Advertisement

Bulletin of Volcanology

, 81:27 | Cite as

Eruptive history of the Late Quaternary Ciomadul (Csomád) volcano, East Carpathians, part I: timing of lava dome activity

  • P. LahitteEmail author
  • S. Dibacto
  • D. Karátson
  • R. Gertisser
  • D. Veres
Research Article
  • 119 Downloads

Abstract

Located at the southern tip of the Intra-Carpathian Volcanic Range in Romania, and composed of a dozen dacitic lava domes, the Ciomadul (Csomád) volcanic complex is the youngest eruptive centre of the Carpatho-Pannonian Region. Whereas, in the last decade, the explosive history of Ciomadul since 50 ka has been well constrained by numerous studies, the chronology of the dome sequence still lacks robust chronological constraints and an extended analysis of all available data. Here, we apply a detailed K-Ar dating approach to refine the chronology of the lava dome eruptions, using the unspiked K-Ar Cassignol-Gillot technique. Our dating focused on the most voluminous central part of the lava dome complex. New eruption ages were determined following a strict separation (of 10 g) of groundmass from about 3 kg of unaltered sample rocks, thereby isolating material whose cooling was contemporaneous with the eruption. The newly applied methodology, mainly consisting of a double full preparation, first at larger grain size (~ 0.4 mm) and then at < 100 μm, provides an appropriate procedure to separate suitable material to obtain the K-Ar age of the eruption, i.e. the sample’s groundmass, in which there is no risk of the presence of older, inherited crystals. Our new geochronological data set gives an improved insight into the temporal construction of the Ciomadul volcanic complex, where (due to the method applied here) all ages are younger than those from previous studies that used whole-rock K-Ar ages. Our new results show that Ciomadul’s volcanic activity began with the construction of the south-eastern, peripheral domes from ca. 850 ka to 440 ka. After a ca. 250-ky-long repose period, the activity resumed in the northern part at around 200 ka, with subsequent domes emplaced between 200 and 130 ka, aligned roughly north-south in the western-central part of the complex. Following a 30-ky-long quiescence period, the eastern-central domes formed between 100 and 60 ka. In addition to the chronological history of lava dome volcanism, we also investigated the sequence of crystallization of mineral phases present in the lavas with respect to the modification of eruption ages. Ages obtained on pure minerals (plagioclase, amphibole, and biotite) are systematically older than those obtained on groundmass, showing that most of them formed up to 1.85 Myr before eruption in a long-lived, pre-Ciomadul magmatic system. Crystal size distribution (CSD) data support the age contrasts between juvenile groundmass and older inherited minerals. After injection of new magma and convective mixing with crystal clots, ascent of the resulting mixture led to eruptions of material representing contrasting ages.

Keywords

K-Ar geochronology Groundmass Glomerocryst Excess argon Dacitic lava dome Crystal size distributions Quaternary volcanism 

Notes

Acknowledgements

We wish to thank Karoly Nemeth and an anonymous reviewer as well as Editors Stephen Self and Andrew Harris for their comments and suggestions, which greatly helped us to improve the clarity of the manuscript. Fruitful discussions with Carlos Palares and Xavier Quidelleur at different stages of this study have helped to clarify the ideas presented in this paper. This is Laboratoire de Géochronologie Multi-Techniques (LGMT) contribution number 146.

Funding information

This research was supported by the Hungarian Scientific Research Fund NKFIH - OTKA No. K 115472 to DK.

Supplementary material

445_2019_1286_MOESM1_ESM.docx (30 kb)
ESM 1 (DOCX 29 kb)

References

  1. Anderson A (1976) Magma mixing - petrological process and volcanological tool. J Volcanol Geotherm Res 1:3–33.  https://doi.org/10.1016/0377-0273(76)90016-0 CrossRefGoogle Scholar
  2. Arce JL, Macias JL, Gardner JE, Layer PW (2006) A 2.5 ka history of dacitic magmatism at Nevado de Toluca, Mexico: petrological, Ar-40/Ar-39 dating, and experimental constraints on petrogenesis. J Petrol 47:457–479.  https://doi.org/10.1093/petrology/egi082 CrossRefGoogle Scholar
  3. Armienti P, Pareschi M, Innocenti F, Pompilio M (1994) Effects of magma storage and ascent on the kinetics of crystal-growth - the case of the 1991-93 Mt Etna eruption. Contrib Mineral Petrol 115:402–414.  https://doi.org/10.1007/BF00320974 CrossRefGoogle Scholar
  4. Bachmann O, Bergantz GW (2004) On the origin of crystal-poor rhyolites: extracted from batholithic crystal mushes. J Petrol 45:1565–1582.  https://doi.org/10.1093/petrology/egh019 CrossRefGoogle Scholar
  5. Bachmann O, Oberli F, Dungan MA, Meier M, Mundil R, Fischer H (2007) (40)Ar/(39)Ar and U-Pb dating of the Fish Canyon magmatic system, San Juan Volcanic field, Colorado: evidence for an extended crystallization history. Chem Geol 236:134–166.  https://doi.org/10.1016/j.chemgeo.2006.09.005 CrossRefGoogle Scholar
  6. Balogh K, Nemeth K (2005) Evidence for the neogene small-volume intracontinental volcanism in Western Hungary: K/Ar geochronology of the Tihany Maar volcanic complex. Geol Carpathica 56:91–99Google Scholar
  7. Balogh K, Nemeth K, Itaya T et al (2010) Loss of Ar-40(rad) from leucite-bearing basanite at low temperature: implications on K/Ar dating. Cent Eur J Geosci 2:385–398.  https://doi.org/10.2478/v10085-010-0026-3 CrossRefGoogle Scholar
  8. Baxter EF (2010) Diffusion of noble gases in minerals. In: Zhang YX, Cherniak DJ (eds) Diffusion in minerals and melts. pp 509–557Google Scholar
  9. Blake S (1990) Viscoplastic models of lava domes. In: Lava flows and domes. Springer, Berlin, Heidelberg, pp 88–126CrossRefGoogle Scholar
  10. Boven A, Pasteels P, Kelley SP, Punzalan L, Bingen B, Demaiffe D (2001) Ar-40/Ar-39 study of plagioclases from the Rogaland anorthosite complex (SW Norway); an attempt to understand argon ages in plutonic plagioclase. Chem Geol 176:105–135.  https://doi.org/10.1016/S0009-2541(00)00372-7 CrossRefGoogle Scholar
  11. Brown SJA, Fletcher IR (1999) SHRIMP U-Pb dating of the preeruption growth history of zircons from the 340 ka Whakamaru Ignimbrite, New Zealand: evidence for > 250 k.y. magma residence times. Geology 27:1035–1038.  https://doi.org/10.1130/0091-7613(1999)027<1035:SUPDOT>2.3.CO;2 CrossRefGoogle Scholar
  12. Brown SJA, Wilson CJN, Cole JW, Wooden J (1998) The Whakamaru group ignimbrites, Taupo Volcanic Zone, New Zealand: evidence for reverse tapping of a zoned silicic magmatic system. J Volcanol Geotherm Res 84:1–37.  https://doi.org/10.1016/S0377-0273(98)00020-1 CrossRefGoogle Scholar
  13. Cadoux A, Pinti DL, Aznar C, Chiesa S, Gillot PY (2005) New chronological and geochemical constraints on the genesis and geological evolution of Ponza and Palmarola Volcanic Islands (Tyrrhenian Sea, Italy). LITHOS 81:121–151.  https://doi.org/10.1016/j.lithos.2004.09.020 CrossRefGoogle Scholar
  14. Calvert AT, Moore RB, McGeehin JP, Rodrigues da Silva AM (2006) Volcanic history and Ar-40/Ar-39 and C-14 geochronology of Terceira Island, Azores, Portugal. J Volcanol Geotherm Res 156:103–115.  https://doi.org/10.1016/j.jvolgeores.2006.03.016 CrossRefGoogle Scholar
  15. Cassata WS, Renne PR, Shuster DL (2009) Argon diffusion in plagioclase and implications for thermochronometry: a case study from the Bushveld Complex, South Africa. Geochim Cosmochim Acta 73:6600–6612.  https://doi.org/10.1016/j.gca.2009.07.017 CrossRefGoogle Scholar
  16. Cassignol C, Gillot P-Y (1982) Range and effectiveness of unspiked potassium-argon dating: experimental groundwork and applications. In: Numerical dating in stratigraphy, John Wiley & Sons. Odin G.S., pp 159–179Google Scholar
  17. Casta L (1980) Les formations quaternaires de la Dépression de Braşov (Roumanie). PhD Thesis, Université de Aix-Marseille II, pp 256Google Scholar
  18. Cole JW, Deering CD, Burt RM, Sewell S, Shane PAR, Matthews NE (2014) Okataina Volcanic Centre, Taupo Volcanic Zone, New Zealand: a review of volcanism and synchronous pluton development in an active, dominantly silicic caldera system. Earth-Sci Rev 128:1–17.  https://doi.org/10.1016/j.earscirev.2013.10.008 CrossRefGoogle Scholar
  19. Condit CD, Connor CB (1996) Recurrence rates of volcanism in basaltic volcanic fields: an example from the Springerville volcanic field, Arizona. Geol Soc Am Bull 108:1225–1241.  https://doi.org/10.1130/0016-7606(1996)108<1225:RROVIB>2.3.CO;2 CrossRefGoogle Scholar
  20. Connor CB, Hill BE (1995) 3 nonhomogeneous Poisson models for the probability of basaltic volcanism - application to the Yucca Mountain region, Nevada. J Geophys Res-Solid Earth 100:10107–10125.  https://doi.org/10.1029/95JB01055 CrossRefGoogle Scholar
  21. Cooper KM, Reid MR (2008) Uranium-series crystal ages. In: Putirka KD, Tepley FJ (eds) Minerals, inclusions and volcanic processes. pp 479–544Google Scholar
  22. Coulie E, Quidelleur X, Gillot PY et al (2003) Comparative K-Ar and Ar/Ar dating of Ethiopian and Yemenite Oligocene volcanism: implications for timing and duration of the Ethiopian traps. Earth Planet Sci Lett 206:477–492.  https://doi.org/10.1016/S0012-821X(02)01089-0 CrossRefGoogle Scholar
  23. Crisp J (1984) Rates of magma emplacement and volcanic output. J Volcanol Geotherm Res 20:177–211.  https://doi.org/10.1016/0377-0273(84)90039-8 CrossRefGoogle Scholar
  24. Dalrymple G, Moore J (1968) Argon-40 - excess in submarine pillow basalts from Kilauea Volcano, Hawaii. Science 161:1132.  https://doi.org/10.1126/science.161.3846.1132 CrossRefGoogle Scholar
  25. Damaschke M, Cronin SJ, Bebbington MS (2018) A volcanic event forecasting model for multiple tephra records, demonstrated on Mt. Taranaki, New Zealand. Bull Volcanol 80:9.  https://doi.org/10.1007/s00445-017-1184-y CrossRefGoogle Scholar
  26. Danisik M, Shane P, Schmitt AK et al (2012) Re-anchoring the late Pleistocene tephrochronology of New Zealand based on concordant radiocarbon ages and combined U-238/Th-230 disequilibrium and (U-Th)/He zircon ages. Earth Planet Sci Lett 349:240–250.  https://doi.org/10.1016/j.epsl.2012.06.041 CrossRefGoogle Scholar
  27. Dodson MH (1973) Closure temperature in cooling geochronological and petrological systems. Contrib Mineral Petrol 40:259–274.  https://doi.org/10.1007/BF00373790 CrossRefGoogle Scholar
  28. Doherty AL, Bodnar RJ, De Vivo B et al (2012) Bulk rock composition and geochemistry of olivine-hosted melt inclusions in the Grey Porri Tuff and selected lavas of the Monte dei Porri volcano, Salina, Aeolian Islands, southern Italy. Cent Eur J Geosci 4:338–355.  https://doi.org/10.2478/s13533-011-0066-7 CrossRefGoogle Scholar
  29. Farley KA, Kohn BP, Pillans B (2002) The effects of secular disequilibrium on (U-Th)/He systematics and dating of Quaternary volcanic zircon and apatite. Earth Planet Sci Lett 201:117–125.  https://doi.org/10.1016/S0012-821X(02)00659-3 CrossRefGoogle Scholar
  30. Gamble JA, Price RC, Smith IEM, McIntosh WC, Dunbar NW (2003) Ar-40/Ar-39 geochronology of magmatic activity, magma flux and hazards at Ruapehu volcano, Taupo Volcanic Zone, New Zealand. J Volcanol Geotherm Res 120:271–287.  https://doi.org/10.1016/S0377-0273(02)00407-9 CrossRefGoogle Scholar
  31. Gansecki CA, Mahood GA, McWilliams MO (1996) Ar-40/Ar-39 geochronology of rhyolites erupted following collapse of the Yellowstone caldera, Yellowstone Plateau volcanic field: implications for crustal contamination. Earth Planet Sci Lett 142:91–107.  https://doi.org/10.1016/0012-821X(96)00088-X CrossRefGoogle Scholar
  32. Gardner JE, Layer PW, Rutherford MJ (2002) Phenocrysts versus xenocrysts in the youngest Toba Tuff: implications for the petrogenesis of 2800 km(3) of magma. Geology 30:347–350.  https://doi.org/10.1130/0091-7613(2002)030<0347:PVXITY>2.0.CO;2 CrossRefGoogle Scholar
  33. Germa A, Quidelleur X, Labanieh S, Lahitte P, Chauvel C (2010) The eruptive history of Morne Jacob volcano (Martinique Island, French West Indies): geochronology, geomorphology and geochemistry of the earliest volcanism in the recent Lesser Antilles arc. J Volcanol Geotherm Res 198:297–310.  https://doi.org/10.1016/j.jvolgeores.2010.09.013 CrossRefGoogle Scholar
  34. Germa A, Quidelleur X, Labanieh S, Chauvel C, Lahitte P (2011a) The volcanic evolution of Martinique Island: insights from K-Ar dating into the Lesser Antilles arc migration since the Oligocene. J Volcanol Geotherm Res 208:122–135.  https://doi.org/10.1016/j.jvolgeores.2011.09.007 CrossRefGoogle Scholar
  35. Germa A, Quidelleur X, Lahitte P, Labanieh S, Chauvel C (2011b) The K-Ar Cassignol-Gillot technique applied to western Martinique lavas: a record of Lesser Antilles arc activity from 2 Ma to Mount Pelee volcanism. Quat Geochronol 6:341–355.  https://doi.org/10.1016/j.quageo.2011.02.001 CrossRefGoogle Scholar
  36. Germa A, Lahitte P, Quidelleur X (2015) Construction and destruction of Mont Pelee volcano: volumes and rates constrained from a geomorphological model of evolution. J Geophys Res-Earth Surf 120:1206–1226.  https://doi.org/10.1002/2014JF003355 CrossRefGoogle Scholar
  37. Gertisser R, Charbonnier SJ, Keller J, Quidelleur X (2012) The geological evolution of Merapi volcano, Central Java, Indonesia. Bull Volcanol 74:1213–1233.  https://doi.org/10.1007/s00445-012-0591-3 CrossRefGoogle Scholar
  38. Gillot P-Y, Cornette Y (1986) The Cassignol technique for potassium - argon dating, precision and accuracy - examples from the late Pleistocene to recent volcanics from southern Italy. Chem Geol 59:205–222Google Scholar
  39. Gillot P-Y, Cornette Y, Max N, Floris B (1992) Two reference materials, trachytes MDO-G and ISH-G, for argon dating (KeAr and 40Ar/39Ar) of Pleistocene and Holocene rocks. Geostand Newslett 16:55–60.  https://doi.org/10.1111/j.1751-908X.1992.tb00487.x CrossRefGoogle Scholar
  40. Gillot P-Y, Hildenbrand A, Lefevre JC, Albore-Livadie C (2006) The K/Ar dating method: principle, analytical techniques, and application to Holocene volcanic eruptions in southern Italy. Acta Vulcanol 18:55–66Google Scholar
  41. Gomez-Tuena A, LaGatta AB, Langmuir CH et al (2003) Temporal control of subduction magmatism in the eastern Trans-Mexican Volcanic Belt: mantle sources, slab contributions, and crustal contamination. Geochem Geophys Geosyst 4:8912.  https://doi.org/10.1029/2003GC000524 CrossRefGoogle Scholar
  42. Gomez-Tuena A, Mori L, Goldstein SL, Perez-Arvizu O (2011) Magmatic diversity of western Mexico as a function of metamorphic transformations in the subducted oceanic plate. Geochim Cosmochim Acta 75:213–241.  https://doi.org/10.1016/j.gca.2010.09.029 CrossRefGoogle Scholar
  43. Harangi S, Molnár M, Vinkler AP, Kiss B, Jull AJT, Leonard AG (2010) Radiocarbon dating of the last volcanic eruptions of Ciomadul volcano, Southeast Carpathians, eastern-central Europe. Radiocarbon 52:1498–1507CrossRefGoogle Scholar
  44. Harangi S, Lukács R, Schmitt AK, Dunkl I, Molnár K, Kiss B, Seghedi I, Novothny Á, Molnár M (2015a) Constraints on the timing of Quaternary volcanism and duration of magma residence at Ciomadul volcano, east–central Europe, from combined U–Th/He and U–Th zircon geochronology. J Volcanol Geotherm Res 301:66–80.  https://doi.org/10.1016/j.jvolgeores.2015.05.002 CrossRefGoogle Scholar
  45. Harangi S, Novák A, Kiss B, Seghedi I, Lukács R, Szarka L, Wesztergom V, Metwaly M, Gribovszki K (2015b) Combined magnetotelluric and petrologic constrains for the nature of the magma storage system beneath the Late Pleistocene Ciomadul volcano (SE Carpathians). J Volcanol Geotherm Res 290:82–96.  https://doi.org/10.1016/j.jvolgeores.2014.12.006 CrossRefGoogle Scholar
  46. Harford C, Pringle MS, Sparks RSJ, Young SR (2002) The volcanic evolution of Montserrat using 40Ar/39Ar geochronology. In: The eruption of Soufrière Hills Volcano, Montserrat, from 1995 to 1999, The Geological Society Memoirs. Druitt TH, Kokelaar BP (eds) London, pp 93–113Google Scholar
  47. Heizler MT, Perry FV, Crowe BM, Peters L, Appelt R (1999) The age of Lathrop Wells volcanic center: an Ar-40/Ar-39 dating investigation. J Geophys Res-Solid Earth 104:767–804.  https://doi.org/10.1029/1998JB900002 CrossRefGoogle Scholar
  48. Higgins MD (1996) Crystal size distributions and other quantitative textural measurements in lavas and tuff from Egmont volcano (Mt Taranaki), New Zealand. Bull Volcanol 58:194–204.  https://doi.org/10.1007/s004450050135 CrossRefGoogle Scholar
  49. Higgins MD (2002) Closure in crystal size distributions (CSD), verification of CSD calculations, and the significance of CSD fans. Am Mineral 87:171–175CrossRefGoogle Scholar
  50. Higgins MD (2006) Quantitative textural measurements in igneous and metamorphic petrology. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  51. Higgins MD, Roberge J (2007) Three magmatic components in the 1973 eruption of Eldfell volcano, Iceland: evidence from plagioclase crystal size distribution (CSD) and geochemistry. J Volcanol Geotherm Res 161:247–260.  https://doi.org/10.1016/j.jvolgeores.2006.12.002 CrossRefGoogle Scholar
  52. Hildenbrand A, Gillot P-Y, Le Roy I (2004) Volcano-tectonic and geochemical evolution of an oceanic intra-plate volcano: Tahiti-Nui (French Polynesia). Earth Planet Sci Lett 217:349–365.  https://doi.org/10.1016/S0012-821X(03)00599-5 CrossRefGoogle Scholar
  53. Hildenbrand A, Weis D, Madureira P, Marques FO (2014) Recent plate re-organization at the Azores Triple Junction: evidence from combined geochemical and geochronological data on Faial, S.Jorge and Terceira volcanic islands. Lithos 210:27–39.  https://doi.org/10.1016/j.lithos2014.09.009 CrossRefGoogle Scholar
  54. Hofmann C, Feraud G, Courtillot V (2000) Ar-40/Ar-39 dating of mineral separates and whole rocks from the Western Ghats lava pile: further constraints on duration and age of the Deccan traps. Earth Planet Sci Lett 180:13–27.  https://doi.org/10.1016/S0012-821X(00)00159-X CrossRefGoogle Scholar
  55. Hora JM, Singer BS, Woerner G (2007) Volcano evolution and eruptive flux on the thick crust of the Andean Central Volcanic Zone: Ar-40/Ar-39 constraints from Volcan Parinacota, Chile. Geol Soc Am Bull 119:343–362.  https://doi.org/10.1130/B25954.1 CrossRefGoogle Scholar
  56. Huber C, Bachmann O, Dufek J (2011) Thermo-mechanical reactivation of locked crystal mushes: melting-induced internal fracturing and assimilation processes in magmas. Earth Planet Sci Lett 304:443–454.  https://doi.org/10.1016/j.epsl.2011.02.022 CrossRefGoogle Scholar
  57. Karátson D, Timár G (2005) Comparative volumetric calculations of two segments of the Carpathian Neogene/Quaternary volcanic chain using SRTM elevation data: implications for erosion and magma output rates. In: Thouret JC, Chester DK (eds) Volcanic landforms, processes and hazards. pp 19–35Google Scholar
  58. Karátson D, Telbisz T, Harangi S, Magyari E, Dunkl I, Kiss B, Jánosi C, Veres D, Braun M, Fodor E, Biró T, Kósik S, von Eynatten H, Lin D (2013) Morphometrical and geochronological constraints on the youngest eruptive activity in east-Central Europe at the Ciomadul (Csomad) lava dome complex, East Carpathians. J Volcanol Geotherm Res 255:43–56.  https://doi.org/10.1016/j.jvolgeores.2013.01.013 CrossRefGoogle Scholar
  59. Karátson D, Wulf S, Veres D, Magyari EK, Gertisser R, Timar-Gabor A, Novothny Á, Telbisz T, Szalai Z, Anechitei-Deacu V, Appelt O, Bormann M, Jánosi C, Hubay K, Schäbitz F (2016) The latest explosive eruptions of Ciomadul (Csomad) volcano, East Carpathians - a tephrostratigraphic approach for the 51-29 ka BP time interval. J Volcanol Geotherm Res 319:29–51.  https://doi.org/10.1016/j.jvolgeores.2016.03.005 CrossRefGoogle Scholar
  60. Karátson D, Telbisz T, Dibacto S, Lahitte P, Szakács A, Veres D, Gertisser R, Jánosi Cs, Timár G (2019) Eruptive history of the Late Quaternary Ciomadul (Csomád) volcano, East Carpathians, part II: magma output rates. Bull Volcanol (this volume)Google Scholar
  61. Kelley S (2002) Excess argon in K-Ar and Ar-Ar geochronology. Chem Geol 188:1–22.  https://doi.org/10.1016/S0009-2541(02)00064-5 CrossRefGoogle Scholar
  62. Kereszturi G, Bebbington M, Nemeth K (2017) Forecasting transitions in monogenetic eruptions using the geologic record. Geology 45:283–286.  https://doi.org/10.1130/G38596.1 CrossRefGoogle Scholar
  63. Kersting AB, Arculus PJ (1994) Klyuchevskoy volcano, Kamchatka, Russia - the role of high-flux recharged, tapped, and fractionated magma chamber(s) in the genesis of high-AL2O3 from high-MgO basalt. J Petrol 35:1–41CrossRefGoogle Scholar
  64. Kis B-M, Ionescu A, Cardellini C, Harangi S, Baciu C, Caracausi A, Viveiros F (2017) Quantification of carbon dioxide emissions of Ciomadul, the youngest volcano of the Carpathian-Pannonian Region (Eastern-Central Europe, Romania). J Volcanol Geotherm Res 341:119–130.  https://doi.org/10.1016/j.jvolgeores.2017.05.025 CrossRefGoogle Scholar
  65. Kiss B, Harangi S, Ntaflos T, Mason PRD, Pál-Molnár E (2014) Amphibole perspective to unravel pre-eruptive processes and conditions in volcanic plumbing systems beneath intermediate arc volcanoes: a case study from Ciomadul volcano (SE Carpathians). Contrib Mineral Petrol 167.  https://doi.org/10.1007/s00410-014-0986-6
  66. Lahitte P, Coulie E, Mercier N et al (2001) K-Ar and TL volcanism chronology of the southern ends of the Red Sea spreading in Afar since 300 ka. C R Acad Sci Paris Sci Terre Planètes 332:13–20.  https://doi.org/10.1016/S1251-8050(00)01491-9 CrossRefGoogle Scholar
  67. Lahitte P, Samper A, Quidelleur X (2012) DEM-based reconstruction of southern Basse-Terre volcanoes (Guadeloupe archipelago, FWI): contribution to the Lesser Antilles Arc construction rates and magma production. Geomorphology 136:148–164.  https://doi.org/10.1016/j.geomorph.2011.04.008 CrossRefGoogle Scholar
  68. Lexa J, Seghedi I, Nemeth K et al (2010) Neogene-Quaternary volcanic forms in the Carpathian-Pannonian Region: a review. Cent Eur J Geosci 2:207–U75.  https://doi.org/10.2478/v10085-010-0024-5 CrossRefGoogle Scholar
  69. Luhr JF, Allan J, Carmichael I et al (1989) Primitive calc-alkaline and alkaline rock types from the Western Mexican Volcanic Belt. J Geophys Res Solid Earth Planets 94:4515–4530.  https://doi.org/10.1029/JB094iB04p04515 CrossRefGoogle Scholar
  70. Marsh BD (1988) Crystal size distribution (CSD) in rocks and the kinetics and dynamics. Contrib Mineral Petrol 99:277–291.  https://doi.org/10.1007/BF00375362 CrossRefGoogle Scholar
  71. Marzocchi W, Zaccarelli L (2006) A quantitative model for the time-size distribution of eruptions. J Geophys Res Solid Earth 111:B04204.  https://doi.org/10.1029/2005JB003709 CrossRefGoogle Scholar
  72. Matenco L, Bertotti G, Leever K, Cloetingh S, Schmid SM, Tărăpoancă M, Dinu C (2007) Large-scale deformation in a locked collisional boundary: interplay between subsidence and uplift, intraplate stress, and inherited lithospheric structure in the late stage of the SE Carpathians evolution. Tectonics 26:TC4011.  https://doi.org/10.1029/2006TC001951 CrossRefGoogle Scholar
  73. Matthews NE, Pyle DM, Smith VC, Wilson CJN, Huber C, van Hinsberg V (2012) Quartz zoning and the pre-eruptive evolution of the similar to 340-ka Whakamaru magma systems, New Zealand. Contrib Mineral Petrol 163:87–107.  https://doi.org/10.1007/s00410-011-0660-1 CrossRefGoogle Scholar
  74. McDougall I, Harrison TM (1999) Geochronology and thermochronology by the 40Ar/39Ar method, 2nd edn. Oxford University Press, New YorkGoogle Scholar
  75. McDougall I, Polach H, Stipp J (1969) Excess radiogenic argon in young subaerial basalts from Auckland volcanic field New Zealand. Geochim Cosmochim Acta 33:1485–1520.  https://doi.org/10.1016/0016-7037(69)90152-5 CrossRefGoogle Scholar
  76. Mock A, Jerram DA (2005) Crystal size distributions (CSD) in three dimensions: insights from the 3D reconstruction of a highly porphyritic rhyolite. J Petrol 46:1525–1541.  https://doi.org/10.1093/petrology/egi024 CrossRefGoogle Scholar
  77. Molnár K, Harangi S, Lukács R et al (2018) The onset of the volcanism in the Ciomadul Volcanic Dome Complex (Eastern Carpathians): eruption chronology and magma type variation. J Volcanol Geotherm Res.  https://doi.org/10.1016/j.jvolgeores.2018.01.025 CrossRefGoogle Scholar
  78. Morgan DJ, Jerram DA (2006) On estimating crystal shape for crystal size distribution analysis. J Volcanol Geotherm Res 154:1–7.  https://doi.org/10.1016/j.jvolgeores.2005.09.016 CrossRefGoogle Scholar
  79. Moriya I, Okuno M, Nakamura T, et al (1996) Radiocarbon ages of charcoal fragments from the pumice flow deposit of the last eruption of Ciomadul volcano, Romania. In: Summaries of Researches using AMS. Nagoya University 7, pp 255–257Google Scholar
  80. Murphy MD, Sparks RSJ, Barclay J et al (2000) Remobilization of andesite magma by intrusion of mafic magma at the Soufriere Hills Volcano, Montserrat, West Indies. J Petrol 41:21–42.  https://doi.org/10.1093/petrology/41.1.21 CrossRefGoogle Scholar
  81. Nakamura M (1995) Continuous mixing of crystal mush and replenished magma in the ongoing Unzen eruption. Geology 23:807–810.  https://doi.org/10.1130/0091-7613(1995)023<0807:CMOCMA>2.3.CO;2 CrossRefGoogle Scholar
  82. Neave DA, Buisman I, Maclennnnan J (2017) Continuous mush disaggregation during the long-lasting Laki fissure eruption, Iceland. Am Mineral 102:2007–2021.  https://doi.org/10.2138/am-2017-6015CCBY CrossRefGoogle Scholar
  83. Nemeth K, Kereszturi G (2015) Monogenetic volcanism: personal views and discussion. Int J Earth Sci 104:2131–2146.  https://doi.org/10.1007/s00531-015-1243-6 CrossRefGoogle Scholar
  84. Nishimura K, Kawamoto T, Kobayashi T, Sugimoto T, Yamashita S (2005) Melt inclusion analysis of the Unzen 1991-1995 dacite: implications for crystallization processes of dacite magma. Bull Volcanol 67:648–662.  https://doi.org/10.1007/s00445-004-0400-8 CrossRefGoogle Scholar
  85. Ozawa A, Tagami T, Kamata H (2006) Argon isotopic composition of some Hawaiian historical lavas. Chem Geol 226:66–72.  https://doi.org/10.1016/j.chemgeo.2005.10.001 CrossRefGoogle Scholar
  86. Pécskay Z, Szakács A, Seghedi I, Karátson D (1992) New data on the geochronological interpretation of Cucu volcano and its environs (South Harghita, Romania). Hung Földt Közl 122(2–4):265–286Google Scholar
  87. Pécskay Z, Lexa J, Szakacs A et al (1995) Space and time distribution of Neogene-Quaternary volcanism in the Carpatho- Pannonian Region. Acta Vulcanol 7:15–28Google Scholar
  88. Pécskay Z, Lexa J, Szakacs A et al (2006) Geochronology of Neogene magmatism in the Carpathian arc and intra-Carpathian area. Geol Carpath 57:511–530Google Scholar
  89. Popa M, Radulian M, Szakács A, Seghedi I, Zaharia B (2012) New seismic and tomography data in the southern part of the Harghita Mountains (Romania, Southeastern Carpathians): connection with recent volcanic activity. Pure Appl Geophys 169:1557–1573.  https://doi.org/10.1007/s00024-011-0428-6 CrossRefGoogle Scholar
  90. Quidelleur X, Gillot PY, Soler V, Lefevre JC (2001) K/Ar dating extended into the last millennium: application to the youngest effusive episode of the Teide volcano (Spain). Geophys Res Lett 28:3067–3070.  https://doi.org/10.1029/2000GL012821 CrossRefGoogle Scholar
  91. Rangel E, Arce JL, Macias JL (2018) Storage conditions of the similar to 29 ka rhyolitic Guangoche White Pumice Sequence, Los Azufres Volcanic Field, Central Mexico. J Volcanol Geotherm Res 358:132–148.  https://doi.org/10.1016/j.jvolgeores.2018.03.016 CrossRefGoogle Scholar
  92. Reid MR, Vazquez JA, Schmitt AK (2011) Zircon-scale insights into the history of a Supervolcano, Bishop Tuff, Long Valley, California, with implications for the Ti-in-zircon geothermometer. Contrib Mineral Petrol 161:293–311.  https://doi.org/10.1007/s00410-010-0532-0 CrossRefGoogle Scholar
  93. Reyes-Guzman N, Siebe C, Chevrel MO et al (2018) Geology and radiometric dating of Quaternary monogenetic volcanism in the western Zacapu lacustrine basin (Michoacan, Mexico): implications for archeology and future hazard evaluations. Bull Volcanol 80:18.  https://doi.org/10.1007/s00445-018-1193-5 CrossRefGoogle Scholar
  94. Rubin A, Cooper KM, Leever M, Wimpenny J, Deering C, Rooney T, Gravley D, Yin QZ (2016) Changes in magma storage conditions following caldera collapse at Okataina Volcanic Center, New Zealand. Contrib Mineral Petrol 171:4.  https://doi.org/10.1007/s00410-015-1216-6 CrossRefGoogle Scholar
  95. Samper A, Quidelleur X, Lahitte P, Mollex D (2007) Timing of effusive volcanism and collapse events within an oceanic arc island: Basse-Terre, Guadeloupe archipelago (Lesser Antilles Arc). Earth Planet Sci Lett 258:175–191.  https://doi.org/10.1016/j.epsl.2007.03.030 CrossRefGoogle Scholar
  96. Samper A, Quidelleur X, Komorowski J-C, Lahitte P, Boudon G (2009) Effusive history of the Grande Decouverte Volcanic Complex, southern Basse-Terre (Guadeloupe, French West Indies) from new K-Ar Cassignol-Gillot ages. J Volcanol Geotherm Res 187:117–130.  https://doi.org/10.1016/j.jvolgeores.2009.08.016 CrossRefGoogle Scholar
  97. Schimmelpfennig I, Benedetti L, Garreta V, Pik R, Blard PH, Burnard P, Bourlès D, Finkel R, Ammon K, Dunai T (2011) Calibration of cosmogenic Cl-36 production rates from Ca and K spallation in lava flows from Mt. Etna (38 degrees N, Italy) and Payun Matru (36 degrees S, Argentina). Geochim Cosmochim Acta 75:2611–2632.  https://doi.org/10.1016/j.gca.2011.02.013 CrossRefGoogle Scholar
  98. Schmitt AK, Stockli DF, Niedermann S, Lovera OM, Hausback BP (2010) Eruption ages of Las Tres Virgenes volcano (Baja California): a tale of two helium isotopes. Quat Geochronol 5:503–511.  https://doi.org/10.1016/j.quageo.2010.02.004 CrossRefGoogle Scholar
  99. Shane P, Martin SB, Smith VC, Beggs KF, Darragh MB, Cole JW, Nairn IA (2007) Multiple rhyolite magmas and basalt injection in the 17.7 ka Rerewhakaaitu eruption episode from Tarawera volcanic complex, New Zealand. J Volcanol Geotherm Res 164:1–26.  https://doi.org/10.1016/j.jvolgeores.2007.04.003 CrossRefGoogle Scholar
  100. Singer BS, Thompson RA, Dungan MA, Feeley TC, Nelson ST, Pickens JC, Brown LL, Wulff AW, Davidson JP, Metzger J (1997) Volcanism and erosion during the past 930 ky at the Tatara San Pedro complex, Chilean Andes. Geol Soc Am Bull 109:127–142.  https://doi.org/10.1130/0016-7606(1997)109<0127:VAEDTP>2.3.CO;2 CrossRefGoogle Scholar
  101. Singer BS, Wijbrans JR, Nelson ST, Pringle MS, Feeley TC, Dungan MA (1998) Inherited argon in a Pleistocene andesite lava: 40Ar/39Ar incremental-heating and laser-fusion analyses of plagioclase. Geology 26:427–430CrossRefGoogle Scholar
  102. Smith VC, Shane P, Nairn IA (2004) Reactivation of a rhyolitic magma body by new rhyolitic intrusion before the 15.8 ka Rotorua eruptive episode: implications for magma storage in the Okataina Volcanic Centre, New Zealand. J Geol Soc 161:757–772.  https://doi.org/10.1144/0016-764903-092 CrossRefGoogle Scholar
  103. Smith VC, Shane P, Nairn IA (2005) Trends in rhyolite geochemistry, mineralogy, and magma storage during the last 50 kyr at Okataina and Taupo volcanic centres, Taupo Volcanic Zone, New Zealand. J Volcanol Geotherm Res 148:372–406.  https://doi.org/10.1016/j.jvolgeores.2005.05.005 CrossRefGoogle Scholar
  104. Steiger R, Jager E (1977) Subcommission on geochronology - convention on use of decay constants in geochronology and cosmochronology. Earth Planet Sci Lett 36:359–362.  https://doi.org/10.1016/0012-821X(77)90060-7 CrossRefGoogle Scholar
  105. Stewart RB (2010) Andesites as magmatic liquids or liquid-crystal mixtures; insights from Egmont and Ruapehu volcanoes, New Zealand. Cent Eur J Geosci 2:329–338.  https://doi.org/10.2478/v10085-010-0022-7 CrossRefGoogle Scholar
  106. Szabo C, Harangi S, Csontos L (1992) Review of Neogene and Quaternary volcanism of the Carpathian Pannonian region. Tectonophysics 208:243–256.  https://doi.org/10.1016/0040-1951(92)90347-9 CrossRefGoogle Scholar
  107. Szakács A, Seghedi I (1995) The Călimani–Gurghiu–Harghita volcanic chain, East Carpathians, Romania: volcanological features. Acta Volcanol 7:145–153Google Scholar
  108. Szakács A, Seghedi I, Pécskay Z (1993) Peculiarities of South Harghita Mts. as terminal segment of the Carpathian Neogene to Quaternary volcanic chain. Rev Roum Géol Géophys Géogr Géol 37:21–37Google Scholar
  109. Szakács A, Seghedi I, Pécskay Z, Mirea V (2015) Eruptive history of a low-frequency and low-output rate Pleistocene volcano, Ciomadul, South Harghita Mts., Romania. Bull Volcanol 77.  https://doi.org/10.1007/s00445-014-0894-7
  110. Tanaka K, Shoemaker E, Ulrich G, Wolfe E (1986) Migration of volcanism in the San Francisco volcanic field, Arizona. Geol Soc Am Bull 97:129–141.  https://doi.org/10.1130/0016-7606(1986)97<129:MOVITS>2.0.CO;2 CrossRefGoogle Scholar
  111. Torres-Orozco R, Arce JL, Layer PW, Benowitz JA (2017) The Quaternary history of effusive volcanism of the Nevado de Toluca area, Central Mexico. J S Am Earth Sci 79:12–39.  https://doi.org/10.1016/j.jsames.2017.07.008 CrossRefGoogle Scholar
  112. Turner MB, Bebbington MS, Cronin SJ, Stewart RB (2009) Merging eruption datasets: building an integrated Holocene eruptive record for Mt Taranaki, New Zealand. Bull Volcanol 71:903–918.  https://doi.org/10.1007/s00445-009-0274-x CrossRefGoogle Scholar
  113. Turner MB, Cronin SJ, Bebbington MS, Smith IEM, Stewart RB (2011) Integrating records of explosive and effusive activity from proximal and distal sequences: Mt. Taranaki, New Zealand. Quat Int 246:364–373.  https://doi.org/10.1016/j.quaint.2011.07.006 CrossRefGoogle Scholar
  114. Vaselli O, Minissale A, Tassi F, Magro G, Seghedi I, Ioane D, Szakacs A (2002) A geochemical traverse across the Eastern Carpathians (Romania): constraints on the origin and evolution of the mineral water and gas discharges. Chem Geol 182:637–654.  https://doi.org/10.1016/S0009-2541(01)00348-5 CrossRefGoogle Scholar
  115. Vinkler A, Harangi S, Ntaflos T, Szakács A (2007) Petrology and geochemistry of pumices from the Ciomadul volcano (Eastern Carpathians)—implication for petrogenetic processes. (in Hungarian with an English abstract). Foldtani Kozlony 103–128Google Scholar
  116. Wulf S, Fedorowicz S, Veres D, Łanczont M, Karátson D, Gertisser R, Bormann M, Magyari E, Appelt O, Hambach U, Gozhyk PF (2016) The “Roxolany Tephra” (Ukraine) - new evidence for an origin from Ciomadul volcano, East Carpathians. J Quat Sci 31:565–576.  https://doi.org/10.1002/jqs.2879 CrossRefGoogle Scholar
  117. Zellmer G, Turner S, Hawkesworth C (2000) Timescales of destructive plate margin magmatism: new insights from Santorini, Aegean volcanic arc. Earth Planet Sci Lett 174:265–281.  https://doi.org/10.1016/S0012-821X(99)00266-6 CrossRefGoogle Scholar
  118. Zellmer GF, Sparks RSJ, Hawkesworth CJ, Wiedenbeck M (2003) Magma emplacement and remobilization timescales beneath Montserrat: insights from Sr and Ba zonation in plagioclase phenocrysts. J Petrol 44:1413–1431.  https://doi.org/10.1093/petrology/44.8.1413 CrossRefGoogle Scholar
  119. Zimmerer MJ, Lafferty J, Coble MA (2016) The eruptive and magmatic history of the youngest pulse of volcanism at the Valles caldera: implications for successfully dating late Quaternary eruptions. J Volcanol Geotherm Res 310:50–57.  https://doi.org/10.1016/j.jvolgeores.2015.11.021 CrossRefGoogle Scholar

Copyright information

© International Association of Volcanology & Chemistry of the Earth's Interior 2019

Authors and Affiliations

  1. 1.GEOPS, Univ. Paris-Sud, CNRSUniversité Paris-SaclayOrsayFrance
  2. 2.Department of Physical GeographyEötvös UniversityBudapestHungary
  3. 3.School of Geography, Geology and the EnvironmentKeele UniversityKeeleUK
  4. 4.Institute of SpeleologyRomanian AcademyCluj-NapocaRomania

Personalised recommendations