Advertisement

Volcanic history reconstruction in northern Ecuador: insights for eruptive and erosion rates on the whole Ecuadorian arc

  • 86 Accesses

Abstract

In the northern Andes, the Ecuadorian arc presents a large number of Quaternary volcanoes, spread over a rather restricted area. The origin of this volcanic clustering is not well understood, and only a few chronological data older than the Holocene are available in northern Ecuador to document the arc development stages. In this study, we present new K-Ar ages obtained on lava flow and pumice samples for Cushnirumi, Mojanda, Fuya Fuya, Imbabura, Cubilche, and Cusín volcanoes, located about 40 km north of Quito, the Ecuador’s capital city. Our results show that the volcanic activity in the northern part of the Ecuadorian arc started at least at ~ 1 Ma and that construction of volcanoes mainly occurred during the last 500 ka. Together with the radiometric data, numerical reconstructions of the paleomorphology of the volcanoes are used to estimate the volume of emitted magmas and the amount of eroded material in order to quantify their eruptive and erosion rates. Emission rates of Ecuadorian volcanoes range between < 0.2 and 3.6 ± 2.1 km3/kyr. Highest rates are obtained for volcanoes constructed over time periods shorter than 100 kyr by sporadic eruptive pulses, whereas lowest rates are calculated over longer periods that include quiescence phases. Erosion rates range between 0.02 ± 0.01 and 0.14 ± 0.09 km3/kyr and highlight that volcanic edifices whose activity ended recently are rapidly dismantled by physicochemical processes. Finally, the spatial distribution of Quaternary volcanoes as well as the spatio-temporal evolution of lava geochemistry may reflect the progressive influence of the Carnegie Ridge at depth.

Graphical abstract

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 199

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Almeida M (2016) Estudio Petrográfico y Geoquímico del Volcán Cotacachi - Provincia de Imbabura. Ecuador, EPN, Quito

  2. Alvarado A, Audin L, Nocquet JM, Lagreulet S, Segovia M, Font Y, Lamarque G, Yepes H, Mothes P, Rolandone F, Jarrín P, Quidelleur X (2014) Active tectonics in Quito, Ecuador, assessed by geomorphological studies, GPS data, and crustal seismicity. Tectonics 33:67–83. https://doi.org/10.1002/2012TC003224

  3. Alvarado A, Audin L, Nocquet JM, Jaillard E, Mothes P, Jarrín P, Segovia M, Rolandone F, Cisneros D (2016) Partitioning of oblique convergence in the Northern Andes subduction zone: migration history and the present-day boundary of the North Andean Sliver in Ecuador. Tectonics 35:1048–1065. https://doi.org/10.1002/2016TC004117

  4. Ancellin M-A, Samaniego P, Vlastélic I, Nauret F, Gannoun A, Hidalgo S (2017) Across-arc versus along-arc Sr-Nd-Pb isotope variations in the Ecuadorian volcanic arc. Geochem Geophys Geosyst 18:1163–1188. https://doi.org/10.1002/2016GC006679

  5. Andrade Varela D (2009) The influence of active tectonics on the structural development and flank collapse of Ecuadorian arc volcanoes. Université Blaise Pascal, Clermont-Ferrand II

  6. Andrade SD, van Wyk de Vries B, Robin C (2019) Imbabura volcano (Ecuador): the influence of dipping-substrata on the structural development of composite volcanoes during strike-slip faulting. J Volcanol Geotherm Res. https://doi.org/10.1016/j.jvolgeores.2018.11.017

  7. Aspden JA, McCourt WJ, Brook M (1987) Geometrical control of subduction-related magmatism: the Mesozoic and Cenozoic plutonic history of Western Colombia. J Geol Soc 144:893–905

  8. Bablon M (2018) Reconstruction de l’histoire des volcans de l’arc équatorien : contraintes pour l’évolution chronologique de l’arc andin et pour l’évaluation du risque volcanique. Univ. Paris-Sud, Université Paris-Saclay

  9. Bablon M, Quidelleur X, Samaniego P, Le Pennec J-L, Lahitte P, Liorzou C, Bustillos JE, Hidalgo S (2018) Eruptive chronology of Tungurahua volcano (Ecuador) revisited based on new K Ar ages and geomorphological reconstructions. J Volcanol Geotherm Res 357:378–398. https://doi.org/10.1016/j.jvolgeores.2018.05.007

  10. Bablon M, Quidelleur X, Samaniego P, Le Pennec J-L, Audin L, Baize S, Jomard H, Liorzou C, Hidalgo S, Alvarado A (2019) Interactions between volcanism and geodynamics in the southern termination of the Ecuadorian arc. Tectonophysics 751:54–72. https://doi.org/10.1016/j.tecto.2018.12.010

  11. Bacon CR, Lanphere MA (2006) Eruptive history and geochronology of Mount Mazama and the Crater Lake region, Oregon. Geol Soc Am Bull 118:1331–1359

  12. Baize S, Audin L, Winter T, Alvarado A, Pilatasig Moreno L, Taipe M, Reyes P, Kauffmann P, Yepes H (2015) Paleoseismology and tectonic geomorphology of the Pallatanga fault (Central Ecuador), a major structure of the South-American crust. Geomorphology 237:14–28. https://doi.org/10.1016/j.geomorph.2014.02.030

  13. Baize S, Audin L, Alvarado A, Champenois J (2016) Earthquake fault segmentation in the Central Andes, Ecuador. Extended Abstract, 7th International INQUA Meeting on Paleoseismology, Active Tectonics and Archaeoseismology, Crestone, Colorado, USA

  14. Barberi F, Coltelli M, Ferrara G, Innocenti F, Navarro JM, Santacroce R (1988) Plio-quaternary volcanism in Ecuador. Geochemical Magazine 125:1–14

  15. Bernard B, Andrade D (2011) Volcanes Cuaternarios del Ecuador Continental. Map 1:500000

  16. Bigazzi G, Coltelli M, Hadler NJC, Araya AMO, Oddone M, Salazar E (1992) Obsidian bearing lava flows and pre-Columbian artifacts from the Ecuadorian Andes: first new multidisciplinary data. J S Am Earth Sci 6:21–32. https://doi.org/10.1016/0895-9811(92)90014-P

  17. Bluth GJ, Kump LR (1994) Lithologic and climatologic controls of river chemistry. Geochim Cosmochim Acta 58:2341–2359

  18. Boland MP, Pilatasig LF, Ibandango CE, McCourt WJ, Aspden JA, Hughes RA, Beate B (2000) PRODEMINCA Report No. 10: Geology of the Western Cordillera between 0°-1°N. CODIGEM-Brit Geol Survey, Quito-Ecuador

  19. Bourdon E, Eissen J-P, Monzier M, Robin C, Martin H, Cotten J, Hall ML (2002) Adakite-like lavas from Antisana volcano (Ecuador): evidence for slab melt metasomatism beneath the Andean Northern Volcanic Zone. J Petrol 43:199–217

  20. Bourdon E, Eissen JP, Gutscher MA, Monzier M, Hall ML, Cotten J (2003) Magmatic response to early aseismic ridge subduction: the Ecuadorian margin case (South America). Earth Planet Sci Lett 205:123–128

  21. Bourdon E, Samaniego P, Monzier M, Robin C, Eissen J-P, Martin H (2004) Dubious case for slab melting in the Northern Volcanic Zone of the Andes: comment. Geology 32:e46–e47

  22. Bryant JA, Yogodzinski GM, Hall ML, Lewicki JL, Bailey DG (2006) Geochemical constraints on the origin of volcanic rocks from the Andean Northern Volcanic Zone, Ecuador. J Petrol 47:1147–1175. https://doi.org/10.1093/petrology/egl006

  23. Cáceres B (2010) Actualizacion del inventario de tres casquetes glaciares del Ecuador. Université Nice

  24. Cadier E, Villacís M, Garcés A, Lhuissier P, Maishincho L, Laval R, Paredes D, Cáceres B, Francou B (2007) Variations of a low latitude Andean glacier according to global and local climate variations: first results. Glacier Hydrology (selected papers from sessions at the IAHS Assembly in Foz do Iguaçu, Brazil, 2005)

  25. Cassignol C, Gillot P-Y (1982) Range and effectiveness of unspiked potassium-argon dating: experimental groundwork and application. In: Odin GS (ed) Numerical Dating in Stratigraphy. John Wiley & Sons, New York, pp 159–179

  26. Chiaradia M, Müntener O, Beate B, Fontignie D (2009) Adakite-like volcanism of Ecuador: lower crust magmatic evolution and recycling. Contrib Mineral Petrol 158:563–588. https://doi.org/10.1007/s00410-009-0397-2

  27. Clapperton CM (1990) Glacial and volcanic geomorphology of the Chimborazo-Carihuairazo Massif, Ecuadorian Andes. Trans R Soc Edinb Earth Sci 81:91–116. https://doi.org/10.1017/S0263593300005174

  28. Cotten J, Le Dez A, Bau M, Caroff M, Maury RC, Dulski P, Fourcade S, Bohn M, Brousse R (1995) Origin of anomalous rare-earth element and yttrium enrichments in subaerially exposed basalts: evidence from French Polynesia. Chem Geol 119:115–138

  29. Crisp JA (1984) Rates of magma emplacement and volcanic output. J Volcanol Geotherm Res 20:177–211

  30. DeMets C, Gordon RG, Argus DF (2010) Geologically current plate motions. Geophys J Int 181:1–80. https://doi.org/10.1111/j.1365-246X.2009.04491.x

  31. Drummond MS, Defant MJ (1990) A model for Trondhjemite-Tonalite-Dacite genesis and crustal growth via slab melting: Archean to modern comparisons. J Geophys Res Solid Earth 95:21503–21521

  32. Dupré B, Dessert C, Oliva P, Goddéris Y, Viers J, François L, Millot R, Gaillardet J (2003) Rivers, chemical weathering and Earth’s climate. Compt Rendus Geosci 335:1141–1160. https://doi.org/10.1016/j.crte.2003.09.015

  33. Egüez A, Alvarado A, Yepes H, Machette MN, Costa C, Dart RL (2003) Database and map of quaternary faults and folds of Ecuador and its offshore regions (No. USGS Open-File Report 03289).

  34. Erlund EJ, Cashman KV, Wallace PJ, Pioli L, Rosi M, Johnson E, Granados HD (2010) Compositional evolution of magma from Parícutin Volcano, Mexico: the tephra record. J Volcanol Geotherm Res 197:167–187. https://doi.org/10.1016/j.jvolgeores.2009.09.015

  35. Feeley TC, Davidson JP (1994) Petrology of calc-alkaline lavas at Volcán Ollagüe and the origin of compositional diversity at Central Andean Stratovolcanoes. J Petrol 35:1295–1340

  36. Frey HM, Lange RA, Hall CM, Delgado-Granados H (2004) Magma eruption rates constrained by 40Ar/39Ar chronology and GIS for the Ceboruco-San Pedro volcanic field, western Mexico. Geol Soc Am Bull 116:259–276. https://doi.org/10.1130/B25321.1

  37. Gaillardet J, Dupré B, Louvat P, Allègre CJ (1999) Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers. Chemical Geology (Isotope Geoscience Section) 159:3–30

  38. Garrison JM, Davidson JP (2003) Dubious case for slab melting in the Northern volcanic zone of the Andes. Geology 31:565–568

  39. Garrison JM, Sims KWW, Yogodzinski GM, Escobar RD, Scott S, Mothes P, Hall ML, Ramon P (2018) Shallow-level differentiation of phonolitic lavas from Sumaco Volcano, Ecuador. Contributions to Mineralogy and Petrology 173. https://doi.org/10.1007/s00410-017-1431-4, 1, 19

  40. Germa A, Quidelleur X, Gillot PY, Tchilinguirian P (2010) Volcanic evolution of the back-arc Pleistocene Payun Matru volcanic field (Argentina). J S Am Earth Sci 29:717–730. https://doi.org/10.1016/j.jsames.2010.01.002

  41. Germa A, Quidelleur X, Lahitte P, Labanieh S, Chauvel C (2011) The K-Ar Cassignol-Gillot technique applied to western Martinique lavas: a record of Lesser Antilles arc activity from 2 Ma to Mount Pelée volcanism. Quat Geochronol 6:341–355. https://doi.org/10.1016/j.quageo.2011.02.001

  42. Germa A, Lahitte P, Quidelleur X (2015) Construction and destruction of Mont Pelée volcano: volumes and rates constrained from a geomorphological model of evolution: construction and destruction of Mont Pelée. J Geophys Res Earth Surf 120:1206–1226. https://doi.org/10.1002/2014JF003355

  43. Gillot P-Y, Hildenbrand A, Lefèvre J-C, Albore-Livadie C (2006) The K/Ar dating method: principle, analytical techniques, and application to Holocene volcanic eruptions in Southern Italy. Acta Vulcanol 18:55–66

  44. Gíslason SR, Arnorsson S, Armannsson H (1996) Chemical weathering of basalt in Southwest Iceland; effects of runoff, age of rocks and vegetative/glacial cover. Am J Sci 296:837–907. https://doi.org/10.2475/ajs.296.8.837

  45. Grosse P, Orihashi Y, Guzmán SR, Sumino H, Nagao K (2018) Eruptive history of Incahuasi, Falso Azufre and El Cóndor Quaternary composite volcanoes, southern Central Andes. Bull Volcanol 80:1–26. https://doi.org/10.1007/s00445-018-1221-5

  46. Gutscher M-A, Malavieille J, Lallemand S, Collot J-Y (1999a) Tectonic segmentation of the North Andean margin: impact of the Carnegie Ridge collision. Earth Planet Sci Lett 168:255–270

  47. Gutscher M-A, Olivet J-L, Aslanian D, Eissen J-P, Maury R (1999b) The “lost Inca Plateau”: cause of flat subduction beneath Peru? Earth Planet Sci Lett 171:335–341

  48. Hall ML, Beate B (1991) Geografía y medio ambiente. El Volcanism o Plio-Cuaternario en los Andes del Ecuador:5–18

  49. Hall ML, Mothes PA (1997) Origin and age of the Upper Cangahua Formation, Tumbaco Valley (Ecuador). Presented at the Suelos volcánicos endurecidos (Quito, diciembre 1996). Mem III Symp Intern ORSTOM, EPN, Instituto Geofisico, Ecuador, Quito, Ecuador, 19–28

  50. Hall ML, Mothes P (2008) The rhyolitic-andesitic eruptive history of Cotopaxi volcano, Ecuador. Bull Volcanol 70:675–702. https://doi.org/10.1007/s00445-007-0161-2

  51. Hall ML, Wood CA (1985) Volcano-tectonic segmentation of the northern Andes. Geology 13:203–207

  52. Hall ML, Robin C, Beate B, Mothes P, Monzier M (1999) Tungurahua Volcano, Ecuador: structure, eruptive history and hazards. J Volcanol Geotherm Res 91:1–21

  53. Hall ML, Samaniego P, Le Pennec JL, Johnson JB (2008) Ecuadorian Andes volcanism: a review of Late Pliocene to present activity. J Volcanol Geotherm Res 176:1–6. https://doi.org/10.1016/j.jvolgeores.2008.06.012

  54. Hall ML, Mothes PA, Samaniego P, Militzer A, Beate B, Ramón P, Robin C (2017) Antisana volcano: a representative andesitic volcano of the eastern cordillera of Ecuador: petrography, chemistry, tephra and glacial stratigraphy. J S Am Earth Sci 73:50–64. https://doi.org/10.1016/j.jsames.2016.11.005

  55. Hallet B, Hunter L, Bogen J (1996) Rates of erosion and sediment evacuation by glaciers: a review of field data and their implications. Glob Planet Chang 12:213–235

  56. Harford CL, Pringle MS, Sparks RSJ, Young SR (2002) The volcanic evolution of Montserrat using 40Ar/39Ar geochronology. Geol Soc Lond Mem 21:93–113. https://doi.org/10.1144/GSL.MEM.2002.021.01.05

  57. Hawkesworth C, George R, Turner S, Zellmer G (2004) Time scales of magmatic processes. Earth Planet Sci Lett 218:1–16. https://doi.org/10.1016/S0012-821X(03)00634-4

  58. Hidalgo S (2006) Les interactions entre magmas calco-alcalins “classiques” et adakitiques : exemple du complexe volcanique Atacazo-Ninahuilca (Equateur). Université Blaise Pascal, Clermont-Ferrand II

  59. Hidalgo S, Monzier M, Martin H, Chazot G, Eissen J-P, Cotten J (2007) Adakitic magmas in the Ecuadorian volcanic front: petrogenesis of the Iliniza volcanic complex (Ecuador). J Volcanol Geotherm Res 159:366–392. https://doi.org/10.1016/j.jvolgeores.2006.07.007

  60. Hidalgo S, Gerbe MC, Martin H, Samaniego P, Bourdon E (2012) Role of crustal and slab components in the Northern Volcanic Zone of the Andes (Ecuador) constrained by Sr-Nd-O isotopes. Lithos 132-133:180–192. https://doi.org/10.1016/j.lithos.2011.11.019

  61. Hildreth W, Lanphere MA (1994) Potassium-argon geochronology of a basalt-andesite-dacite arc system: the Mount Adams volcanic field, Cascade Range of southern Washington. Geol Soc Am Bull 106:1413–1429

  62. Hildreth W, Fierstein J, Lanphere M (2003a) Eruptive history and geochronology of the Mount Baker volcanic field, Washington. Geol Soc Am Bull 115:729–764

  63. Hildreth W, Lanphere MA, Fierstein J (2003b) Geochronology and eruptive history of the Katmai volcanic cluster, Alaska Peninsula. Earth Planet Sci Lett 214:93–114. https://doi.org/10.1016/S0012-821X(03)00321-2

  64. Hillebrandt C (1989) Estudio geovolcanológico del complejo volcánico Cuicocha-Cotacachi y sus aplicaciones, Provincia de Imbabura. EPN, Quito. pp. 214

  65. Hora JM, Singer BS, Worner G (2007) Volcano evolution and eruptive flux on the thick crust of the Andean Central Volcanic Zone: 40Ar/39Ar constraints from Volcan Parinacota, Chile. Geol Soc Am Bull 119:343–362. https://doi.org/10.1130/B25954.1

  66. Jaillard E, Lapierre H, Ordonez M, Alava JT, Amortegui A, Vanmelle J (2009) Accreted oceanic terranes in Ecuador: southern edge of the Caribbean Plate? Geol Soc Lond Spec Publ 328:469–485. https://doi.org/10.1144/SP328.19

  67. James DE (1971) Plate tectonic model for the evolution of the Central Andes. Geol Soc Am Bull 82:3325–3346

  68. Karátson D, Telbisz T, Wörner G (2012) Erosion rates and erosion patterns of Neogene to Quaternary stratovolcanoes in the Western Cordillera of the Central Andes: an SRTM DEM based analysis. Geomorphology 139-140:122–135. https://doi.org/10.1016/j.geomorph.2011.10.010

  69. Kendrick E, Bevis M, Smalley R, Brooks B, Vargas RB, Laurıa E, Fortes LPS (2003) The ́ Nazca-South America Euler vector and its rate of change. J S Am Earth Sci 16:125–131. https://doi.org/10.1016/S0895-9811(03)00028-2

  70. Kennedy MJ, Chadwick OA, Vitousek PM, Derry LA, Hendricks DM (1998) Changing sources of base cations during ecosystem development, Hawaiian Islands. Geology 26(11):1015–1018. https://doi.org/10.1130/0091-7613(1998)026<1015:CSOBCD>2.3.CO;2

  71. Klemetti EW, Grunder AL (2008) Volcanic evolution of Volcán Aucanquilcha: a long-lived dacite volcano in the Central Andes of northern Chile. Bull Volcanol 70:633–650. https://doi.org/10.1007/s00445-007-0158-x

  72. Lahitte P, Samper A, Quidelleur X (2012) DEM-based reconstruction of southern Basse-Terre volcanoes (Guadeloupe archipelago, FWI): contribution to the Lesser Antilles Arc construction rates and magma production. Geomorphology 136:148–164. https://doi.org/10.1016/j.geomorph.2011.04.008

  73. Lavenu A, Noblet C, Bonhomme MG, Egüez A, Dugas F, Vivier G (1992) New K-Ar age dates of Neogene and Quaternary volcanic rocks from the Ecuadorian Andes: implications for the relationship between sedimentation, volcanism, and tectonics. J S Am Earth Sci 5:309–320

  74. Le Friant A, Harford CL, Deplus C, Boudon G, Sparks RSJ, Herd RA, Komorowski JC (2004) Geomorphological evolution of Montserrat (West Indies): importance of flank collapse and erosional processes. J Geol Soc 161:147–160

  75. Le Pennec JL, Ruiz AG, Eissen JP, Hall ML, Fornari M (2011) Identifying potentially active volcanoes in the Andes: radiometric evidence for late Pleistocene-early Holocene eruptions at Volcán Imbabura, Ecuador. J Volcanol Geotherm Res 206:121–135. https://doi.org/10.1016/j.jvolgeores.2011.06.002

  76. Lewis-Kenedi CB, Lange RA, Hall CM, Delgado-Granados H (2005) The eruptive history of the Tequila volcanic field, western Mexico: ages, volumes, and relative proportions of lava types. Bull Volcanol 67:391–414. https://doi.org/10.1007/s00445-004-0377-3

  77. Litherland M, Aspden JA, Egüez A (1993) Mapa geologico de la República del Ecuador. Map 1:1 000 000

  78. Louvat P, Allègre CJ (1997) Present denudation rates on the island of Reunion determined by river geochemistry: basalt weathering and mass budget between chemical and mechanical erosions. Geochim Cosmochim Acta 61:3645–3669

  79. Martin H (1999) Adakitic magmas: modern analogues of Archaean granitoids. Lithos 46:411–429

  80. Martin H, Moyen J-F, Guitreau M, Blichert-Toft J, Le Pennec J-L (2014) Why Archaean TTG cannot be generated by MORB melting in subduction zones. Lithos 198-199:1–13. https://doi.org/10.1016/j.lithos.2014.02.017

  81. Meybeck M (1987) Global chemical weathering of surficial rocks estimated from river dissolved loads. Am J Sci 287:401–428

  82. Monzier M, Robin C, Hall ML, Cotten J, Samaniego P (1999) Geochemistry and tectonics at the southern termination of the Northern Volcanic Zone (Riobamba volcanoes, Ecuador); preliminary results. Presented at the Fourth ISAG, Goettingen (Germany)

  83. Narvaez DF, Rose-Koga EF, Samaniego P, Koga KT, Hidalgo S (2018) Constraining magma sources using primitive olivine-hosted melt inclusions from Puñalica and Sangay volcanoes (Ecuador). Contrib Mineral Petrol 173:10–25. https://doi.org/10.1007/s00410-018-1508-8

  84. Newhall C, Solidum RU (2018) Volcanic hazard communication at Pinatubo from 1991 to 2015. Observing the volcano world: Volcano crisis communication. Book Series: Advances in Volcanology:189–203

  85. Nocquet J-M, Villegas-Lanza JC, Chlieh M, Mothes PA, Rolandone F, Jarrin P, Cisneros D, Alvarado A, Audin L, Bondoux F, Martin X, Font Y, Régnier M, Vallée M, Tran T, Beauval C, Maguiña Mendoza JM, Martinez W, Tavera H, Yepes H (2014) Motion of continental slivers and creeping subduction in the northern Andes. Nat Geosci 7:287–291. https://doi.org/10.1038/ngeo2099

  86. Opdyke ND, Hall M, Mejia V, Huang K, Foster DA (2006) Time-averaged field at the equator: results from Ecuador. Geochemistry, Geophysics, Geosystems 7. https://doi.org/10.1029/2005GC001221

  87. Ownby S, Delgado Granados H, Lange RA, Hall CM (2007) Volcán Tancítaro, Michoacán, Mexico, 40Ar/39Ar constraints on its history of sector collapse. J Volcanol Geotherm Res 161:1–14. https://doi.org/10.1016/j.jvolgeores.2006.10.009

  88. Peccerillo A, Taylor SR (1976) Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, northern Turkey. Contrib Mineral Petrol 58:63–81

  89. Pindell JL, Kennan L (2009) Tectonic evolution of the Gulf of Mexico, Caribbean and northern South America in the mantle reference frame: an update. Geol Soc Lond, Spec Publ 328:11–55. https://doi.org/10.1144/SP328.1

  90. Presley TK, Sinton JM, Pringle M (1997) Postshield volcanism and catastrophic mass wasting of the Waianae Volcano, Oahu, Hawaii. Bull Volcanol 58:597–616

  91. Rad S, Rivé K, Allègre CJ (2011) Weathering regime associated with subsurface circulation on volcanic islands. Aquat Geochem 17:221–241. https://doi.org/10.1007/s10498-011-9122-7

  92. Rad S, Rivé K, Vittecoq B, Cerdan O, Allègre CJ (2013) Chemical weathering and erosion rates in the Lesser Antilles: an overview in Guadeloupe, Martinique and Dominica. J S Am Earth Sci 45:331–344. https://doi.org/10.1016/j.jsames.2013.03.004

  93. Rampino MR, Self S, Fairbridge RW (1979) Can rapid climatic change cause volcanic eruptions? Science 206:826–829

  94. Ricci J, Lahitte P, Quidelleur X (2015a) Construction and destruction rates of volcanoes within tropical environment: examples from the Basse-Terre Island (Guadeloupe, Lesser Antilles). Geomorphology 228:597–607. https://doi.org/10.1016/j.geomorph.2014.10.002

  95. Ricci J, Quidelleur X, Lahitte P (2015b) Volcanic evolution of central Basse-Terre Island revisited on the basis of new geochronology and geomorphology data. Bull Volcanol:77 https://doi.org/10.1007/s00445-015-0970-7

  96. Robin C, Hall ML, Jimenez M, Monzier M, Escobar P (1997) Mojanda volcanic complex (Ecuador): development of two adjacent contemporaneous volcanoes with contrasting eruptive styles and magmatic suites. J S Am Earth Sci 10:345–359

  97. Robin C, Eissen J-P, Samaniego P, Martin H, Hall M, Cotten J (2009) Evolution of the late Pleistocene Mojanda-Fuya Fuya volcanic complex (Ecuador), by progressive adakitic involvement in mantle magma sources. Bull Volcanol 71:233–258. https://doi.org/10.1007/s00445008-0219-9

  98. Robin C, Samaniego P, Le Pennec J-L, Fornari M, Mothes P, van der Plicht J (2010) New radiometric and petrological constraints on the evolution of the Pichincha volcanic complex (Ecuador). Bull Volcanol 72:1109–1129. https://doi.org/10.1007/s00445-010-0389-0

  99. Roverato M, Larrea P, Casado I, Mulas M, Béjar G, Bowman L (2018) Characterization of the Cubilche debris avalanche deposit, a controversial case from the northern Andes, Ecuador. J Volcanol Geotherm Res 360:22–35

  100. Ruddiman WF (2001) Earth’s climate: past and future. W.H. Freeman & Sons, New York

  101. Ruiz AG (2003) Estudio Geovolcanológico del Complejo Volcánico Imbabura. Escuela Politécnica Nacional, Quito

  102. Salvany T, Lahitte P, Nativel P, Gillot P-Y (2012) Geomorphic evolution of the Piton des Neiges volcano (Réunion Island, Indian Ocean): competition between volcanic construction and erosion since 1.4 Ma. Geomorphology 136:132–147. https://doi.org/10.1016/j.geomorph.2011.06.009

  103. Samaniego P, Monzier M, Robin C, Hall ML (1998) Late Holocene eruptive activity at Nevado Cayambe Volcano, Ecuador. Bull Volcanol 59:451–459

  104. Samaniego P, Martin H, Robin C, Monzier M (2002) Transition from calc-alkalic to adakitic magmatism at Cayambe volcano, Ecuador: insights into slab melts and mantle wedge interactions. Geology 30:967–970

  105. Samaniego P, Martin H, Monzier M, Robin C, Fornari M, Eissen J-P, Cotten J (2005) Temporal evolution of magmatism in the Northern Volcanic Zone of the Andes: the geology and petrology of Cayambe Volcanic Complex (Ecuador). J Petrol 46:2225–2252. https://doi.org/10.1093/petrology/egi053

  106. Samaniego P, Robin C, Chazot G, Bourdon E, Cotten J (2010) Evolving metasomatic agent in the Northern Andean subduction zone, deduced from magma composition of the long-lived Pichincha volcanic complex (Ecuador). Contrib Mineral Petrol 160:239–260. https://doi.org/10.1007/s00410-009-0475-5

  107. Samaniego P, Barba D, Robin C, Fornari M, Bernard B (2012) Eruptive history of Chimborazo volcano (Ecuador): a large, ice-capped and hazardous compound volcano in the Northern Andes. J Volcanol Geotherm Res 221-222:33–51. https://doi.org/10.1016/j.jvolgeores.2012.01.014

  108. Samaniego P, Rivera M, Mariño J, Guillou H, Liorzou C, Zerathe S, Delgado R, Valderrama P, Scao V (2016) The eruptive chronology of the Ampato-Sabancaya volcanic complex (Southern Peru). J Volcanol Geotherm Res 323:110–128. https://doi.org/10.1016/j.jvolgeores.2016.04.038

  109. Samper A, Quidelleur X, Lahitte P, Mollex D (2007) Timing of effusive volcanism and collapse events within an oceanic arc island: Basse-Terre, Guadeloupe archipelago (Lesser Antilles Arc). Earth Planet Sci Lett 258:175–191. https://doi.org/10.1016/j.epsl.2007.03.030

  110. Samper A, Quidelleur X, Komorowski J-C, Lahitte P, Boudon G (2009) Effusive history of the Grande Découverte Volcanic Complex, southern Basse-Terre (Guadeloupe, French West Indies) from new K-Ar Cassignol-Gillot ages. J Volcanol Geotherm Res 187:117–130. https://doi.org/10.1016/j.jvolgeores.2009.08.016

  111. Schiano P, Monzier M, Eissen J-P, Martin H, Koga KT (2010) Simple mixing as the major control of the evolution of volcanic suites in the Ecuadorian Andes. Contrib Mineral Petrol 160:297–312. https://doi.org/10.1007/s00410-009-0478-2

  112. Singer BS, Jicha BR, Harper MA, Naranjo JA, Lara LE, Moreno-Roa H (2008) Eruptive history, geochronology, and magmatic evolution of the Puyehue-Cordon Caulle volcanic complex, Chile. Geol Soc Am Bull 120:599–618. https://doi.org/10.1130/B26276.1

  113. Sun S-s, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geological Society, London, Special Publications 42:313–345. https://doi.org/10.1144/GSL.SP.1989.042.01.19

  114. Taylor A, Blum JD (1995) Relation between soil age and silicate weathering rates determined from the chemical evolution of a glacial chronosequence. Geology 23:979–982

  115. Thouret J-C, Finizola A, Fornari M, Legeley-Padovani A, Suni J, Frechen M (2001) Geology of El Misti volcano near the city of Arequipa, Peru. Geol Soc Am Bull 113:1593–1610

  116. Tibaldi A, Rovida A, Corazzato C (2007) Late Quaternary kinematics, slip-rate and segmentation of a major Cordillera-parallel transcurrent fault: the Cayambe-Afiladores-Sibundoy system, NW South America. J Struct Geol 29:664–680. https://doi.org/10.1016/j.jsg.2006.11.008

  117. Trenkamp R, Kellogg JN, Freymueller JT, Mora HP (2002) Wide plate margin deformation, southern Central America and northwestern South America, CASA GPS observations. J S Am Earth Sci 15:157–171

  118. Vance D, Teagle DAH, Foster GL (2009) Variable Quaternary chemical weathering fluxes and imbalances in marine geochemical budgets. Nature 458:493–496. https://doi.org/10.1038/nature07828

  119. White SM, Crisp JA, Spera FJ (2006) Long-term volumetric eruption rates and magma budgets. Geochem Geophys Geosyst 7. https://doi.org/10.1029/2005GC001002

  120. Yepes H, Audin L, Alvarado A, Beauval C, Aguilar J, Font Y, Cotton F (2016) A new view for the geodynamics of Ecuador: implication in seismogenic source definition and seismic hazard assessment. Tectonics 35:1249–1279. https://doi.org/10.1002/2015TC003941

  121. Zellmer GF, Edmonds M, Straub SM (2015) Volatiles in subduction zone magmatism. Geol Soc Lond, Spec Publ 410:1–17. https://doi.org/10.1144/SP410.13

Download references

Acknowledgments

The authors are grateful to Pablo Grosse, an anonymous reviewer and the associate editor for their constructive comments and useful suggestions that helped us to improve the clarity of this paper. We wish to thank the Instituto Geofísico (Escuela Politécnica Nacional) of Quito and the Institut de Recherche pour le Développement (IRD) for their support during field work and sampling. We are particularly grateful to Daniel Andrade and Alexandra Alvarado for their samples from Imbabura (IMB71), Cubilche (IMB54A) and Fuya Fuya (G-0001), as well as Valérie Godard for having manufactured all the thin sections. This study was financially supported by the INSU CNRS TelluS Aleas ([INSU 2016-ALEAS]) and IRD programs, through the Laboratoire Mixte International (LMI) project entitled “Séismes et Volcans dans les Andes du Nord” ([2012-16 LMI SVAN IRD]), and by the French Government Laboratory of Excellence initiative n°ANR-10-LABX-0006, the Région Auvergne and the European Regional Development Fund. This is LGMT contribution number 154 and Laboratory of Excellence ClerVolc contribution number 388.

Author information

Correspondence to Xavier Quidelleur.

Additional information

Highlights

The Quaternary volcanic activity of northern Ecuador started at least at ~ 1 Ma.

Volcanoes grew during sporadic activity pulses separated by quiescence periods.

Erosion processes depend on the exposure duration and on rock weathering.

The volcanism spatial distribution may be related to the Carnegie Ridge subduction.

Eruptive rates do not seem to be linked to the plate convergence velocity.

Editorial responsibility: R. Cioni; Deputy Executive Editor: J. Tadeucci

Electronic Supplementary Material

ESM 1

(PDF 6.79 mb)

ESM 2

(PDF 183 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bablon, M., Quidelleur, X., Samaniego, P. et al. Volcanic history reconstruction in northern Ecuador: insights for eruptive and erosion rates on the whole Ecuadorian arc. Bull Volcanol 82, 11 (2020). https://doi.org/10.1007/s00445-019-1346-1

Download citation

Keywords

  • Ecuador
  • K-Ar dating
  • Volcanic arc
  • Eruptive rates
  • Erosion
  • Volumes