Distributed Computing

, Volume 17, Issue 2, pp 171–189 | Cite as

Distributed reconfiguration of metamorphic robot chains

  • Jennifer E. Walter
  • Jennifer L. Welch
  • Nancy M. Amato
Article

Abstract.

The problem we address is the distributed reconfiguration of a planar metamorphic robotic system composed of any number of hexagonal modules. After presenting a framework for classifying motion planning algorithms for metamorphic robotic systems, we describe distributed algorithms for reconfiguring a straight chain of hexagonal modules to any intersecting straight chain configuration. We prove our algorithms are correct, and show that they are either optimal or asymptotically optimal in the number of moves and asymptotically optimal in the time required for parallel reconfiguration.

Keywords:

Metamorphic robots Distributed reconfiguration 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bojinov H, Casal A, Hoag T: Emergent structures in modular self-reconfigurable robots. In: Proc. of IEEE Intl. Conf. on Robotics and Automation, vol. 2, pp 1734-1741 (2000)Google Scholar
  2. 2.
    Bojinov H, Casal A, Hoag T: Multiagent control of self-reconfigurable robots. In: Proc. of Fourth Intl. Conf. on Multiagent Systems, pp 143-150 (2000)Google Scholar
  3. 3.
    Butler Z, Byrnes S, Rus D: Distributed motion planning for modular robots with unit-compressible modules. In: Proc. of IEEE Intl. Conf. on Intelligent Robots and Systems, pp 790-796 (2001)Google Scholar
  4. 4.
    Casal A, Yim M: Self-reconfiguration planning for a class of modular robots. In: Proc. of SPIE Symposium on Intelligent Systems and Advanced Manufacturing, vol. 3839, pp 246-256 (1999)Google Scholar
  5. 5.
    Castano A, Shen W-M, Will P: CONRO: Towards miniature self-sufficient metamorphic robots. Autonomous Robots Journal 8: 309-324 (2000)CrossRefGoogle Scholar
  6. 6.
    Chiang C-J, Chirikjian G: Similarity metrics with applications to modular robot motion planning. Autonomous Robots Journal, special issue on self-reconfiguring robots, 10(1): 91-106 (2001)Google Scholar
  7. 7.
    Chirikjian G: Kinematics of a metamorphic robotic system. In: Proc. of IEEE Intl. Conf. on Robotics and Automation, pp 449-455 (1994)Google Scholar
  8. 8.
    Chirikjian G, Pamecha, A: Bounds for self-reconfiguration of metamorphic robots. Proc. IEEE International Conference on Robotics and Automation, pp 1452-1457 (1996)Google Scholar
  9. 9.
    Chirikjian G: Metamorphic hyper-redundant manipulators. In: Proc. of Intl. Conf. on Advanced Mechatronics, pp 467-472 (1993)Google Scholar
  10. 10.
    Chirikjian G, Pamecha A, Ebert-Uphoff I: Evaluating efficiency of self-reconfiguration in a class of modular robots. Journal of Robotic Systems 13(5): 317-338 (1996)CrossRefMATHGoogle Scholar
  11. 11.
    Dumitrescu A, Suzuki I, Yamashita M: High speed formations of reconfigurable modular robotic systems. Proc. IEEE International Conference on Robotics and Automation, pp 123-128 (2002)Google Scholar
  12. 12.
    Fukuda T, Buss M, Hosokai H, Kawauchi Y: Cell structured robotic system CEBOT (control, planning and communication methods). Intelligent Autonomous Systems 2: 661-671 (1989)Google Scholar
  13. 13.
    Hamlin GJ, Sanderson AC: Tetrobot: A modular approach to reconfigurable parallel robotics. Kluwer Academic Publishers, Newton, MA (1997)Google Scholar
  14. 14.
    Hosokawa K, Tsujimori T, Fujii T, Kaetsu H, Asama H, Kuroda Y, Endo I: Self-organizing collective robots with morphogenesis in a vertical plane. In: IEEE Intl. Conf. on Robotics and Automation, pp 2858-2863 (1998)Google Scholar
  15. 15.
    Kotay K, Rus D: Scalable parallel algorithm for configuration planning for self-reconfigurable robots. In: Proc. of the Conf. on Sensor Fusion and Decentralized Control in Robotic Systems III, (SPIE RB06) (2000)Google Scholar
  16. 16.
    Lee WH, Sanderson AC: Dynamic analysis and distributed control of the tetrobot modular reconfigurable robot system. Autonomous Robots Journal, special issue on self-reconfiguring robots 10(1): 67-82 (2001)Google Scholar
  17. 17.
    Murata S, Kurokawa H, Kokaji S: Self-assembling machine. In: Proc. of IEEE Intl. Conf. on Robotics and Automation, pp 441-448 (1994)Google Scholar
  18. 18.
    Murata S, Kurokawa H, Tomita K, Kokaji S: Self-assembling method for mechanical structure. In: Artif. Life Robotics 1: 111-115 (1997)Google Scholar
  19. 19.
    Murata S, Kurokawa H, Yoshida E, Tomita K, Kokaji S: A 3-D self-reconfigurable structure. In: Proc. of IEEE Intl. Conf. on Robotics and Automation, pp 432-439 (1998)Google Scholar
  20. 20.
    Murata S, Yoshida E, Kamimura A, Kurokawa H, Tomita K, Kokaji S: M-TRAN: Self-reconfigurable modular robotic system. IEEE/ASME Trans. on Mechatronics 7(4): 431-441 (2002)Google Scholar
  21. 21.
    Nguyen A, Guibas LJ, Yim M: Controlled module density helps reconfiguration planning. New Directions in Algorithmic and Computational Robotics. A.K. Peters, pp 23-36 (2001)Google Scholar
  22. 22.
    Nilsson M: Free climbing snake robot. IEEE Control Systems, pp 21-26 (1998)Google Scholar
  23. 23.
    Pamecha A, Chirikjian G: A useful metric for modular robot motion planning. In: Proc. of IEEE Intl. Conf. on Robotics and Automation, pp 442-447 (1996)Google Scholar
  24. 24.
    Pamecha A, Ebert-Uphoff I, Chirikjian G: Useful metrics for modular robot motion planning. IEEE Trans. on Robotics and Automation 13(4): 531-545 (1997)CrossRefGoogle Scholar
  25. 25.
    Pamecha A, Chiang C-J, Stein D, Chirikjian G: Design and implementation of metamorphic robots. In: Proc. of ASME Design Engineering Technical Conf. and Computers in Engineering Conf. (1996)Google Scholar
  26. 26.
    Prevas K, Unsal C, Efe M, Khosla P: A hierarchical motion planning strategy for a uniform self-reconfigurable module robotic system. In: Proc. of IEEE Intl. Conf. on Robotics and Automation, pp 787-792 (2002)Google Scholar
  27. 27.
    Rus D, Vona M: Physical implementation of the crystalline robot. In: Proc. of IEEE Intl. Conf. on Robotics and Automation, pp 1726-1733 (2000)Google Scholar
  28. 28.
    Rus D, Vona M: Crystalline robots: Self-reconfiguration with compressible unit modules. Autonomous Robots Journal, special issue on self-reconfigurable robots 10(1): 107-124 (2001)Google Scholar
  29. 29.
    Salemi B, Shen W-M, Will P: Hormone-controlled metamorphic robots. In: Proc. of IEEE Intl. Conf. on Robotics and Automation, pp 4194-4199 (2001)Google Scholar
  30. 30.
    Suh J, Homans S, Yim M: Telecubes: Mechanical design of a module for self-reconfigurable robotics. In: Proc. of the IEEE Intl. Conf. on Robotics and Automation, pp 4095-4101 (2002)Google Scholar
  31. 31.
    Tomita K, Murata S, Kurokawa H, Toshida E, Kokaji S: Self-assembly and self-repair method for a distributed mechanical system. IEEE Trans. on Robotics and Automation 15(6): 1035-1045 (1999)CrossRefGoogle Scholar
  32. 32.
    Unsal C, Kiliccote H, Khosla P: A modular self-reconfigurable bipartite robotic system: implementation and motion planning. Auton. Robot. 10: 23-40 (2001)Google Scholar
  33. 33.
    Vassilvitskii S, Yim M, Suh J: A complete, local and parallel reconfiguration algorithm for cube style modular robots. In: Proc. of the IEEE Intl. Conf. on Robotics and Automation, pp 117-122 (2002)Google Scholar
  34. 34.
    Walter J, Tsai B, Amato N: Choosing good paths for fast distributed reconfiguration of hexagonal metamorphic robots. In: Proc. of the IEEE Intl. Conf. on Robotics and Automation, pp 102-109 (2002)Google Scholar
  35. 35.
    Walter J, Welch J, Amato N: Concurrent metamorphosis of hexagonal robot chains into simple connected configurations. IEEE Trans. on Robotics and Automation (2002,) to appearGoogle Scholar
  36. 36.
    Walter J, Welch J, Amato N: Distributed reconfiguration of hexagonal metamorphic robots in two dimensions. In: Sensor Fusion and Decentralized Control in Robotic Systems III, Gerard T. McKee and Paul S. Schenker, eds., Proceedings of SPIE, 4196: 441-453 (2000)Google Scholar
  37. 37.
    Yim M: A reconfigurable modular robot with many modes of locomotion. In: Proc. of Intl. Conf. on Advanced Mechatronics, pp 283-288 (1993)Google Scholar
  38. 38.
    Yim M, Duff D, Roufas K: Polybot: a modular reconfigurable robot. In: Proc. of the IEEE Intl. Conf. on Robotics and Automation, pp 514-520 (2000)Google Scholar
  39. 39.
    Yim M, Lamping J, Mao E, Chase JG: Rhombic dodecahedron shape for self-assembling robots. SPL TechReport P9710777, Xerox PARC (1997)Google Scholar
  40. 40.
    Yoshida E, Murata S, Tomita K, Kurokawa H, Kokaji S: Distributed formation control of a modular mechanical system. In: Proc. of the Intl. Conf. on Intelligent Robots and Systems, pp 1090-1097 (1997)Google Scholar
  41. 41.
    Yoshida E, Murata S, Kurokawa H, Tomita K, Kokaji S: A distributed reconfiguration method for 3-D homogeneous structure. In: Proc. of the Intl. Conf. on Intelligent Robots and Systems, pp 852-859 (1998)Google Scholar
  42. 42.
    Zhang Y, Yim M, Lamping J, Mao E: Distributed control for 3D shape metamorphosis. Autonomous Robots Journal, Special Issue on Self-Reconfigurable Robots (2000)Google Scholar

Copyright information

© Springer-Verlag Berlin/Heidelberg 2004

Authors and Affiliations

  • Jennifer E. Walter
    • 1
  • Jennifer L. Welch
    • 2
  • Nancy M. Amato
    • 2
  1. 1.Department of Computer ScienceVassar CollegePoughkeepsieUSA
  2. 2.Department of Computer ScienceTexas A&M UniversityCollege StationUSA

Personalised recommendations