Distributed Computing

, Volume 19, Issue 2, pp 79–103

Fast Paxos

  • Leslie Lamport
Original Article

Abstract

As used in practice, traditional consensus algorithms require three message delays before any process can learn the chosen value. Fast Paxos is an extension of the classic Paxos algorithm that allows the value to be learned in two message delays. How and why the algorithm works are explained informally, and a TLA+ specification of the algorithm appears as an appendix.

Keywords

Consensus Fault tolerance Distributed algorithms Paxos 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Brasileiro, F., Greve, F., Mostefaoui, A., Raynal, M.: Consensus in one communication step. In: Malyshkin, V. (ed.) Parallel Computing Technologies (6th International Conference, PaCT 2001), Lecture Notes in Computer Science, vol. 2127, pp. 42–50. Springer, Berlin Heidelberg New York (2001)Google Scholar
  2. 2.
    Castro, M., Liskov, B.: Practical byzantine fault tolerance. In: Proceedings of the Third Symposium on Operating Systems Design and Implementation, pp. 173–186. ACM, New York (1999)Google Scholar
  3. 3.
    Charron-Bost, B., Schiper, A.: Uniform consensus is harder than consensus (extended abstract). Tech. Rep. DSC/2000/028, École Polytechnique Fédérale de , Switzerland (2000). http://lsewww.epfl.ch/Publications/ById/263.htmlGoogle Scholar
  4. 4.
    De Prisco R., Lampson B., Lynch N. (2000) Revisiting the paxos algorithm. Theor. Comput. Sci. 243, 35–91MathSciNetCrossRefGoogle Scholar
  5. 5.
    Fischer M.J., Lynch N., Paterson M.S. (1985) Impossibility of distributed consensus with one faulty process. J. ACM 32(2): 374–382MATHMathSciNetCrossRefGoogle Scholar
  6. 6.
    Lamport, L.: Introduction to TLA. SRC Technical Note 1994-001, Digital Systems Research Center (1994). Currently available from http://www.hpl.hp.com/techreports/Compaq-DEC/SRC-TN-1994-001.htmlGoogle Scholar
  7. 7.
    Lamport L. (1998) The part-time parliament. ACM Trans. Comput. Syst. 16(2): 133–169CrossRefGoogle Scholar
  8. 8.
    Lamport, L.: A summary of TLA+ (2000). Currently available from http://research.microsoft.com/users/lamport/tla/tla.html or by searching the Web for the 21-letter string obtained by removing the – characters from uid-lamport-tla-homepageGoogle Scholar
  9. 9.
    Lamport L. (2001) Paxos made simple. ACM SIGACT News (Distributed Computing Column) 32(4): 18–25Google Scholar
  10. 10.
    Lamport, L.: Specifying Systems. Addison-Wesley, Boston (2003). Also available on the Web via a link at http://lamport.org.Google Scholar
  11. 11.
    Lamport, L.: Lower bounds for asynchronous consensus. Tech. Rep. MSR-TR-2004-71, Microsoft Research (2004). Currently available from http://research.microsoft.com/users/lamport/pubs/pubs.html, or by searching the Web for the 23-letter string obtained by removing the – characters from all-lamports-pubs-onthe-webGoogle Scholar
  12. 12.
    Lampson B.W. How to build a highly available system using consensus. In: Babaoglu O. Marzullo K. (eds) Distributed Algorithms. Lecture Notes in Computer Science, vol. 1151, pp. 1–17. Springer Berlin, Heidelberg New York (1996)Google Scholar
  13. 13.
    Martin, J.P., Alvisi, L.: Fast byzantine consensus. In: Proceedings of the International Conference on Dependable Systems and Networks (DSN 2005). IEEE Computer Society, Yokohama (2005) (in press)Google Scholar
  14. 14.
    Pedone F., Schiper A. (2002) Handling message semantics with generic broadcast. Distributed Computing 15(2): 97–107CrossRefGoogle Scholar
  15. 15.
    Pedone, F., Schiper, A., Urbán, P., Cavin, D.: Solving agreement problems with weak ordering oracles. In: Proceedings of the 4th European Dependable Computing Conference (EDCC-4). Lecture Notes in Computer Science, vol. 2485, pp. 44–61. Springer, Berlin Heidelberg New York (2002)Google Scholar
  16. 16.
    Zielinski, P.: Optimistic generic broadcast. In: Fraigniaud, P. (ed.) DISC ’05: Proceedings of the 19th International Conference on Distributed Computing, Lecture Notes in Computer Science, vol. 3724, pp. 369–383. Springer, Berlin Heidelberg New York (2005)Google Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Leslie Lamport
    • 1
  1. 1.Microsoft ResearchMountain ViewUSA

Personalised recommendations