoulas, D., Gupta, I., Birman, K., Demers, A.: Practical algorithms for size estimation in large and dynamic groups. Springlass project at Cornell (2004)Google Scholar
  25. 25.
    Rabin M.O. (1982). N-process mutual exclusion with bounded waiting by 4log 2 N valued shared variable. J. Comput. Syst. Sci. 25(1): 66–75 MATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    Ratnasamy, S., Francis, P., Handley, M. Karp, R.M., Shenker, S.: A scalable content-addressable network. In: SIGCOMM ’01 Proceedings of the 2001 conference on Applications, technologies, architectures, and protocols for computer communications, pp. 161–172, New York (2001)Google Scholar
  27. 27.
    Rowstron, A.I.T., Druschel, P.: Pastry: Scalable, decentralized object location, and routing for large-scale peer-to-peer systems. In: Middleware 2001 Proceedings of the IFIP/ACM international conference on distributed systems platforms Heidelberg, pp. 329–350, Springer, London (2001)Google Scholar
  28. 28.
    Schooler, E.M., Manohar, R., Chandy, K.M.: An analysis of leader election for multicast groups. Technical Report, ATT Labs-Research, Menlo Park (2002)Google Scholar
  29. 29.
    Stoica I., Morris R., Liben-Nowell D., Karger D.R., Kaashoek M.F., Dabek F. and Balakrishnan H. (2003). Chord: a scalable peer-to-peer lookup protocol for internet applications. IEEE/ACM Trans. Netw. 11(1): 17–32 CrossRefGoogle Scholar
  30. 30.
    Szpankowki W. (2001). Average case analysis of algorithms on sequences. Wiley, New York Google Scholar
  31. 31.
    Tanenbaum A.S. and Steen M.V. (2002). Distributed systems: principles and paradigms. Prentice Hall, Englewood Cliffs Google Scholar
  32. 32.
    Tel G. (1994). Introduction to distributed algorithms. Cambridge University Press, Cambridge MATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Murali Krishna Ramanathan
    • 1
  • Ronaldo A. Ferreira
    • 1
  • Suresh Jagannathan
    • 1
  • Ananth Grama
    • 1
  • Wojciech Szpankowski
    • 1
  1. 1.Department of Computer SciencesPurdue UniversityWest LafayetteUSA

Personalised recommendations