Advertisement

Distributed Computing

, Volume 19, Issue 5–6, pp 419–431 | Cite as

The Doomsday distributed termination detection protocol

  • M. J. LiveseyEmail author
  • R. Morrison
  • D. S. Munro
Original article

Abstract

Distributed termination detection (DTD) algorithms are important since they detect globally stable states in distributed computations. Here we introduce a new DTD mechanism, the Doomsday protocol together with its proof of correctness. Doomsday is generic since it forms the basis for a number of new and existing DTD algorithms for which the correctness proof may be reused. The paper describes the Doomsday protocol, provides its formal proof, derives one new DTD algorithm and shows how other hitherto unrelated algorithms, Dijkstra–Scholten, Task Balancing and Credit Recovery, can be derived from the protocol. The paper concludes by examining various properties of the protocol in the context of existing DTD algorithms.

Keywords

Protocols Correctness Distributed termination detection 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Birman K.P., Schiper A., Stephenson P. (1991) Lightweigt causal and atomic group multicast. ACM Trans. Comput. Syst. 9(3): 272–314CrossRefGoogle Scholar
  2. 2.
    Black D.L. (1986) On the existence of delay-insensitive fair arbiters: Trace theory and its limitations. Distrib. Comput. 1(4): 205–225zbMATHCrossRefGoogle Scholar
  3. 3.
    Blackburn, S.M., Moss, J.E.B., Hudson, R.L., Morrison, R., Munro, D.S., Zigman, J.N.: Starting with termination: A methodology for building distributed garbage collection algorithms. In: 24th Australasian Computer Science Conference (ACSC 2001), 29 January–1 February 2001, Gold Coast, Queensland, Australia, pp. 20–28. IEEE Computer Society (2001)Google Scholar
  4. 4.
    Chandy K.M., Lamport L. (1985) Distributed snapshots: Determining global states of distributed systems. ACM Trans. Comput. Syst. 3(1): 63–75CrossRefGoogle Scholar
  5. 5.
    Chandy K.M., Misra J., Haas L.M. (1983) Distributed deadlock detection. ACM Trans. Comput. Syst. 1(2): 144–156CrossRefGoogle Scholar
  6. 6.
    Dijkstra E.W., Scholten C.S. (1980) Termination detection for diffusing computations. Inf. Process. Lett. 11(1): 1–4zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Fischer M.J., Lynch N.A., Paterson M. (1985) Impossibility of distributed consensus with one faulty process. J. ACM 32(2): 374–382zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Hudson, R.L., Morrison, R., Moss, J.E.B., Munro, D.S.: Garbage collecting the world: One car at a time. In: ACM SIGPLAN Conference on Object-Oriented Programming Systems, Languages and Applications (OOPSLA ’97), Atlanta, Georgia, pp.162–175 (1997)Google Scholar
  9. 9.
    Hudson, R.L., Morrison, R., Moss, J.E.B., Munro, D.S.: Where have all the pointers gone? In: 21st Australasian Computer Science Conference, Perth, Western Australia, pp. 107–119 (1998)Google Scholar
  10. 10.
    Jones, R.: Garbage Collection: Algorithms for Automatic Dynamic Memory Management. John Wiley and Sons (1996). With a chapter on Distributed Garbage Collection by Rafael Lins. Reprinted 1997 (twice), 1999, 2000.Google Scholar
  11. 11.
    Lai T.H., Wu L.F. (1995) An (n-1)-resilient algorithm for distributed termination detection. IEEE Trans. Parallel Distrib. Syst. 6(1):63–78CrossRefGoogle Scholar
  12. 12.
    Lamport, L.: “sometime” is sometimes “not never” - on the temporal logic of programs. In: 7th ACM Symposium on the Principles of Programming Languages, (PoPL7), Las Vegas, Nevada, pp. 174–185 (1980)Google Scholar
  13. 13.
    Livesey M.J. (1993) A note on consistency in asynchronous multicaches. Distrib. Comput. 7(2): 111–114CrossRefGoogle Scholar
  14. 14.
    Matocha J., Camp T. (1998) A taxonomy of distributed termination detection algorithms. J. Syst. Softw. 43(3): 207–221CrossRefGoogle Scholar
  15. 15.
    Mattern F. (1989) Global quiescence detection based on credit distribution and recovery. Inf. Process. Lett. 30(4):195–200CrossRefMathSciNetGoogle Scholar
  16. 16.
    Norcross S., Morrison R., Munro D.S., Detmold H., Falkner K.E. (2005) Implementing a family of distributed garbage collectors. J. Res. Pract. Inf. Technol. 37(1): 107–126Google Scholar
  17. 17.
    Peterson L.L., Buchholz N.C., Schlichting R.D. (1989) Preserving and using context information in interprocess communication. ACM Trans. Comput. Syst. 7(3): 217–246CrossRefGoogle Scholar
  18. 18.
    Plainfossé, D., Shapiro, M.: A survey of distributed garbage collection techniques. In: Baker H.G. (ed.) IWMM, Lecture Notes in Computer Science, vol. 986, pp. 211–249. Springer, Berlin Heidelberg New York (1995)Google Scholar
  19. 19.
    Tel, G.: Introduction to distributed algorithms. Cambridge University Press, New York, NY, USA (1994)Google Scholar
  20. 20.
    Tel G., Mattern F. (1993) The derivation of distributed termination detection algorithms from garbage collection schemes. ACM Trans. Program. Lang. Syst. 15(1): 1–35CrossRefGoogle Scholar
  21. 21.
    Wu, L.F., Lai, T.H., Tseng, Y.C.: Consensus and termination detection in the presence of faulty processes. In: 1st International Conference on Parallel and Distributed Systems, Taiwan, pp. 267–274 (1992)Google Scholar
  22. 22.
    Ye, X., Keane, J.A.: Detecting distributed termination in the presence of node failure. In: ACSC ’95: Proceedings of the 1995 Asian Computing Science Conference on Algorithms, Concurrency and Knowledge, pp. 195–209. Springer, Berlin Heidelberg New York (1995)Google Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  1. 1.School of Computer ScienceUniversity of St AndrewsSt AndrewsScotland
  2. 2.School of Computer ScienceUniversity of AdelaideAdelaideAustralia

Personalised recommendations