Skip to main content

Advertisement

Log in

First characterization of Gamkonora gas emission, North Maluku, East Indonesia

  • Short Scientific Communication
  • Published:
Bulletin of Volcanology Aims and scope Submit manuscript

Abstract

Gamkonora is an active volcano capable of intense manifestations that regularly forced thousands of inhabitants to flee their villages. The most extreme eruption, in 1673, was a VEI 5 event that induced pitch-dark environment over the region. Paradoxically, little is known about Gamkonora volcano and here we present the first gas measurement results obtained in September 2018 using a MultiGAS and a scanning DOAS. Results highlight a relatively small but magmatic gas with a CO2/ST of 3.5, in the range of high-temperature gas emissions from Indonesian volcanoes and H2O/SO2, CO2/SO2, H2S/SO2, and H2/SO2 ratios of 135, 5.6, 0.6, and 0.2, respectively. The daily gas emission budget corresponds to 129 t, 13 t, 3.4 t, 1.1 t, and 0.03 t for H2O, CO2, SO2, H2S, and H2, respectively. Bulk rock analyses indicate a basaltic andesite to andesite source beneath Gamkonora.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  • Aiuppa A, Shinohara H, Tamburello G, Giudice G, Liuzzo M, Moretti R (2011) Hydrogen in the gas plume of an open-vent volcano, Mount Etna, Italy. J Geophys Res B: Solid Earth 116(10):B10204

    Article  Google Scholar 

  • Aiuppa A, Giudice G, Liuzzo M, Tamburello G, Allard P, Calabrese S, Chaplygin I, McGonigle AJS, Taran Y (2012) First volatile inventory for Gorely volcano, Kamchatka. Geophys Res Lett 39:L06307. https://doi.org/10.1029/2012GL051177

    Article  Google Scholar 

  • Aiuppa A, Bani P, Moussallam Y, DiNapoli R, Allard P, Gunawan H, Hendrasto M, Tamburello G (2015) First determination of magma-derived gas emissions from Bromo volcano, eastern Java (Indonesia). J Volcanol Geotherm Res 304:206–213. https://doi.org/10.1016/j.jvolgeores.2015.09.008

    Article  Google Scholar 

  • Aiuppa A, Fischer TP, Plank T, Robidoux P, Di Napoli R (2017) Along-arc and inter-arc variations in volcanic gas CO2/ST ratios reveal dual source of carbon in arc volcanism. Earth Sci Rev 168:24–47

    Article  Google Scholar 

  • Aiuppa A, Fischer TP, Plank T, Bani P (2019) CO2 flux emissions from the Earth’s most actively degassing volcanoes, 2005–2015. Sci Rep 9(5442)

  • Bani P, Normier A, Bacri C, Allard P, Gunawan H, Hendrasto M, Surono TV (2015) First measurement of the volcanic gas output from Anak Krakatau. Indonesia J Volcanol Geotherm Res 302:237–241. https://doi.org/10.1016/j.jvolgeores.2015.07.008

    Article  Google Scholar 

  • Bani P, Alfianti H, Aiuppa A, Oppenheimer C, Sitinjak P, Tsanev V, Saing UB (2017) First study of heat and gas budget for Sirung volcano, Indonesia. Bull Volcanol 79(8):60–16. https://doi.org/10.1007/s00445-017-1142-8

    Article  Google Scholar 

  • Bani P, Tamburello G, Rose-Koga E, Liuzzo M, Aiuppa A, Cluzel N, Amat I, Syahbana DK, Gunawan H, Bitetto M (2018) Dukono, the predominant source of volcanic degassing in Indonesia, sustained by a depleted Indian-MORB. Bull Volcanol 80:5–14. https://doi.org/10.1007/s00445-017-1178-9

    Article  Google Scholar 

  • Bogumil K, Orphal J, Homann T, Voigt S, Spietz P, Fleischmann OC, Vogel A, Harmann M, Kromminga H, Bovensmann H, Frerick J, Burrows JP (2003) Measurements of molecular absorption spectra with SCIAMACHY preflight model: instrument characterization and reference data for atmospheric remote sensing in the 230-2380 nm region. J Photochem Photobiol A 157(2–3):167–184. https://doi.org/10.1016/S1010-6030(03)00062-5

    Article  Google Scholar 

  • Buck AL (1981) New equations for computing vapor pressure and enhancement factor. J Appl Meteorol 20(12):1527–1532. https://doi.org/10.1175/1520-0450(1981)020<1527:nefcvp>2.0.co;2

    Article  Google Scholar 

  • Chiodini G, Caliro S, Caramanna G, Granier D, Minipoli C, Morettim R, Perotta L, Ventura G (2006) Geochemistry of the submarine gaseous emissions of Panarea (Aeolian Islands, southern Italy): magmatic vs. hydrothermal origin and implications for volcanic surveillance. Pure Appl Geophys 163(4):759–780

    Article  Google Scholar 

  • Data Dasar Gunungapi Indonesia (2011) Kementerian Energi dan Sumber daya Mineral, Badan Geologi. edisi kedua, 401–410

  • Fischer TP (2008) Fluxes of volatiles (H2O, CO2, N2, cl, F) from arc volcanoes. Geochem J 42:21–38

    Article  Google Scholar 

  • Fischer TP, Chiodini G (2015) Volcanic, magmatic and hydrothermal gases. In: Encyclopaedia of volcanoes, 2nd edn, pp 779–797. https://doi.org/10.1016/B978-0-12-385938-9.00045-6

    Chapter  Google Scholar 

  • Gaudin D, Taddeucci J, Scarlato P, Harris A, Bombrun M, Del Bello E, Ricci T (2017) Characteristics of puffing activity revealed by ground-based, thermal infrared imaging: the example of Stromboli Volcano (Italy). Bull Volcanol 79:24–15. https://doi.org/10.1007/s00445-017-1108-x

    Article  Google Scholar 

  • Global Volcanism Program (2013) Gamkonora (268040), in Volcanoes of the World, v. 4.8.2. Venzke, E. (ed.). Smithsonian Institution https://doi.org/10.5479/si.GVP.VOTW4-2013

  • Johnson DM, Hooper PR, Conrey RM (1999) XRF analysusofrocksand minerals for major and trace elements on a single low dilution Litetraborate fused bead. JCPDS-International Centre for Diffraction Data

  • Kusumadinata K (1969) Kumpulan data mengenai Gunung Gamkonora di Pulau Halmahera (Maluku Utara). Vulkanologi, Direktorat, 58 pp

    Google Scholar 

  • Lanzafame G, Neri M, Acocella V, Billi A, Funiciello R, Giordano G (2003) Structural features of the July-august 2001 Mount Etna eruption: evidence for a complex magma supply system. J. Geological Soc 160:531–544

    Article  Google Scholar 

  • Moussallam Y, Peters N, Masias P, Aaza F, Barnie T, Schipper CI, Curtis A, Tamburello G, Aiuppa A, Bani P, Giudice G, Pieri D, Davies AG, Oppenheimer C (2017) Magmatic gas percolation through the old lava dome of El Misti volcano. Bull Volcanol 79:46. https://doi.org/10.1007/s00445-017-1129-5

    Article  Google Scholar 

  • Moussallam Y, Bani P, Schipper CI, Cardona C, Franco L, Barnie T, Amigo A, Curtis A, Peters N, Aiuppa A, Giudice G, Oppenheimer C (2018) Unrest at the Nevados de Chillán volcanic complex: a failed or yet to unfold magmatic eruption? Volcanica 1(1):19–32. https://doi.org/10.30909/vol.01.01.1932

    Article  Google Scholar 

  • Paris R, Switzer AD, Belousova M, Belousov A, Ontowirjo B, Whelley PL, Ulvrova M (2014) Volcanic tsunami: a review of source mechanisms, past events and hazards in Southeast Asia (Indonesia, Philippines, Papua New Guinea). Nat Hazards 70:447–470. https://doi.org/10.1007/s11069-013-0822-8

    Article  Google Scholar 

  • Platt U, Stutz J (2008) Differential optical absorption spectroscopy. Springer, Principles and Applications, 597 pp

    Google Scholar 

  • Primulyana S, Bani P, Harris A (2017) The effusive-explosive transitions at Rokatenda 2012-2013: unloading by extrusion of degassed magma with lateral gas flow. Bull Volcanol 79:22–16. https://doi.org/10.1007/s00445-017-1104-1

    Article  Google Scholar 

  • Saing UB, Bani P, Kristianto (2014) Ibu volcano, a center of spectacular dacite dome growth and long-term continuous eruptive discharges. J Volcanol Geotherm Res 282:36–42. https://doi.org/10.1016/j.jvolgeores.2014.06.011

    Article  Google Scholar 

  • Shinohara H (2013) Volatile flux from subduction zone volcanoes: insights from a detailed evaluation of the fluxes from volcanoes in Japan. J Volcanol Geotherm Res 268:46–63

    Article  Google Scholar 

  • Siebert L, Simkin T, Kimberly P (2010) Volcanoes of the world, 3rd edn. Institution, Smithsonian

    Google Scholar 

  • Smekens J-F, Clarke AB, BurtonMR HA, Wibowo HE (2015) SO2 emissions at Semeru volcano, Indonesia: characterization and quantification of persistent and periodic explosive activity. J Volcanol Geotherm Res 300:121–128. https://doi.org/10.1016/j.jvolgeores.2015.01.006

    Article  Google Scholar 

  • Suparman Y (2013) Laporan Tanggap Darurat Gunungapi Gamkonora, Maluku Utara. Pusat Vulkanologi dan Mitigasi Bencana Geologi, pp:1–7

  • Tamburello G (2015) Ratiocalc: software for processing data from multicomponent volcanic gas analyzers. Comput Geosci 82:63–67. https://doi.org/10.1016/j.cageo.2015.05.004

    Article  Google Scholar 

  • Voigt S, Orphal J, Bogumil K, Burrows JP (2001) The temperature dependence (203–293 K) of the absorption cross-sections of O3 in the 230–850 nm region measured by Fourier-transform spectroscopy. J Photochem Photobiol A 143(1):1–9. https://doi.org/10.1016/S1010-6030(01)00480-4

    Article  Google Scholar 

Download references

Acknowledgments

We acknowledge the field support from Gamkonora and Ibu observatories. We also thank the deputy editor J. Taddeucci, the associate editor T.P. Fischer, and two anonymous reviewers for their helpful comments that substantially improve this manuscript.

Funding

The research leading to these results has received support from JEAI-COMMISSION under the collaboration between CVGHM and IRD.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philipson Bani.

Additional information

Editorial responsibility: T.P. Fischer; Deputy Executive Editor: J. Tadeucci

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saing, U.B., Bani, P., Haerani, N. et al. First characterization of Gamkonora gas emission, North Maluku, East Indonesia. Bull Volcanol 82, 37 (2020). https://doi.org/10.1007/s00445-020-01375-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00445-020-01375-7

Keywords

Navigation