Advertisement

Distributed Computing

, Volume 18, Issue 6, pp 453–460 | Cite as

Distributed MST for constant diameter graphs

  • Zvi Lotker
  • Boaz Patt-Shamir
  • David Peleg
Original Article

Abstract

This paper considers the problem of distributively constructing a minimum-weight spanning tree (MST) for graphs of constant diameter in the bounded-messages model, where each message can contain at most B bits for some parameter B. It is shown that the number of communication rounds necessary to compute an MST for graphs of diameter 4 or 3 can be as high as \(\Omega(\sqrt[3]n/\sqrt{B})\) and \(\Omega(\sqrt[4]n/\sqrt{B})\), respectively. The asymptotic lower bounds hold for randomized algorithms as well. On the other hand, we observe that O(log n) communication rounds always suffice to compute an MST deterministically for graphs with diameter 2, when B = O(log n). These results complement a previously known lower bound of \(\Omega(\sqrt[2]n/B)\) for graphs of diameter Ω(log n).

Keywords

Distributed algorithm Minimum-weight spanning tree 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Attiya, H., Bar-Noy, A., Dolev, D.: Sharing memory robustly inmessage-passing systems. J. ACM 42(1), 124–142 (1995)CrossRefGoogle Scholar
  2. 2.
    Attiya, H., Welch, J.: Distributed Algorithms. McGraw-HillPublishing Company, UK (1998)Google Scholar
  3. 3.
    Awerbuch, B.: Optimal distributed algorithms for minimum weightspanning tree, counting, leader election and related problems. In: Proceedings of 19th ACM Symposium Theory of Computing, pp.230–240 (May 1987)Google Scholar
  4. 4.
    Awerbuch, B., Shiloach, Y.: New connectivity and MSF algorithmsfor the shuffle-exchange network and PRAM. IEEE Trans. Comput. C-36, 1258–1263 (1987)MathSciNetGoogle Scholar
  5. 5.
    Elkin, M.: Unconditional lower bounds on the time-approximationtradeoffs for the distributed minimum spanning tree problem. In Proceedings of 36th ACM Symposium on Theory of Computing (May2004)Google Scholar
  6. 6.
    Faloutsos, M., Molle, M.: Optimal distributed algorithm forminimum spanning trees revisited. In: Proceedings of 14th ACMSymposium on Principles of Distributed Computing, pp. 231–237(1995)Google Scholar
  7. 7.
    Fortune, S., Wyllie, J.: Parallelism in random access machines. In: Proceedings of 19th ACM Symposium on Theory of Computing, pp.230–240 (May 1987)Google Scholar
  8. 8.
    Gallager, R.G., Humblet, P.A., Spira, P.M.: A distributedalgorithm for minimum-weight spanning trees. ACM Trans. Prog.Lang. Syst. 5(1), 66–77 (1983)CrossRefGoogle Scholar
  9. 9.
    Garay, J., Kutten, S., Peleg, D.: A sub-linear time distributedalgorithm for minimum-weight spanning trees. SIAM J. Comput. 27, 302–316 (1998)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Gifford, D.K.: Weighted Voting for Replicated Data. In: Proceedings of 7th Symposium on Operating System Principles, pp.150–162 (1979)Google Scholar
  11. 11.
    Kutten, S., Peleg, D.: Fast distributed construction of smallk-dominating sets and applications. J. Algorithm.28,40–66 (1998)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Lawler, E.: Combinatorial Optimization: Networks and Matroids.Holt, Rinehart and Winston, New York (1976)Google Scholar
  13. 13.
    Linial, N.: Locality in distributed graph algorithms. SIAM J.Comput. 21, 193–201 (1992)MATHMathSciNetCrossRefGoogle Scholar
  14. 14.
    Lotker, Z., Patt-Shamir, B., Pavlov, E., Peleg, D.: MST construction in O(log log n) communication rounds. In: Proceedings of 2003 ACM Symposium on Parallelism in Algorithmsand Architecture, pp. 94–100 (2003)Google Scholar
  15. 15.
    Lynch, N.: Distributed Algorithms. Morgan Kaufmann, San Mateo,CA (1995)Google Scholar
  16. 16.
    Motwani, R., Raghavan, P.: Randomized Algorithms. CambridgeUniversity Press (1995)Google Scholar
  17. 17.
    Peleg, D.: Time-optimal leader election in general networks. J.Parallel Distrib. Comput. 8, 96–99 (1990)CrossRefGoogle Scholar
  18. 18.
    Peleg, D.: Distributed Computing: A Locality-Sensitive Approach.Society for Industrial and Applied Mathematics, Philadelphia, PA,USA (2000)Google Scholar
  19. 19.
    Peleg, D., Rubinovich, V.: Near-tight lower bound on the timecomplexity of distributed MST construction. SIAM J. Comput. 30, 1427–1442 (2000)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Upfal, E., Wigderson, A.: How to share memory in a distributedsystem. J. ACM 34(1), 116–127 (1987)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Yao, A.C.: Probabilistic computations: Toward a unified measure ofcomplexity. In: Proceedings of 18th ACM Symposium on Theory of Computing, pp. 222–227 (1977)Google Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  1. 1.Department of Electrical EngineeringTel Aviv UniversityTel AvivIsrael
  2. 2.Department of Computer ScienceWeizmann InstituteRehovotIsrael

Personalised recommendations