Advertisement

Distributed Computing

, Volume 19, Issue 4, pp 313–333 | Cite as

Distance estimation and object location via rings of neighbors

  • Aleksandrs SlivkinsEmail author
Original Article

Abstract

We consider four problems on distance estimation and object location which share the common flavor of capturing global information via informative node labels: low-stretch routing schemes [48], distance labeling [25], searchable small worlds [31], and triangulation-based distance estimation [34]. Focusing on metrics of low doubling dimension, we approach these problems with a common technique called rings of neighbors, which refers to a sparse distributed data structure that underlies all our constructions. Apart from improving the previously known bounds for these problems, our contributions include extending Kleinberg’s small world model to doubling metrics, and a short proof of the main result in Chan et al. [15]. Doubling dimension is a notion of dimensionality for general metrics that has recently become a useful algorithmic concept in the theoretical computer science literature.

Keywords

Routing schemes Small-world networks Distance labeling Triangulation Doubling dimension 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Volberg, A.L., Konyagin, S.V.: On measures with the doubling condition. Izv. Acad. Nauk SSSR 51, 666–675 (1987) In Russian; English transl. Math. USSR Izv. 30, 629–638 (1988)Google Scholar
  2. 2.
    Abraham, I., Bartal, Y., Chan, H.T.H., Dhamdhere, K., Gupta, A., Kleinberg, J., Neiman, O., Slivkins, A.: Metric embeddings with relaxed guarantees. In: 46th Symposium on Foundations of Computer Science (FOCS), pp. 83–100 (2005)Google Scholar
  3. 3.
    Abraham, I., Gavoille, C.: Object location using path separators. In: 25th Annual ACM SIGACT-SIGOPS Symp. on Principles Of Distributed Computing (PODC) (2006)Google Scholar
  4. 4.
    Abraham, I., Gavoille, C., Goldberg, A., Malkhi, D.: Routing in networks with low doubling dimension. In: 26th IEEE International Conference on Distributed Computing Systems (ICDCS) (2006)Google Scholar
  5. 5.
    Abraham, I., Gavoille, C., Malkhi, D.: Routing with improved communication-space trade-off. In: 18th Annual Conference on Distributed Computing (DISC), pp. 305–319 (2004)Google Scholar
  6. 6.
    Abraham, I., Gavoille, C., Malkhi, D.: Compact routing for graphs excluding a fixed minor. In: 19th Annual Conference on Distributed Computing (DISC), pp. 442–456 (2005)Google Scholar
  7. 7.
    Abraham, I., Gavoille, C., Malkhi, D., Nisan, N., Thorup, M.: Compact name-independent routing with minimum stretch. In: 16th ACM Symposium on Parallel Algorithms and Architectures (SPAA), pp. 20–24 (2004)Google Scholar
  8. 8.
    Abraham, I., Malkhi, D.: Compact routing on Euclidean metrics. In: 23rd Annual ACM SIGACT-SIGOPS Symp. on Principles Of Distributed Computing (PODC), pp. 141–149 (2004)Google Scholar
  9. 9.
    Abraham, I., Malkhi, D.: Name independent routing for growth bounded networks. In: 17th ACM Symposium on Parallel Algorithms and Architectures (SPAA), pp. 49–55 (2005)Google Scholar
  10. 10.
    Abraham, I., Malkhi, D., Dobzinski, O.: LAND: Stretch (1 +  ε) locality-aware networks for DHTs. In: 15th ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 550–559 (2004)Google Scholar
  11. 11.
    Assouad P. (1983) Plongements lipschitziens dans R n. Bull. Soc. Math. France 111(4): 429–448zbMATHMathSciNetGoogle Scholar
  12. 12.
    Awerbuch B., Bar-Noy A., Linial N., Peleg D. (1990) Improved routing strategies with succinct tables. J. Algorithms 11(3): 307–341zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Awerbuch, B., Goldberg, A., Luby, M., Plotkin, S.: Network decomposition and locality in distributed computation. In: 30th Symposium on Foundations of Computer Science (FOCS), pp. 364–369 (1989)Google Scholar
  14. 14.
    Awerbuch, B., Peleg, D.: Sparse partitions. In: 31st Symposium on Foundations of Computer Science (FOCS), pp. 503–513 (1990)Google Scholar
  15. 15.
    Chan, H.T.H., Gupta, A., Maggs, B.M., Zhou, S.: On hierarchical routing in bounded-growth metrics. In: 16th ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 762–771 (2005). Full and updated version available as a Carnegie Mellon University ETR CMU-PDL-04-106Google Scholar
  16. 16.
    Dodds P.S., Muhamad R., Watts D.J. (2003) An experimental study of search in global social networks. Science 301, 827–829CrossRefGoogle Scholar
  17. 17.
    Duchon, P., Hanusse, N., Lebhar, E., Schabanel, N.: Could any graph be turned into a small world? In: 19th Annual Conference on Distributed Computing (DISC), pp. 511–513 (2005). Full version to appear in Theoretical Computer Science, special issue on complex networks (2006)Google Scholar
  18. 18.
    Fraigniaud, P.: A new perspective on the small-world phenomenon: greedy routing in tree-decomposed graphs. In: 13th Annual European Symposium on Algorithms (ESA), pp. 791–802 (2005)Google Scholar
  19. 19.
    Fraigniaud, P., Gavoille, C., Paul, C.: Eclecticism shrinks even small worlds. In: 23rd Annual ACM SIGACT-SIGOPS Symposium on Principles Of Distributed Computing (PODC), pp. 169–178 (2004)Google Scholar
  20. 20.
    Fraigniaud, P., Lebhar, E., Lotker, Z.: A doubling dimension threshold Θ(log log n) for augmented graph navigability. In: 14th Annual European Symposium on Algorithms (ESA) (2006)Google Scholar
  21. 21.
    Francis, P., Jamin, S., Jin, C., Jin, Y., Raz, D., Shavitt, Y., Zhang, L.: IDMaps: A global Internet host distance estimation service. IEEE ACM Trans. Netw. 9, 525–540 (2001). Preliminary version in IEEE INFOCOM 1999Google Scholar
  22. 22.
    Gavoille C., Gengler M. (2001) Space-efficiency for routing Schemes of stretch factor three. J Parallel Distrib Comput 61(5): 679–687zbMATHCrossRefGoogle Scholar
  23. 23.
    Gavoille, C., Katz, M., Katz, N.A., Paul, C., Peleg, D.: Approximate distance labeling schemes. In: 9th Annual European Symposium on Algorithms (ESA), pp. 476–487 (2001)Google Scholar
  24. 24.
    Gavoille C., Peleg D. (2003) Compact and localized distributed data tructures. J. Distrib. Comput. 16, 111–120CrossRefGoogle Scholar
  25. 25.
    Gavoille, C., Peleg, D., Perennes, S., Raz, R.: Distance labeling in graphs. J. Algorithms 53(1), 85–112 (2004). (Preliminary version in 12th ACM-SIAM SODA, 2001)Google Scholar
  26. 26.
    Gupta, A., Krauthgamer, R., Lee, J.R.: Bounded geometries, fractals, and low–distortion embeddings. In: 44th Symposium on Foundations of Computer Science (FOCS), pp. 534–543 (2003)Google Scholar
  27. 27.
    Guyton, J., Schwartz, M.: Locating nearby copies of replicated Internet servers. In: ACM SIGCOMM (1995)Google Scholar
  28. 28.
    Hildrum, K., Kubiatowicz, J., Rao, S.: Object location in realistic networks. In: 16th ACM Symposium on Parallel Algorithms and Architectures (SPAA), pp. 25–35 (2004)Google Scholar
  29. 29.
    Hotz, S.M.: Routing information organization to support scalable interdomain routing with heterogeneous path . Ph.D. Thesis, University of Southern California (1994)Google Scholar
  30. 30.
    Kleinberg J. (2000) Navigation in a small world. Nature 406, 485CrossRefGoogle Scholar
  31. 31.
    Kleinberg, J.: The small-world phenomenon: an algorithmic perspective. In: 32nd ACM Symposium on Theory of Computing (STOC), pp. 163–170 (2000)Google Scholar
  32. 32.
    Kleinberg, J.: Small-world phenomena and the dynamics of information. In: 15th Advances in Neural Information Processing Systems (NIPS), pp. 431–438 (2001)Google Scholar
  33. 33.
    Kleinberg, J.: Complex networks and decentralized search algorithms. In: International Congress of Mathematicians (2006)Google Scholar
  34. 34.
    Kleinberg, J., Slivkins, A., Wexler, T.: Triangulation and Embedding Using Small Sets of Beacons. In: 45th Symposium on Foundations of Computer Science (FOCS), pp. 444–453 (2004)Google Scholar
  35. 35.
    Kommareddy, C., Shankar, N., Bhattacharjee, B.: Finding close friends on the Internet. In: 12th IEEE International Conference on Network Protocols (ICNP) (2001)Google Scholar
  36. 36.
    Krauthgamer, R., Lee, J., Mendel, M., Naor, A.: Measured descent: A new embedding method for finite metrics. Geometric and Functional Analysis (GAFA) 15(4), 839–858 (2005). Preliminary version in 45th IEEE FOCS (2004)Google Scholar
  37. 37.
    Krauthgamer, R., Lee, J.R.: Navigating nets: simple algorithms for proximity search. In: 15th ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 798–807 (2004)Google Scholar
  38. 38.
    Lebhar, E., Schabanel, N.: Close to optimal decentralized routing in long-range contact networks. In: 31st International Colloquium on Automata, Languages and Programming (ICALP), pp. 894–905 (2004)Google Scholar
  39. 39.
    Luukkainen J., Saksman E. (1998) Every complete doubling metric space carries a doubling measure. Proc. Am. Math. Soc. 126(2): 531–534zbMATHCrossRefMathSciNetGoogle Scholar
  40. 40.
    Manku, G., Bawa, M., Raghavan, P.: Symphony: distributed hashing in a small world. In: 4th USENIX Symposium on Internet Technologies and Systems (USITS) (2003)Google Scholar
  41. 41.
    Manku, G., Naor, M., Wieder, U.: Know thy neighbor’s neighbor: the power of lookahead in randomized P2P networks. In: 36th ACM Symposium on Theory of Computing (STOC), pp. 54–63 (2004)Google Scholar
  42. 42.
    Martel, C., Nguyen, V.: Analyzing Kleinberg’s (and other) small-world models. In: 23rd Annual ACM SIGACT-SIGOPS Symposium on Principles Of Distributed Computing (PODC), pp. 179–188 (2004)Google Scholar
  43. 43.
    Martel, C., Nguyen, V.: Analyzing and characterizing small-world graphs. In: 16th ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 311–320 (2005)Google Scholar
  44. 44.
    Mendel, M., Har-Peled, S.: Fast construction of nets in low dimensional metrics, and their applications. In: 21st ACM Symposium on Computational Geometry (SoCG), pp. 150–158 (2005)Google Scholar
  45. 45.
    Milgram S. (1967) The small world problem. Psychol Today 2, 60–67Google Scholar
  46. 46.
    Peleg, D.: Proximity-preserving labeling schemes and their applications. In: The 25th International Workshop on Graph–Theoretical Concepts in Computer Science (LNCS 1665), pp. 30–41 (1999)Google Scholar
  47. 47.
    Peleg, D.: Distributed computing: a locality-sensitive approach. SIAM (2000)Google Scholar
  48. 48.
    Peleg, D., Upfal, E.: A trade-off between space and effciency for routing tables. J. ACM 36(3), 510–530 (1989). (Preliminary version in 20th ACM STOC, 1988)Google Scholar
  49. 49.
    Plaxton, C.G., Rajaraman, R., Richa, A.W.: Accessing nearby copies of replicated objects in a distributed environment. Theory Comput. Syst. 32(3), 241–280 (1999). Preliminary version in 9th ACM SPAA (1997)Google Scholar
  50. 50.
    Slivkins, A.: Distributed Approaches to Triangulation and Embedding. In: 16th ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 640–649 (2005)Google Scholar
  51. 51.
    Slivkins, A.: Distance estimation and object location via rings of neighbors. Technical Report cul.cis/TR2005-1977, Cornell University Computing and Information Science (2006). Available online at http://techreports.library.cornell.eduGoogle Scholar
  52. 52.
    Talwar, K.: Bypassing the embedding: approximation schemes and compact representations for growth restricted metrics. In: 36th ACM Symposium on Theory of Computing (STOC), pp. 281–290 (2004)Google Scholar
  53. 53.
    Thorup, M., Zwick, U.: Compact routing schemes. In: 13th ACM Symposium on Parallel Algorithms and Architectures (SPAA), pp. 1–10 (2001)Google Scholar
  54. 54.
    Thorup, M., Zwick, U.: Approximate distance oracles. J. ACM 52(1), 1–24 (2005) (Preliminary version in 33rd ACM STOC, 2001)Google Scholar
  55. 55.
    Watts D.J., Strogatz S.H. (1998) Collective dynamics of ‘small-world’ networks. Nature 393, 440–442CrossRefGoogle Scholar
  56. 56.
    Wong, B., Slivkins, A., Sirer, E.G.: Meridian: A Lightweight Network Location Service without Virtual Coordinates. In: ACM SIGCOMM (2005)Google Scholar
  57. 57.
    Wu J.M. (1998) Hausdorff dimension and doubling measures on metric spaces. Proc. Am. Math. Soc. 126(5): 1453–1459zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  1. 1.Department of Computer ScienceBrown UniversityProvidenceUSA

Personalised recommendations