Advertisement

Bulletin of Volcanology

, 81:71 | Cite as

El Escondido tuff cone (38 ka): a hidden history of monogenetic eruptions in the northernmost volcanic chain in the Colombian Andes

  • L. Sánchez-TorresEmail author
  • A. Toro
  • H. Murcia
  • C. Borrero
  • R. Delgado
  • J. Gómez-Arango
Research Article
  • 84 Downloads

Abstract

El Escondido is a dacitic monogenetic volcano situated in the Samaná monogenetic volcanic field, within the Central Cordillera of Colombia. The tuff cone was emplaced in a deeply incised and rainy mountainous zone, ca. 38 ky ago by an explosive eruption that affected not only the metamorphic and igneous basement but also the remnants of the ~ 154 ka Pela Huevos volcano. The El Escondido volcaniclastic deposits are composed of juvenile pumice and lithic fragments including dense volcanic rocks from the Pela Huevos volcano, as well as metamorphic and igneous rocks from the basement. The pumice shows tubes and spongy textures. The volcanic lithics are dominantly angular and fresh, and exhibit different mineralogy and whole-rock geochemistry in comparison to the pumice. Plagioclase and amphibole are ubiquitous; however, biotite and quartz crystals occur only in the pumice fragments (~ 70 wt% SiO2 volatile-free), whereas olivine and pyroxene crystals are only found in the volcanic lithics (~ 65 wt% SiO2 volatile-free). The El Escondido tuff cone is strongly eroded and Pela Huevos is a dome-like remnant in the SE sector. Because of this, along with the highly vegetated tropical zone where the volcanoes are emplaced as well as difficult political issues in the region, the edifices were not recognized until recently; this is why the younger cone was named “El Escondido” (which means “The Hidden”). These eruptions evidence that recent volcanism has occurred in a zone of the Central Cordillera that has been considered as non-volcanogenic in recent studies.

Keywords

Samaná monogenetic volcanic field Flat slab volcanism Pre-existent eroded volcano Silicic monogenetic volcanism Recently discovered volcanoes 

Notes

Acknowledgments

This work was performed at the Instituto de Investigaciones en Estratigrafía (IIES), Universidad de Caldas. The Vicerrectoría de Investigaciones y Posgrados from the same university provided funds through the Semillero de Investigación en Vulcanología as part of the Grupo de Investigación en Estratigrafía y Vulcanología (GIEV) Cumanday. The Parque Natural Nacional Selva de Florencia supported the field work, while the Alcaldia de Samaná provided funds for the radiocarbon dating. Dario Pedrazzi, two anonymous reviewers, and associate editor P.-S. Ross made helpful suggestions on the manuscript.

References

  1. Blanco-Quintero A, García-Casco L, Toro LM, Moreno M, Ruiz EC, Vinasco CJ, Cardona A, Lázaro C, Morata D (2014) Late Jurassic terrane collision in the northwestern margin of Gondwana (Cajamarca Complex, eastern flank of the Central Cordillera, Colombia). Int Geol Rev 56:1852–1872CrossRefGoogle Scholar
  2. Borrero C, Murcia H, Agustin-Flores J, Arboleda MT, Giraldo AM (2017) Pyroclastic deposits of San Diego maar, Central Colombia: an example of a silicic magma related monogenetic eruption in a hard substrate. In: Németh K, Carrasco-Núñez G, Gómez JJ, Smitih IEM (eds) Monogenetic volcanism, Geological society special publication, vol 446, pp 361–374Google Scholar
  3. Branney MJ, Kokelaar BP (2002) Pyroclastic density currents and the sedimentation of ignimbrites. Geol Soc Memoir 27:143 pGoogle Scholar
  4. Cañón-Tapia E (2016) Reappraisal of the significance of volcanic fields. J Volcanol Geotherm Res 310:26–38CrossRefGoogle Scholar
  5. Cashman KV, Scheu B (2015) Magmatic fragmentation. In: Sigurdsson H, Houghton B, SR MN, Rymer H, Stix J (eds) Encyclopedia of Volcanoes, 2nd edn. Academic Press, Elsevier, USA, pp 459–472CrossRefGoogle Scholar
  6. Cashman KV, Sturtevant B, Papale P, Navon O (2000) Magmatic fragmentation. In: Houghton B, McNutt SR, Rymer H, Stix J (eds) Sigurdsson H. Academic Press, Encyclopedia of Volcanoes, pp 421–430Google Scholar
  7. Cediel F, Shaw RP, Caceres C (2003) Tectonic assembly of the northern Andean block. In: Bartolini C, Buffer RT, Blickwede J (eds) The Circum-Gulf of Mexicoan the Caribbean: hydrocarbon habitats, basin information, and plate tectonics, vol 79. AAPG Memoir, pp 815–848Google Scholar
  8. Cortés M, Angelier J, Colletta B (2005) Paleostress evolution of the northern Andes (Eastern Cordillera of Colombia): implications on plate kinematics of the South Caribbean region. Tectonics 24:27CrossRefGoogle Scholar
  9. De Silva S, Lindsay JM (2015) Primary volcanic landforms. In: Sigurdsson H, Houghton B, SR MN, Rymer H, Stix J (eds) Encyclopedia of volcanoes, 2nd edn. Academic Press, Elsevier, USA, pp 273–297CrossRefGoogle Scholar
  10. Feininger T (1970) The Palestina Fault, Colombia. Geol Soc Am Bull 81:1201–1216CrossRefGoogle Scholar
  11. Gardner JE, Thomas RME, Jaupart C, Tait S (1996) Fragmentation of magma during plinian volcanic eruptions. Bull Volcanol 58:144–162CrossRefGoogle Scholar
  12. Gómez-Tapias J, Nivia Á, Montes NE, Almanza MF, Alcárcel FA, Madrid CA (2015) Notas explicativas: Mapa Geológico de Colombia. In: Gómez J, Almanza MF (Eds), Compilando la geología de Colombia: Una visión a 2015. Servicio Geológico Colombiano, Publicaciones Geológicas Especiales 33:9–33Google Scholar
  13. González PD (2008) Texturas de los cuerpos ígneos. Asociación Geológica Argentina:172–196Google Scholar
  14. González H (1990) Mapa geológico de Caldas, escala 1: 250.000. Memoria Explicativa. INGEOMINAS, Medellín, 62 pGoogle Scholar
  15. Heiken G (1972) Morphology and petrography of volcanic ashes. Geol Soc Am Bull 83:1931–1988CrossRefGoogle Scholar
  16. Heiken G (1974) An atlas of volcanic ash. Smithson Contrib Earth Sci 12:38–101Google Scholar
  17. Houghton BF, Wilson CJN (1989) A vesicularity index for pyroclastic deposits. Bull Volcanol 51:451–462CrossRefGoogle Scholar
  18. Idárraga-García J, Kendall JM, Vargas CA (2016) Shear wave anisotropy in Northwest South America and its link to the Caribbean and Nazca subduction geodynamics. Geochem Geophys Geosyst 17:3655–3673CrossRefGoogle Scholar
  19. Irvine TNJ, Baragar WRA (1971) A guide to the chemical classification of the common volcanic rocks. Can J Earth Sci 8:523–548CrossRefGoogle Scholar
  20. Kereszturi G, Németh K (2012) Monogenetic basaltic volcanoes: genetic classification, growth, geomorphology and degradation. INTECH Open Access Publisher, 64 pGoogle Scholar
  21. Kretz R (1983) Symbols for rock-forming minerals. Am Mineral 68:277–279Google Scholar
  22. Le Bas MJ, Le Maitre RW, Streckeisen A, Zanettin B (1986) A chemical classification of volcanic rocks based on the total alkali-silica diagram. J Petrol 27:745–750CrossRefGoogle Scholar
  23. Le Maitre RW, Streckeisen A, Zanettin B, Le Bas MJ, Bonin B, Bateman P (eds) (2002) Igneous rocks: a classification and glossary of terms: recommendations of the International Union of Geological Sciences Subcommission on the Systematics of Igneous Rocks. Cambridge University Press, 254 pGoogle Scholar
  24. Lonsdale P (2005) Creation of the Cocos and Nazca plates by fission of the Farallon plate. Tectonophysics 404:237–264CrossRefGoogle Scholar
  25. Martí J, López C, Bartolini S, Becerril L, Geyer A (2016) Stress controls of monogenetic volcanism: a review. Front Earth Sci 4:106CrossRefGoogle Scholar
  26. Martí J, Geyer A, Aguirre-Díaz G, Pedrazzi D, Bolós X (2017) Basaltic ignimbrites in monogenetic volcanism: the example of La Garrotxa volcanic field. Bull Volcanol 79:article 33.  https://doi.org/10.1007/s00445-017-1113-0 CrossRefGoogle Scholar
  27. Martí J, Groppelli G, Da Silveira AB (2018) Volcanic stratigraphy: a review. J Volcanol Geotherm Res 357:68–91CrossRefGoogle Scholar
  28. Maya M (2001) Distribución, facies y edad de las rocas metamórficas en Colombia. Instituto de Investigación e Información Geocientífica. Minero - Ambiental y Nuclear. Ministerio de Minas y Energía, Colombia, 57 pGoogle Scholar
  29. Maya M, González H (1995) Unidades litodémicas en la Cordillera Central de Colombia, Instituto de Investigación e Información Geocientífica, Ministerio de Minas y Energía, Colombia, Boletín Geológico 35:43–57Google Scholar
  30. McGee LE, Smith IEM (2016) Interpreting chemical compositions of small scale basaltic systems: a review. J Volcanol Geotherm Res 325:45–60CrossRefGoogle Scholar
  31. Monsalve ML (2015) Vulcanismo en el área geotérmica de San Diego (Caldas), informe de avance. Servicio Geológico Colombiano, informe interno:80 pGoogle Scholar
  32. Monsalve ML, Arcila M (2016). Volcán El Escondido: ¿Evidencia de la prolongación norte del vulcanismo activo en Colombia? Abstract, Memorias Simposio 100 años del Servicio Geológico ColombianoGoogle Scholar
  33. Monsalve ML, Rueda JB (2015) Vulcanismo como fuente de calor en el área geotérmica de San Diego (Caldas). XV Congreso Colombiano de Geología, 2015 "Innovar en Sinergia con el Medio Ambiente" Bucaramanga, Colombia agosto 31 – septiembre 5, 2015Google Scholar
  34. Monsalve ML, Ortiz ID, Norini G (2019) El Escondido, a newly identified silicic quaternary volcano in the NE region of the northern volcanic segment (Central Cordillera of Colombia). J Volcanol Geotherm Res 383:47–62CrossRefGoogle Scholar
  35. Morrissey M, Zimanowski B, Wohletz K, Buettner R (2000) Phreatomagmatic fragmentation. In: Houghton B, McNutt SR, Rymer H, Stix J (eds) Sigurdsson H. Academic Press, Encyclopedia of Volcanoes, pp 431–446Google Scholar
  36. Murcia HF, Borrero CA, Pardo N, Alvarado GE, Arnosio M, Scolamacchia T (2013) Depósitos volcaniclásticos: Términos y conceptos para una clasificación en español. Revista Geological de América Central 48:15–39Google Scholar
  37. Murcia H, Borrero C, Németh K (2017) Monogenetic volcanism in the Cordillera Central of Colombia: unknown volcanic fields associated with the northernmost Andes’ volcanic chain related subduction [Abstract]. EGU General Assembly 2017, April 23-28 Vienna, AustriaGoogle Scholar
  38. Murcia H, Borrero C, Németh K (2019) Overview and plumbing system implications of monogenetic volcanism in the northernmost Andes’ volcanic province. J Volcanol Geotherm Res 383:77–87CrossRefGoogle Scholar
  39. Németh K (2010) Monogenetic volcanic fields: origin, sedimentary record, and relationship whit polygenetic volcanism. In: Cañón-Tapia E, Szakács A (Ed.), What is a volcano? Geological Society of America Special Paper 470:43–66Google Scholar
  40. Peccerillo A, Taylor SR (1976) Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, northern Turkey. Contrib Mineral Petrol 58:63–81CrossRefGoogle Scholar
  41. Reimer PJ, Bard E, Bayliss A, Beck JW, Blackwell PG, Ramsey CB, Grootes PM (2013) IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55:1869–1887CrossRefGoogle Scholar
  42. Rueda-Gutiérrez JB (2019) Aportes al conocimiento del Magmatismo de la Cordillera Central de Colombia en su Flanco Oriental: Área geotérmica de San Diego, Samaná, Caldas. Boletín de Geología 41:45–70CrossRefGoogle Scholar
  43. Sánchez-Torres L (2017) Caracterización de los productos volcánicos del volcán El Escondido y propuesta de un modelo evolutivo. Universidad de Caldas, Colombia, Bachelor thesis, 104 pGoogle Scholar
  44. SGC (2017) Volcán El Escondido ¿Evidencia de la prolongación norte del vulcanismo activo en Colombia? (video file). Recovered from https://www.youtube.com/watch?v=_GP6eHNY7GI
  45. Smith IEM, Németh K (2017) Source to surface model of monogenetic volcanism: a critical review. Geological Society, London, Special Publication 446:1–28CrossRefGoogle Scholar
  46. Suárez JE (2016) Mecanismos de transporte y acumulación durante las erupciones piroclásticas más explosivas, registradas al sur de Paipa, en la Cordillera Oriental de Colombia. Bachelor thesis, Universidad de Los Andes, Colombia, 130 pGoogle Scholar
  47. Syracuse EM, Maceira M, Prieto GA, Zhang H, Ammon CJ (2016) Multiple plates subducting beneath Colombia, as illuminated by sesimicity and velocity from the joint inversion of seismic and gravity data. Earth Planet Sci Lett 44:139–149CrossRefGoogle Scholar
  48. Taboada A, Rivera LA, Fuenzalida A, Cisternas A, Philip H, Bijwaard H, Rivera C (2000) Geodynamics of the northern Andes: subductions and intracontinental deformation (Colombia). Tectonics 19:787–813CrossRefGoogle Scholar
  49. Toro AM, Delgado RA (2018) Volcán El Escondido (Samaná-Caldas, Colombia): Distibución de sus depósitos, características composicionales y texturales de los productos. Bachelor thesis, Universidad de Caldas, Colombia, 86 pGoogle Scholar
  50. Valentine GA, Greeg TKP (2008) Continental basaltic volcanoes - processes and problems. J Volcanol Geotherm Res 177:857–873CrossRefGoogle Scholar
  51. Vallance JW, Iverson RM (2015) Lahars and their deposits. In: Sigurdsson H, Houghton B, SR MN, Rymer H, Stix J (eds) Encyclopedia of volcanoes, 2nd edn. Academic Press, Elsevier, USA, pp 649–664CrossRefGoogle Scholar
  52. Vargas CA, Mann P (2013) Tearing and breaking off of subducted slabs as the result of collision of the Panama Arc-Indenter with northwestern South America. Bull Seismol Soc Am 103:2025–2046CrossRefGoogle Scholar
  53. Villagómez D, Spikings R, Magna T, Kammer A, Winkler W, Beltrán A (2011) Geochronology, geochemistry and tectonic evolution of the Western and Central Cordilleras of Colombia. Lithos 125:875–896CrossRefGoogle Scholar
  54. Wagner LS, Jaramillo JS, Ramírez-Hoyos LF, Monsalve G, Cardona A, Becker TW (2017) Transient slab flattening beneath Colombia. Geophys Res Lett 44:6619–6623Google Scholar
  55. White JDL, Valentine GA (2016) Magmatic versus phreatomagmatic fragmentation: absence of evidence is not evidence of absence. Geosphere 12:1478–1488CrossRefGoogle Scholar
  56. Zimanowski B, Büttner R, Dellino P, White JD, Wohletz KH (2015) Magma–water interaction and phreatomagmatic fragmentation. In: Sigurdsson H, Houghton B, SR MN, Rymer H, Stix J (eds) Encyclopedia of volcanoes, 2nd edn. Academic Press, Elsevier, USA, pp 473–484CrossRefGoogle Scholar

Copyright information

© International Association of Volcanology & Chemistry of the Earth's Interior 2019

Authors and Affiliations

  1. 1.Instituto de Investigaciones en Estratigrafía (IIES)Universidad de CaldasManizalesColombia
  2. 2.Maestría en Ciencias de la TierraUniversidad de CaldasManizalesColombia
  3. 3.Programa de GeologíaUniversidad de CaldasManizalesColombia
  4. 4.Departamento de Ciencias GeológicasUniversidad de CaldasManizalesColombia
  5. 5.Grupo de Investigación en Estratigrafía y Vulcanología, GIEV CumandayManizalesColombia
  6. 6.Posgrado en Ciencias de la TierraUniversidad Nacional Autónoma de MéxicoMéxico CityMexico

Personalised recommendations