Advertisement

Bulletin of Volcanology

, 81:3 | Cite as

Marginally stable recent Plinian eruptions of Mt. Pelée volcano (Lesser Antilles): the P2 AD 280 eruption

  • Guillaume CarazzoEmail author
  • Stephen Tait
  • Edouard Kaminski
Research Article
  • 120 Downloads

Abstract

Major volcanic hazards in the Lesser Antilles arc include powerful Plinian explosive eruptions that inject ash high into the atmosphere and produce dangerous pyroclastic density currents (PDC) on the ground. Understanding the key physical processes governing the dynamics and stability of past volcanic columns is a fundamental problem in volcanology as well as being central to assessing specific hazards in this region and elsewhere. However, the number of cases for which the transition of regime between a stable and collapsing eruptive plume is described in detail remains too small to constrain fully theoretical models of volcanic plumes. Here we present a detailed reconstruction of the time evolution of the P2 AD 280 eruption at Mt. Pelée volcano in Martinique, to expand the database available to test physical models. The P2 sequence, which forced the first inhabitants to flee to other islands for decades as suggested by archaeological evidence, starts with a basal ash layer interpreted as the result of an initial violent laterally directed explosion to the NE of the volcano. Most of the deposit sequence is made of a pumice fall deposit interbedded with a low-concentration PDC deposit interpreted as the result of a partial column collapse. The upper pumice fall unit shows an inverse gradation and is overlain by a final high-concentration PDC deposit or locally by the correlative low-concentration PDC deposit. Field data on deposit dispersal, thickness, and grain-size distribution are used together with physical models to reconstruct the dynamic evolution of this eruption. Empirical models of deposit thinning suggest that the minimum volume of pyroclastic deposits is 0.67–0.88 km3 dense rock equivalent (DRE), much larger than the 0.17 km3 DRE previously estimated. We find that the mass eruption rate increased from 6 × 107 to 1.1 × 108 kg s−1, producing an initially stable 23- to 26-km-high Plinian plume, which ultimately collapsed to form a fountain. We discuss the mechanisms leading to column collapse based on published data on magmatic water contents and our estimates of grain-size distributions and mass discharge rates. The eruption started close to the plume/fountain transition and the volcanic column ultimately collapsed mainly due to an increase in mass discharge rate. This marginally stable evolution was also inferred from analysis of the P1 AD 1300 eruption deposits, suggesting consistent behavior during the recent Plinian eruptions of Mt. Pelée volcano. In these two eruptions, the transition occurred at conditions well predicted by our theoretical model of volcanic plumes.

Keywords

Mt. Pelée volcano Plinian eruption Tephra dispersal Column collapse Eruptive dynamics 

Notes

Acknowledgments

The authors warmly thank S. Self, two anonymous reviewers, and the editor, J. Dufek, for their constructive comments. We are very grateful to C. Martel and C. M. Vidal for fruitful discussions on magmatic water contents at Mt. Pelée volcano. We warmly thank G. Delaviel-Anger, A. Fries, and A. Michaud-Dubuy for their hard work in the field and for stimulating discussions. We thank J.E. Gardner, U. Kueppers, and D. Perugini for valuable assistance in the field and for their insightful comments on the P2 stratigraphy and grain-size distributions. We are grateful to our colleagues of the Institut National de Recherches Archéologiques Préventives, A. Jégouzo, A. Bolle, C. Martin, E. Moizan, C. Dunikowski, and O. Dayrens for sharing their field data. We are also indebted to the staff of the Mt. Pelée volcanological observatory (OVSM) for field and administrative assistance. We also thank J.-P. Dumoulin, L. Beck, E. Delque-Kolic, and C. Moreau (LMC14, CNRS UMS2572) who performed the 14C dating. This work was partially funded by the Institut National des Sciences de l’Univers—Centre National de la Recherche Scientifique progam CT3-ALEA, INSU-CNRS Artemis 2016 for 14C dating, CASAVA (ANR contract ANR-09-ANR-RISK-002), and RAVEX (ANR contract ANR-16-CE03-0002). This is IPGP contribution No. 3998.

References

  1. Alibidirov M, Dingwell DB (1996) Magma fragmentation by rapid decompression. Nature 380:146–148CrossRefGoogle Scholar
  2. Arsandaux H (1929) L’éruption actuelle de la Montagne Pelée. Bull Volcanol 3:25–32Google Scholar
  3. Arsandaux H (1934) L’éruption de la Montagne Pelée en 1929. Rev Scientifique 72:248–251Google Scholar
  4. Bardintzeff JM, Miskovsky JC, Traineau H, Westercamp D (1989) The recent pumice eruptions of Mt. Pelée, Martinique. Part II: grain-size studies and modelling the last Plinian phase P1. J Volcan Geotherm Res 38:35–48CrossRefGoogle Scholar
  5. Bérard B (2007) The “South-Dominica” archaeological mission: the Soufrière site. In: XXII Conference of the International Association of Caribbean Archaeology, Jul. 2007, Kingston, JamaicaGoogle Scholar
  6. Bérard B, Vernet G, Kieffer G, Raynal J-P (2001) Les éruptions volcaniques de la Montagne Pelée et le premier peuplement de la Martinique. XIXème Congrès international d’Archéologie de la Caraïbe, In, pp 70–87Google Scholar
  7. Bernard M-L, Zamora M, Géraud Y, Boudon G (2007) Transport properties of pyroclastic rocks from Montagne Pelée volcano (Martinique, Lesser Antilles). J Geophys Res 112:B05205CrossRefGoogle Scholar
  8. Bonadonna C, Costa A (2012) Estimating the volume of tephra deposits: a new simple strategy. Geology 40(5):415–418CrossRefGoogle Scholar
  9. Bonadonna C, Costa A (2013) Plume height, volume, and classification of explosive volcanic eruptions based on the Weibull function. Bull Volcanol 75:742–761CrossRefGoogle Scholar
  10. Bonadonna C, Houghton BF (2005) Total grain-size distribution and volume of tephra fall deposits. Bull Volcanol 67:441–456CrossRefGoogle Scholar
  11. Boudon G (1993) La montagne Pelée, Martinique: evolution volcanologique. Societé géologique de France, ParisGoogle Scholar
  12. Boudon G, Lajoie J (1989) The 1902 Pelean deposits in the Fort Cemetery of St. Pierre, Martinique: a model for the accumulation of turbulent nuées ardentes. J Volcan Geoth Res 38:113–130CrossRefGoogle Scholar
  13. Boudon G, Le Friant A, Villemant B, Viode J-P (2005) Martinique. In: Lindsay JM, Robertson REA, Shepherd JB, Ali S (eds) Volcanic hazard atlas of the Lesser Antilles. Seismic Research Unit, The University of the West Indies, Trinidad and Tobago, pp 126–145Google Scholar
  14. Boudon G, Villemant B, Le Friant A, Paterne M, Cortijo E (2013) Role of large flank-collapse events on magma evolution of volcanoes. Insights from the Lesser Antilles Arc. J Volcan Geotherm Res 263:224–237Google Scholar
  15. Bourdier J-L, Gourgaud A, Vincent PM (1985) Magma mixing in a main stage of formation of Montagne Pelée: the Saint Vincent-type scoria flow sequence (Martinique, F.W.I.). J Volcan Geotherm Res 25:309–332CrossRefGoogle Scholar
  16. Bourdier JL, Boudon G, Gourgaud A (1989) Stratigraphy of the 1902 and 1929 nuée-ardente deposits, Mt. Pelée, Martinique. J Volcan Geotherm Res 38:77–96CrossRefGoogle Scholar
  17. Brunet M, Le Friant A, Boudon G, Lafuerza S, Talling P, Hornbach M, Ishizuka O, Lebas E, Guyard H, IODP Expedition 340 science Party (2016) Composition, geometry, and emplacement dynamics of a large volcanic island landslide offshore Martinique: from volcano flank-collapse to seafloor sediment failure? Geochem Geophys Geosyst 17(3):699–724CrossRefGoogle Scholar
  18. Bursik MI, Woods AW (1996) The dynamics and thermodynamics of large ash flows. Bull Volcanol 58:175–193CrossRefGoogle Scholar
  19. Calder ES, Cole PD, Dade WB, Druitt TH, Hoblitt RP, Huppert HE, Ritchie L, Sparks RSJ, Young SR (1999) Mobility of pyroclastic flows and surges at the Soufriere Hills Volcano, Montserrat. Geophys Res Lett 26:537–540CrossRefGoogle Scholar
  20. Carazzo G, Kaminski E, Tait S (2008a) On the dynamics of volcanic columns: a comparison of field data with a new model of negatively buoyant jets. J Volcanol Geoth Res 178:94–103.  https://doi.org/10.1016/j.jvolgeores.2008.01.002 CrossRefGoogle Scholar
  21. Carazzo G, Kaminski E, Tait S (2008b) On the rise of turbulent plumes: quantitative effects of variable entrainment for submarine hydrothermal vents, terrestrial and extra terrestrial explosive volcanism. J Geophys Res 113:B09201.  https://doi.org/10.1029/2007JB00548 CrossRefGoogle Scholar
  22. Carazzo G, Tait S, Kaminski E, Gardner JE (2012) The recent Plinian explosive activity of Mt. Pelée volcano (Lesser Antilles): the P1 AD 1300 eruption. Bull Volcanol 74:2187–2203CrossRefGoogle Scholar
  23. Carey S, Sigurdsson H (1987) Temporal variations in column height and magma discharge rate during the 79 AD eruption of Vesuvius. Geol Soc Am Bull 99:303–314CrossRefGoogle Scholar
  24. Carey S, Sigurdsson H (1989) The intensity of Plinian eruptions. Bull Volcanol 51:28–40CrossRefGoogle Scholar
  25. Carey S, Sparks RSJ (1986) Quantitative models of the fallout and dispersal of tephra from volcanic eruption columns. Bull Volcanol 48:109–125CrossRefGoogle Scholar
  26. Carey S, Sigurdsson H, Gardner JE, Criswell W (1990) Variations in column height and magma discharge during the May 18, 1980 eruption of Mount St. Helens. J Volcanol Geoth Res 43:99–112CrossRefGoogle Scholar
  27. Costa A, Suzuki YJ, Cerminara M, Devenish BJ, Esposito Ongaro T, Herzog M, Van Eaton AR, Denby LC, Bursik M, de' Michieli Vitturi M, Engwell S, Barsotti S, Folch A, Macedonio G, Girault F, Carazzo G, Tait S, Kaminski E, Mastin LG, Woodhouse MJ, Phillips JC, Hogg AJ, Degruyter W, Bonadonna C (2016) Results of the eruptive column model inter-comparison study. J Volcanol Geotherm Res 326:2–25CrossRefGoogle Scholar
  28. Dade WB, Huppert HE (1998) Long runout rockfalls. Geology 26:803–806CrossRefGoogle Scholar
  29. Daggit ML, Mather TA, Pyle DM, Page S (2014) AshCalc—a new tool for the comparison of the exponential, power-law and Weibull models of tephra deposition. J Appl Volcanol 3:7CrossRefGoogle Scholar
  30. Davidson J, Wilson M (2012) Differentiation and source processes at Mt Pelée and the Quill; active volcanoes in the Lesser Antilles arc. J Petrol 52(7–8):1493–1531Google Scholar
  31. Doyle EE, Hogg AJ, Mader HM, Sparks RSJ (2010) A two-layer model for the evolution and propagation of dense and dilute regions of pyroclastic currents. J Volcanol Geotherm Res 190:365–378CrossRefGoogle Scholar
  32. Dupuy C, Dostal J, Traineau H (1985) Geochemistry of volcanic rocks from Mt. Pelée, Martinique. J Volcanol Geotherm Res 26:147–165CrossRefGoogle Scholar
  33. Fierstein J, Nathenson M (1992) Another look at the calculation of fallout tephra volumes. Bull Volcanol 54(2):156–167CrossRefGoogle Scholar
  34. Fisher RV, Smith AL, Roobol MJ (1980) Destruction of St. Pierre, Martinique, by ash-cloud surges, May 8 and 20, 1902. Geology 8:472–476CrossRefGoogle Scholar
  35. Genevey A, Gallet Y, Boudon G (2002) Secular variation study from non-welded pyroclastic deposits from Montagne Pelée volcano, Martinique (West Indies). Earth Planet Sci Lett 201:369–382CrossRefGoogle Scholar
  36. Germa A, Quidelleur X, Labanieh S, Chauvel C, Lahitte P (2011) The volcanic evolution of Martinique Island: insights from K-Ar dating into the Lesser Antilles arc migration since the Oligocene. J Volcan Geotherm Res 208:122–135CrossRefGoogle Scholar
  37. Germa A, Lahitte P, Quidelleur X (2015) Construction and destruction of Mont Pelée volcano: volumes and rates constrained from a geomorphological model of evolution. J Geophys Res Earth Surf 120:1206–1226CrossRefGoogle Scholar
  38. Girault F, Carazzo G, Tait S, Ferrucci F, Kaminski E (2014) The effect of total grain-size distribution on the dynamics of turbulent volcanic plumes. Earth Plan Sci Lett 394:124–134CrossRefGoogle Scholar
  39. Girault F, Carazzo G, Tait S, Kaminski E (2016) Combined effects of total grain-size distribution and crosswind on the rise of eruptive volcanic columns. J Volcanol Geotherm Res 326:103–113Google Scholar
  40. Hartmann WK (1969) Terrestrial lunar and interplanetary rock fragmentation. Icarus 10:201–213CrossRefGoogle Scholar
  41. Kaminski E, Jaupart C (1998) The size distribution of pyroclasts and the fragmentation sequence in explosive volcanic eruptions. J Geophys Res 103:29,759–29,779CrossRefGoogle Scholar
  42. Komorowski JC, Legendre Y, Caron B, Boudon G (2008) Reconstruction and analysis of sub-plinian tephra dispersal during the 1530 AD Soufriere (Guadeloupe) eruption: implications for scenario definition and hazards assessment. J Volcanol Geotherm Res 178:491–515CrossRefGoogle Scholar
  43. Koyaguchi T, Ohno M (2001) Reconstruction of eruption column dynamics on the basis of grain size of tephra fall deposits 1. Methods. J Geophys Res 106:6499–6512CrossRefGoogle Scholar
  44. Koyaguchi T, Suzuki YJ, Kozono T (2010) Effects of the crater on eruption column dynamics. J Geophys Res 115:B07205CrossRefGoogle Scholar
  45. Kueppers U, Perugini D, Dingwell DB (2006) “Explosive energy” during volcanic eruptions from fractal analysis of pyroclasts. Earth Planet Sci Lett 248:800–807CrossRefGoogle Scholar
  46. Lacroix A (1904) La Montagne Pelée et ses éruptions. Masson, ParisGoogle Scholar
  47. Lajoie J, Boudon G, Bourdier J-L (1989) Depositional mechanics of the 1902 pyroclastic nuée-ardente deposits of Mt. Pelée, Martinique. J Volcanol Geotherm Res 38:131–142CrossRefGoogle Scholar
  48. Le Friant A, Boudon G, Deplus C, Villemant B (2003) Large-scale flank collapse events during the activity of Montagne Pelée, Martinique, Lesser Antilles. J Geophys Res 108(B1):2055Google Scholar
  49. Lindsay JM, Smith AL, Roobol MJ, Stasiuk MV (2005) Dominica. In: Lindsay JM, Robertson REA, Shepherd JB, Ali S (eds) Volcanic hazard atlas of the Lesser Antilles. Seismic Research Unit, The University of the West Indies, Trinidad and Tobago, pp 1–48Google Scholar
  50. Martel C (2012) Eruption dynamics inferred from microlite crystallization experiments: application to Plinian and dome-forming eruptions of Mt Pelée (Martinique, Lesser Antilles). J Petrol 53(4):699–725CrossRefGoogle Scholar
  51. Martel C, Poussineau S (2007) Diversity of eruptive styles inferred from the microlites of Mt. Pelée andesite (Martinique, Lesser Antilles). J Volcanol Geotherm Res 166:233–254CrossRefGoogle Scholar
  52. Martel C, Pichavant M, Bourdier J-L, Traineau H, Holtz F, Scaillet B (1998) Magma storage conditions and control of eruption regime in silicic volcanoes: experimental evidence from Mt. Pelée. Earth Planet Sci Lett 156:89–99CrossRefGoogle Scholar
  53. Martel C, Bourdier JL, Pichavant M, Traineau H (2000) Textures, water content and degassing of silicic andesites from recent Plinian and dome-forming eruptions at Mt. Pelée volcano (Martinique, Lesser Antilles arc). J Volcanol Geotherm Res 96:191–206CrossRefGoogle Scholar
  54. Mattioni M (1976) Les grandes familles de formes du saladoïde insulaire du site de Vivé à la Martinique. Proceedings of the 6th International congress for the study of the pre-Columbian cultures of the Lesser Antilles, pp 11–33Google Scholar
  55. Michaud-Dubuy A, Carazzo G, Kaminski E, Girault F (2018) A revisit of the role of gas entrapment on the stability conditions of explosive volcanic columns. J Volcanol Geotherm Res 357:349–361CrossRefGoogle Scholar
  56. Neri A, Dobran F (1994) Influence of eruption parameters on the thermofluid dynamics of collapsing volcanic columns. J Geophys Res 99(B6):11,833–11,857CrossRefGoogle Scholar
  57. Newhall CG, Self S (1982) The volcanic explosivity index (VEI): an estimate of explosive magnitude for historical volcanism. J Geophys Res 87:1231–1238CrossRefGoogle Scholar
  58. Perret FA (1931a) Le nouveau dôme de la Montagne Pelée. Compt Rend Acad Sci, Paris 193:1342–1344Google Scholar
  59. Perret FA (1931b) Le dôme recent de la Montagne Pelée. Compt Rend Acad Sci, Paris 193:1439–1442Google Scholar
  60. Perret FA (1935) The eruption of Mount Pelée 1929-1932. Carnegie Institution of Washington, Washington, DC, p 125Google Scholar
  61. Perrey A (1853) Note sur les tremblements de terre en 1851. Memoire Académie Sciences, Arts et Belles-Lettres, Dijon 2:1–65Google Scholar
  62. Pyle DM (1989) The thickness, volume and grainsize of tephra fall deposits. Bull Volcanol 51:1–15CrossRefGoogle Scholar
  63. Pyle DM (1995) Mass and energy budgets of explosive volcanic eruptions. Geophys Res Lett 22:563–566CrossRefGoogle Scholar
  64. Pyle DM (2000) Sizes of volcanic eruptions. In: Sigurdsson H, Houghton B, Reimer H, Stiw J, McNutt S (eds) Encyclopedia of volcanoes. Academic, San Diego, pp 263–269Google Scholar
  65. Quantin P, Balesdent J, Bouleau A, Delaune FC (1991) Premiers stades d’altération de ponces volaniques en climat tropical humide (Montagne Pelée, Martinique). Geoderma 50:125–148CrossRefGoogle Scholar
  66. Revert E (1931) La Montagne Pelée et ses dernières éruptions. Ann Geogr 40:275–291CrossRefGoogle Scholar
  67. Revert E (1948) Fouilles et sites précolombiens de la Martinique. Etudes rhodaniennes 23:172–176CrossRefGoogle Scholar
  68. Rodriguez-Loubet F (1994) Les Antilles, un des derniers peuplements précolombiens de l’Amérique. Bull Soc Préhisto Fr 91:324–332CrossRefGoogle Scholar
  69. Romer M (1931) La dernière eruption de la Montagne Pelée. Bull Volcanol 8:89–116CrossRefGoogle Scholar
  70. Romer M (1934) L’éruption de la Montagne Pelée (Martinique) de 1929 à 1933. Ann. Phys. Globe France Outre Mer 5:129–147Google Scholar
  71. Roobol MJ, Smith AL (1976) Mount Pelée, Martinique: a pattern of alternating eruptive styles. Geology 4:521–524CrossRefGoogle Scholar
  72. Roobol MJ, Smith AL (1980) Pumice eruptions of the Lesser Antilles. Bull Volcanol 43:277–286CrossRefGoogle Scholar
  73. Roobol MJ, Smith AL (2004) Volcanology of Saba and St. Eustatius, Northern Lesser Antilles. Koninklijke nederlandse Akademie van wetenschappenGoogle Scholar
  74. Ruzié L, Moreira M (2010) Magma degassing process during plinian eruptions. J Volcanol Geotherm Res 192:142–150CrossRefGoogle Scholar
  75. Saunders NJ (2005) The peoples of the Caribbean: an encyclopedia of Caribbean archaeology and traditional culture. ABC, Santa BarbaraGoogle Scholar
  76. Sigurdsson H, Carey S (1989) Plinian and co-ignimbrite tephra fall from the 1815 eruption of Tambora volcano. Bull Volcanol 51:243–270CrossRefGoogle Scholar
  77. Sigurdsson H, Carey S, Fisher RV (1984) The 1982 eruptions of El Chichon volcano, Mexico: stratigraphy of pyroclastic deposits. J Volcanol Geotherm Res 23:11–37CrossRefGoogle Scholar
  78. Suzuki YJ, Koyaguchi T, Ogawa M, Hachisu I (2005) A numerical study of turbulent mixing in eruption clouds using a three-dimensional fluid dynamics model. J Geophys Res 110:B08201CrossRefGoogle Scholar
  79. Traineau H, Westercamp D, Coulon C (1983) Mélanges magmatiques à la Montagne Pelée (Martinique). Origine des éruptions de type Saint-Vincent. Bull Volcanol 46(3):243–269CrossRefGoogle Scholar
  80. Traineau H, Westercamp D, Bardintzeff JM, Miskovsky JC (1989) The recent pumice eruptions of Mt. Pelée volcano, Martinique. Part I: depositional sequences, description of pumiceous deposits. J Volcanol Geotherm Res 38:17–33CrossRefGoogle Scholar
  81. Turcotte DL (1986) Fractals and fragmentation. J Geophys Res 91:1921–1926CrossRefGoogle Scholar
  82. Valentine GA, Wohletz KH (1989) Numerical models of Plinian eruption columns and pyroclastic flows. J Geophys Res 94:1867–1887CrossRefGoogle Scholar
  83. Vidal CM, Komorowski J-C, Métrich N, Pratomo I, Kartadinata N, Prambada O, Michel A, Carazzo G, Lavigne F, Rodysill J, Fontijn K, Surono (2015) Dynamics of the major Plinian eruption of Samala in 1257 AD (Lombok, Indonesia). Bull Volcanol 77:73.  https://doi.org/10.1007/s00445-015-0960-9 CrossRefGoogle Scholar
  84. Villemant B, Boudon G (1998) Transition from dome-forming to plinian eruptive styles controlled by H20 and Cl degassing. Nature 392:65–69CrossRefGoogle Scholar
  85. Villemant B, Boudon G (1999) H20 and halogen (F, Cl, Br) behaviour during shallow magma degassing processes. Earth Planet Sci Lett 168:271–286CrossRefGoogle Scholar
  86. Villemant B, Boudon G, Komorowski JC (1996) U-series disequilibrium in arc magmas induced by water-magma interaction. Earth Planet Sci Lett 140:259–267CrossRefGoogle Scholar
  87. Vincent PM, Bourdier J-L, Boudon G (1989) The primitive volcano of Mount Pelée: its construction and partial destruction by flank collapse. J Volcanol Geotherm Res 38:1–15CrossRefGoogle Scholar
  88. Walker GPL (1980) The Taupo pumice: product of the most powerful known (ultraplinian) eruption. J Volcanol Geoth Res 8:69–94CrossRefGoogle Scholar
  89. Westercamp D, Traineau H (1983) The past 5,000 years of volcanic activity at Mt. Pelée Martinique (F.W.I.): implications for assessment of volcanic hazards. J Volcanol Geotherm Res 17:159–185CrossRefGoogle Scholar
  90. Wilson L (1976) Explosive volcanic eruptions—III. Plinian eruption columns. Geophys J R Astrom Soc 45:543–556CrossRefGoogle Scholar
  91. Wilson L, Sparks RSJ, Walker GPL (1980) Explosive volcanic eruptions—IV. The control of magma properties and conduit geometry on eruption column behaviour. Geophys J R Astrom Soc 63:117–148CrossRefGoogle Scholar
  92. Woods AW, Bursik MI (1991) Particle fallout, thermal disequilibrium and volcanic plumes. Bull Volcanol 53:559–570CrossRefGoogle Scholar
  93. Woods AW, Bower SM (1995) The decompression of volcanic jets in a crater during explosive volcanic eruptions. Earth Plan Sci Lett 131:189–205Google Scholar
  94. Wright JV, Smith AL, Roobol MJ, Mattioli GS, Fryxell JE (2016) Distal ash hurricane (pyroclastic density current) deposits from a ca. 2000 yr B.P. Plinian-style eruption of Mount Pelée, Martinique: distribution, grain-size characteristics, and implications for future hazards. Geol Soc Am Bull 128:777–791CrossRefGoogle Scholar

Copyright information

© International Association of Volcanology & Chemistry of the Earth's Interior 2019

Authors and Affiliations

  1. 1.Observatoire Volcanologique et Sismologique de Martinique, Institut de Physique du Globe de Paris, CNRS, Sorbonne Paris CitéFonds St DenisFrance
  2. 2.Institut de Physique du Globe de Paris, Sorbonne Paris Cité, CNRSUniversité Paris DiderotParisFrance

Personalised recommendations