Advertisement

Bulletin of Volcanology

, 81:19 | Cite as

Linear inverse problem for inferring eruption source parameters from sparse ash deposit data as viewed from an atmospheric dispersion modeling perspective

  • Konstantin B. MoiseenkoEmail author
  • Nataliya A. Malik
Research Article

Abstract

Determination of the volcanic eruption source parameters—total grain-size distribution and vertical ash mass distribution (VMD) within the source—is carried out on a collection of measured-area samples and granulometry data. For this, the geophysical inverse methods and Hybrid Particle and Concentration Transport Model (HYPACT) driven by wind and turbulence fields simulated with the Regional Atmospheric Modeling System (RAMS) are used. A two-step inversion procedure is proposed to obtain approximate but physically meaningful solution when the total number of ashfall samples is small and it is not possible to make a good initial guess of the source parameters. First, a spectrum of particle fall velocities is estimated by selecting a best-fit subset of aerodynamically distinct subpopulations of free and aggregate particles from the trial set used to simulate a polycomponent ashfall. The singular value decomposition (SVD) analysis is then employed to identify spatial components of the ash emissions’ vertical distribution, as resolvable by the observations. Model validation experiments are conducted for the January 12, 2011, short-duration vulcanian explosion at Kizimen and paroxysmal phase of the December 24, 2006, sub-Plinian eruption at Bezymianny. The derived VMDs exhibit high variability in fine ash content (~ 60–100 wt%) as well as strong secondary maxima in the lower troposphere, likely reflecting the contribution of ash particles fallen out of co-pyroclastic flow ash clouds and partially collapsing eruption columns.

Keywords

Volcanic ash Aggregate fallout Total grain-size distribution Vertical ash mass distribution Ill-posed problem Regularization 

Notes

Acknowledgements

We thank Dr. O. Girina for fruitful discussion of the related topics, as well as colleagues from IVS U. Demyanchuk, T. Manevich, Y. Muravyev, A. Ovsyannikov, I. Tembrel, and A. Sokorenko who took part in sample data collection and analyses during the 2006 and 2011 field works on Bezymianny and Kizimen volcanoes. We also thank anonymous reviewers for their valuable suggestions and comments that helped to improve the original manuscript as well as A. Harris, C. Bonadonna, and F. Van Wyk de Vries for editorial handling.

References

  1. Armienti P, Macedonio G, Pareschi MT (1988) A numerical model for simulation of tephra transport and deposition—applications to May 18, 1980, Mount St Helens eruption. J Geophys Res 93:6463–6476.  https://doi.org/10.1029/JB093iB06p06463 CrossRefGoogle Scholar
  2. Bonadonna C, Costa A (2012) Estimating the volume of tephra deposits: a new simple strategy. Geology 40:415–418.  https://doi.org/10.1130/G32769.1 CrossRefGoogle Scholar
  3. Bonadonna C, Houghton BF (2005) Total grain-size distribution and volume of tephra-fall deposits. Bull Volcanol 67:441–456  https://doi.org/10.1007/s00445-004-0386-2 CrossRefGoogle Scholar
  4. Bonadonna C, Macedonio G, Sparks RSJ (2002) Numerical modelling of tephra fallout associated with dome collapses and Vulcanian explosions: application to hazard assessment on Montserrat. In: Druitt TH, Kokelaar BP (eds) The eruption of Soufrière Hills Volcano, Montserrat, from 1995 to 1999. Geological Society, London, Memoir, pp 517–537.  https://doi.org/10.1144/GSL.MEM.2002.021.01.23 CrossRefGoogle Scholar
  5. Bonasia R, Macedonio G, Costa A, Mele D, Sulpizio R (2009) Numerical inversion and analysis of tephra fallout deposits from the 472 AD sub-Plinian eruption at Vesuvius (Italy) through a new best-fit procedure. J Volcanol Geotherm Res 189:238–246.  https://doi.org/10.1016/j.jvolgeores.2009.11.009 CrossRefGoogle Scholar
  6. Carey SN, Sigurdsson H (1982) Influence of particle aggregation on deposition of distal tephra from the May 18 1980 eruption of Mount St. Helens Volcano. J Geophys Res 87:7061–7072.  https://doi.org/10.1029/JB087iB08p07061 CrossRefGoogle Scholar
  7. Cas RAF, Wright JV (1987) Volcanic successions: modern and ancient. Allen & Unwin, London, Boston, Sydney, Wellington xviii+528Google Scholar
  8. Connor LJ, Connor CB (2006) Inversion is the key to dispersion: understanding eruption dynamics by inverting tephra fallout. In: Mader HM, Cole SG, Connor CB, Connor LJ (eds) Statistics in volcanology. Special Publications of IAVCEI. Geological Society, London, pp 231–242.  https://doi.org/10.1144/IAVCEI001.18 CrossRefGoogle Scholar
  9. Cornell W, Carey S, Sigurdsson H (1983) Computer simulation of transport and deposition of the Campanian Y-5 ash. J Volcanol Geotherm Res 17:89–109.  https://doi.org/10.1016/0377-0273(83)90063-X CrossRefGoogle Scholar
  10. Costa A, Dell'Erba F, Di Vito M, Isaia R, Macedonio G, Orsi G, Pfeiffer T (2009) Tephra fallout hazard assessment at Campi Flegrei caldera (Italy). Bull Volcanol 71:259–273.  https://doi.org/10.1007/s00445-008-0220-3 CrossRefGoogle Scholar
  11. Debcedilski W (2010) Probabilistic inverse theory. Adv Geophys 52:1–102CrossRefGoogle Scholar
  12. Draper NR, Smith H (1998) Applied regression analysis, Third edn. Wiley, New YorkGoogle Scholar
  13. Durant AJ, Rose WI (2009) Sedimentological constraints on hydrometeorenhanced particle deposition: 1992 eruptions of Crater Peak, Alaska. J Volcanol Geotherm Res 186:40–59.  https://doi.org/10.1016/J.JVOLGEORES.2009.02.004 CrossRefGoogle Scholar
  14. Durant AJ, Shaw RA, Rose WI, Mi Y, Ernst GGJ (2008) Ice nucleation and overseeding of ice in volcanic clouds. J Geophys Res 113:D09206.  https://doi.org/10.1029/2007JD009064 CrossRefGoogle Scholar
  15. Engwell SL, Sparks RSJ, Aspinall WP (2013) Quantifying uncertainties in the measurement of ashfall thickness. J Appl Volcanol 2:5.  https://doi.org/10.1186/2191-5040-2-5 CrossRefGoogle Scholar
  16. Enting IG (2002) Inverse problems in atmospheric constituent transport. Cambridge University Press, New YorkCrossRefGoogle Scholar
  17. Evans JR, Huntoon JE, Rose WI, Varley NR, Stevenson JA (2009) Particle sizes of andesitic ash fallout from vertical eruptions and co-pyroclastic flow clouds, Volcán de Colima, Mexico. Geology 37(10):935–938.  https://doi.org/10.1130/G30208A.1 CrossRefGoogle Scholar
  18. Fierstein J, Nathenson M (1992) Another look at the calculation of fallout tephra volumes. Bull Volcanol 54:156–167.  https://doi.org/10.1007/BF00278005
  19. Folch A, Costa A, Durant A, Macedonio G (2010) A model for wet aggregation of ash particles in volcanic plumes and clouds: 2. Model application. J Geophys Res 115:B09202.  https://doi.org/10.1029/2009JB007176 CrossRefGoogle Scholar
  20. Gifford FA (1955) Atmospheric diffusion from volume sources. J Meteorol 12:245–251.  https://doi.org/10.1175/1520-0469(1955)012<0245:ADFVS>2.0.CO;2 CrossRefGoogle Scholar
  21. Gifford FA (1984) The random force theory—application to meso-scale and large-scale atmospheric diffusion. Bound-Layer Meteorol 30:159–117.  https://doi.org/10.1007/BF00121953 CrossRefGoogle Scholar
  22. Gilbert JS, Lane SJ (1994) The origin of accretionary lapilli. Bull Volcanol 56:398–411.  https://doi.org/10.1007/BF00326465 CrossRefGoogle Scholar
  23. Girina OA (1991) Pyroclastic deposits of the 1984-1989 eruptions of Bezymianny volcano. J Volcanol Seismol 15:479–490Google Scholar
  24. Girina OA (1998) Pyroclastic deposit from present state eruptions at andesitic volcanoes in Kamchatka region and their engineering and geological characteristics. Vladivostok, Dalnauka (in Russian)Google Scholar
  25. Girina OA (2013) Chronology of Bezymianny Volcano activity, 1956–2010. J Volcanol Geotherm Res 263:22–41.  https://doi.org/10.1016/j.jvolgeores.2013.05.002 CrossRefGoogle Scholar
  26. Golitsyn GS, Gostintsev YA, Solodovnik AF (1989) Turbulent floating jet in a stratified atmosphere. J Appl Mech Tech Phys 30:566–577 (translated to English)CrossRefGoogle Scholar
  27. Golub GH, Heath MT, Wahba G (1979) Generalized cross-validation as a method for choosing a good ridge parameter. Technometrics 21:215–223.  https://doi.org/10.1080/00401706.1979.10489751 CrossRefGoogle Scholar
  28. Guschenko II (1965) Ashes of the North Kamchatka, their origins and genesis. Nauka, Moscow (In Russian)Google Scholar
  29. de Haan P (1999) On the use of density kernels for concentration estimations within particle and puff dispersion models. Atmos Environ 33:2007–2021.  https://doi.org/10.1016/S1352-2310(98)00424-5 CrossRefGoogle Scholar
  30. de Haan P, Rotach MW (1998) A novel approach to atmospheric dispersion modelling: the puff-particle model. Quart J Roy Meteorol Soc 124:2771–2792.  https://doi.org/10.1002/qj.49712455212 CrossRefGoogle Scholar
  31. Hansen PC (1990a) Truncated singular value decomposition solutions to discrete ill-posed problems with ill-determined numerical rank. SIAM J Sci Stat Comput 11:503–518.  https://doi.org/10.1137/0911028 CrossRefGoogle Scholar
  32. Hansen PC (1990b) The discrete Picard condition for discrete ill-posed problems. BIT 30:658–672.  https://doi.org/10.1007/BF01933214 CrossRefGoogle Scholar
  33. Hansen PC (1992) Analysis of discrete ill-posed problems by means of the L-curve. SIAM Rev 34:561–580.  https://doi.org/10.1137/1034115 CrossRefGoogle Scholar
  34. Jackson DD (1972) Interpretation of inaccurate, insufficient and inconsistent data. Geophys J Roy Astr Soc 28:97–109.  https://doi.org/10.1111/j.1365-246X.1972.tb06115.x CrossRefGoogle Scholar
  35. James MR, Gilbert JS, Lane SJ (2002) Experimental investigation of volcanic particle aggregation in the absence of a liquid phase. J Geophys Res 107(B9):2191.  https://doi.org/10.1029/2001JB000950 CrossRefGoogle Scholar
  36. James MR, Lane SJ, Gilbert JS (2003) Density, construction, and drag coefficient of electrostatic volcanic ash aggregates. J Geophys Res 108(B9):2435.  https://doi.org/10.1029/2002JB002011 CrossRefGoogle Scholar
  37. Klawonn M, Wolfe CJ, Frazer LN, Houghton BF (2012) Novel inversion approach to constrain plume sedimentation from tephra deposit data: application to the 17 June 1996 eruption of Ruapehu volcano, New Zealand. J Geophys Res 117:B05205.  https://doi.org/10.1029/2011JB008767 CrossRefGoogle Scholar
  38. Liu E, Cashman K, Rust A (2015) Optimising shape analysis to quantify volcanic ash morphology. GeoResJ 8:14–30.  https://doi.org/10.1016/j.grj.2015.09.001 CrossRefGoogle Scholar
  39. Malik NA (2011) The December 24, 2006 eruption of Bezymyannyi Volcano, Kamchatka. J Volcanol Seismol 5:368–277.  https://doi.org/10.1134/S0742046311040051 CrossRefGoogle Scholar
  40. Malik NA, Ovsyannikov AA (2011) The eruption of Kizimen Volcano in October 2010–March 2011, Vestnik KRAUNTs. Nauki o Zemle 1:7–14Google Scholar
  41. Mangan TP, Atkinson JD, Neuberg JW, O’Sullivan D, Wilson TW, Whale TF, Neve L, Umo NS, Malkin TL, Murray BJ (2017) Heterogeneous ice nucleation by Soufriere Hills volcanic ash immersed in water droplets. PLoS One 12(1):e0169720.  https://doi.org/10.1371/journal.pone.0169720 CrossRefGoogle Scholar
  42. Marti A, Folch A, Jorba O, Janjic Z (2017) Volcanic ash modeling with the online NMMB-MONARCH-ASH v1.0 model: model description, case simulation, and evaluation. Atmos Chem Phys 17:4005–4030.  https://doi.org/10.5194/acp-17-4005-2017 CrossRefGoogle Scholar
  43. Mastin LG, Van Eaton AR, Durant AJ (2016) Adjusting particle-size distributions to account for aggregation in tephra-deposit model forecasts. Atmos Chem Phys 16:9399–9420.  https://doi.org/10.5194/acp-16-9399-2016 CrossRefGoogle Scholar
  44. McKay MD, Beckman RJ, Conover WJ (1979) A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics 21:239–245.  https://doi.org/10.1080/00401706.1979.10489755 CrossRefGoogle Scholar
  45. Melekestsev IV, Ponomareva VV, Volynets ON (1995) Kizimen Volcano, Kamchatka—a future Mount St. Helens? J Volcanol Geotherm Res 65:205–226.  https://doi.org/10.1016/0377-0273(94)00082-R CrossRefGoogle Scholar
  46. Mikkelsen T, Larsen SE, Pecseli HL (1988) Spectral parameterization of large-scale atmospheric diffusion. In: van Dop H (ed) Air pollution modeling and its application VI. Proceedings of the 16 NATO/CCMS International Technical Meeting. Lindau, 6–10 April 1987 (NATO Challenges of Modern Society, 11). Plenum Press, New York, pp 579–591Google Scholar
  47. Moiseenko KB, Malik NA (2014) Estimates of total ash content from 2006 and 2009 explosion events at Bezymianny volcano with use of a regional atmospheric modeling system. J Volcanol Geotherm Res 270:53–75.  https://doi.org/10.1134/S0742046315010054 CrossRefGoogle Scholar
  48. Moxnes ED, Kristiansen NI, Stohl A, Clarisse L, Durant A, Weber K, Vogel A (2014) Separation of ash and sulfur dioxide during the 2011 Grímsvötn eruption. J Geophys Res Atmos 119:7477–7501.  https://doi.org/10.1002/2013JD021129 CrossRefGoogle Scholar
  49. Pfeiffer T, Costa A, Macedonio G (2005) A model for the numerical simulation of tephra fall deposits. J Volcanol Geotherm Res 140:237–294.  https://doi.org/10.1016/j.jvolgeores.2004.09.001 CrossRefGoogle Scholar
  50. Pielke RA, Cotton WR, Tremback CJ, Nicholls ME, Moran MD, Wesley DA, Lee TJ, Copeland JH (1992) A comprehensive meteorological modeling system—RAMS. Meteorog Atmos Phys 49:69–91.  https://doi.org/10.1007/BF01025401 CrossRefGoogle Scholar
  51. Proussevitch AA, Sahagian DL (2012) The relation between pre-eruptive bubble size distribution and observed ash particle sizes. EGU General Assembly 2012, held 22-27 April, 2012 in Vienna, Austria, p.5953Google Scholar
  52. Pyle DM (1989) The thickness, volume and grainsize of tephra fall deposits. Bull Volcanol 51:1–15.  https://doi.org/10.1007/BF01086757 CrossRefGoogle Scholar
  53. Riley CM, Rose WI, Bluth GJS (2003) Quantitative shape measurements of distal volcanic ash. J Geophys Res 108(B10):2504.  https://doi.org/10.1029/2001JB000818 CrossRefGoogle Scholar
  54. Rose WI, Durant AJ (2009) Fine ash content of explosive eruptions. J Volcanol Geotherm Res 186:32–39.  https://doi.org/10.1016/j.jvolgeores.2009.01.010 CrossRefGoogle Scholar
  55. Rosenblatt M (1956) Remarks on some nonparametric estimates of a density function. Ann Math Stat 27:642–669.  https://doi.org/10.1214/aoms/1177728190 CrossRefGoogle Scholar
  56. Schumacher R (1994) A reappraisal of Mount St. Helens’ ash clusters—depositional model from experimental observation. J Volcanol Geotherm Res 59:253–260.  https://doi.org/10.1016/0377-0273(94)90099-X CrossRefGoogle Scholar
  57. Schumacher R, Schmincke HU (1995) Models for the origin of accretionary lapilli. Bull Volcanol 56:626–639.  https://doi.org/10.1007/BF00301467 CrossRefGoogle Scholar
  58. Spanu A, Michieli Vitturi MD, Barsotti S (2016) Reconstructing eruptive source parameters from tephra deposit: a numerical study of medium-sized explosive eruptions at Etna volcano. Bull Volcanol 78:1–19.  https://doi.org/10.1007/s00445-016-1051-2 CrossRefGoogle Scholar
  59. Sparks RSJ, Bursik MI, Carey SN, Gilbert JS, Glaze LS, Sigurdsson H, Woods AW (1997) Volcanic plumes. John Wiley and Sons LtdGoogle Scholar
  60. Spieler O, Alidibirov M, Dingwell DB (2003) Grain-size characteristics of experimental pyroclasts of 1980 Mount St. Helens cryptodome dacite: effects of pressure drop and temperature. Bull Volcanol 65:90–104.  https://doi.org/10.1007/s00445-002-0244-z CrossRefGoogle Scholar
  61. Steinke I, Mohler O, Kiselev A, Niemand M, Saathoff H, Schnaiter M et al (2011) Ice nucleation properties of fine ash particles from the Eyjafjallajökull eruption in April 2010. Atmos Chem Phys 11:12945–12958.  https://doi.org/10.5194/acp-11-12945-2011 CrossRefGoogle Scholar
  62. Stohl A, Prata AJ, Eckhardt S, Clarisse L, Durant A, Henne S, Kristiansen NI, Minikin A, Schumann U, Seibert P, Stebel K, Thomas HE, Thorsteinsson T, Tørseth K, Weinzierl B (2011) Determination of time- and height-resolved volcanic ash emissions for quantitative ash dispersion modeling: the 2010 Eyjafjallajokull eruption. Atmos Chem Phys 11:4333–4351.  https://doi.org/10.5194/acp-11-4333-2011 CrossRefGoogle Scholar
  63. Stuefer M, Freitas SR, Grell G, Webley P, Peckham S, McKeen SA, Egan SD (2013) Inclusion of ash and SO2 emissions from volcanic eruptions in WRF-CHEM: development and some applications. Geosci Model Dev 5:2571–2597.  https://doi.org/10.5194/gmd-6-457-2013 CrossRefGoogle Scholar
  64. Suzuki T (1983) A theoretical model for dispersion of tephra. In: Shimozuru D, Yokoyama I (eds) Arc volcanism, physics and tectonics. Terra, Tokyo, pp 95–113Google Scholar
  65. Taylor GI (1921) Diffusion by continuous movements. Proc Lond Math Soc s2–20:196–212.  https://doi.org/10.1112/plms/s2-20.1.196 CrossRefGoogle Scholar
  66. Textor C, Graf HF, Herzog M, Oberhuber JM, Rose WI, Ernst GGJ (2006) Volcanic particle aggregation in explosive eruption columns. Part I: parameterization of the microphysics of hydrometeors and ash. J Volcanol Geotherm Res 150:359–377.  https://doi.org/10.1016/j.jvolgeores.2005.09.007 CrossRefGoogle Scholar
  67. Tremback CJ, Lyons WA, Thorson WP, Walko RL (1994) An emergency response and local weather forecasting software system. Preprints, Eighth Joint Conf. on the Applications of Air Pollution Meteorology. Amer. Meteor. Soc., Nashville, TN, pp. 219–223Google Scholar
  68. Turner R, Moore S, Pardo N, Kereszturi G, Uddstrom M, Hurst T, Cronin S (2014) The use of numerical weather prediction and a Lagrangian transport (NAME-III) and dispersion (ASHFALL) models to explain patterns of observed ash deposition and dispersion following the August 2012 Te Maari, New Zealand eruption. J Volcanol Geotherm Res 286:437–451  https://doi.org/10.1016/j.jvolgeores.2014.05.017 CrossRefGoogle Scholar
  69. Varah JM (1973) On the numerical solution of ill-conditioned linear systems with application to ill-posed problems. SIAM J Numer Anal 10:257–267.  https://doi.org/10.1137/0710025 CrossRefGoogle Scholar
  70. Wahba G (1990) Spline models for observational data, CBMS-NSF Regional Conference Series in Applied Mathematics, vol 59. Society for Industrial and Applied Mathematics, Philadelphia, PAGoogle Scholar
  71. Walker GPL (1971) Grain-size characteristics of pyroclastic deposits. J Geol 79:696–714  https://doi.org/10.1086/627699 CrossRefGoogle Scholar
  72. Walker GPL (1981) Generation and dispersal of fine ash and dust by volcanic eruptions. J Volcanol Geotherm Res 11:81–92.  https://doi.org/10.1016/0377-0273(81)90077-9 CrossRefGoogle Scholar
  73. Walko RL, Tremback CJ (1995) HYPACT; the hybrid particle and concentration transport model. User’s guide. Mission Research Corporation, Ft Collins, COGoogle Scholar
  74. Wang L-P, Stock DE (1993) Dispersion of heavy particles in turbulent motion. J Atmos Sci 50:1897–1913.  https://doi.org/10.1175/1520-0469(1993)050<1897:DOHPBT>2.0.CO CrossRefGoogle Scholar
  75. White JT, Connor CB, Connor L, Hasenaka T (2017) Efficient inversion and uncertainty quantification of a tephra fallout model. J Geophys Res Solid Earth 122:281–294.  https://doi.org/10.1002/2016JB013682 CrossRefGoogle Scholar
  76. Wilson L, Huang T (1979) The influence of shape on the atmospheric settling velocity of volcanic ash particles. Earth Planet Sci Lett 44:311–324.  https://doi.org/10.1016/0012-821X(79)90179-1 CrossRefGoogle Scholar
  77. Wilson JD, Sawford BL (1996) Review of Lagrangian stochastic models for trajectories in the turbulent atmosphere. Bound-Layer Meteorol 78:191–210.  https://doi.org/10.1007/BF00122492 CrossRefGoogle Scholar
  78. Wohletz KH, Sheridan MF, Brown WK (1989) Particle size distributions and the sequential fragmentation/transport theory applied to volcanic ash. J Geophys Res 94(B11):15703–15721.  https://doi.org/10.1029/JB094iB11p15703 CrossRefGoogle Scholar
  79. Woodhouse MJ, Hogg AJ, Phillips JC, Sparks RSJ (2013) Interaction between volcanic plumes and wind during the 2010 Eyjafjallajökull eruption, Iceland. J Geophys Res 118(B):92–109.  https://doi.org/10.1029/2012JB009592 CrossRefGoogle Scholar
  80. Yamada T, Bunker S (1988) Development of a nested grid, second moment turbulence closure model and application to the 1982 ASCOT Brush Creek data simulation. J Appl Meteorol 27:562–578.  https://doi.org/10.1175/1520-0450(1988)027<0562:DOANGS>2.0.CO;2 CrossRefGoogle Scholar

Copyright information

© International Association of Volcanology & Chemistry of the Earth's Interior 2019

Authors and Affiliations

  1. 1.Atmospheric Composition DivisionObukhov Institute of Atmospheric PhysicsMoscowRussia
  2. 2.Laboratory of Active Volcanism and Eruption DynamicsInstitute of Volcanology and Seismology Far East Branch RASPetropavlovsk-KamchatskyRussia

Personalised recommendations