Advertisement

Bulletin of Volcanology

, 81:6 | Cite as

Investigating physical and thermal interactions between lava and trees: the case of Kīlauea’s July 1974 flow

  • Magdalena Oryaëlle ChevrelEmail author
  • Andrew Harris
  • Alexian Ajas
  • Jonas Biren
  • Lucia Gurioli
  • Laura Calabrò
Research Article
  • 29 Downloads

Abstract

To examine whether there was any physical or thermal interaction between trees and lava when a lava flow inundates a forest, we studied the Kīlauea’s July 1974 lava flow. We mapped the location of ∼ 600 lava-trees and the lava type (pāhoehoe versus ‘a‘ā), and sampled an additional ten lava-trees for chemical and textural analysis to infer flow viscosity and dynamics. The emplacement event lasted 3.5 h and markers on the outer surface of the lava-trees allowed us to define initial high effusion rate and velocity (∼ 400 m3/s and 5–10 m/s) that then declined to 9 m3/s and 4 m/s during a waning phase. We find that lava passing through the forest underwent an initial cooling rate of 4 °C/km which increased to 10 °C/km late in the eruption. This is no different to cooling rates recorded at Kīlauea for tree-free cases. There thus appears to be no effect on cooling for this case. The lava-trees did, though, form a network of vertical cylinder obstacles and evidence for local diversion of flow lines are noticed. However, this varies with lava type, as almost no lava-trees form in ‘a‘ā. We find a relation between the percentage of ‘a‘ā and the number of lava-trees per hectare. The pāhoehoe–‘a‘ā transition for this flow occurs at a viscosity of 103 Pa s and this appears to be a threshold below which lava-trees can form so as to behave as a network of obstacles, and above which they cannot.

Keywords

Lava-tree Lava channel Cooling rate Viscosity Pāhoehoe–‘a‘ā transition 

Notes

Acknowledgements

The authors gratefully acknowledge the support of Matthew Patrick, the Hawaiian Volcano Observatory and Hawaiian Volcanoes National Park where work was completed under National park permit HAVO-2016-SCI-0064. The pole technique of LMV (Christophe Constantin, Jean-Luc Devidal, Jean-Marc Henot, Mhammed Benbakkar and Claire Fonquernie) is acknowledged for sample preparation and sample analyses. Fieldwork was performed with the help of Scott Rowland and Alejandra Gomez-Ulla who are greatly acknowledged. Additionally, we thank Taeko Jane Takahashi at the HVO library for helping us track down the internal and newspaper reports for the events of 19 July 1974. Finally, T. Gregg, A. Soule (reviewers) and H. Dietterich (editor) are greatly acknowledged for their thorough reviews and comments, which improved the quality of this work.

Funding information

This research was financed by the Agence National de la Recherche through the project LAVA (Program: DS0902 2016; Project: ANR-16 CE39-0009, http://www.agence-nationale-recherche.fr/Projet-ANR-16-CE39-0009). This is ANR-LAVA contribution no. 7. Fieldwork was supported by the Laboratory of Excellence ClerVolc program 6, contribution no. 316. MOC acknowledges the Auvergne fellowship for support.

Supplementary material

445_2018_1263_MOESM1_ESM.docx (633 kb)
ESM 1 (DOCX 633 kb)
445_2018_1263_MOESM2_ESM.docx (32 kb)
ESM 2 (DOCX 103 kb)
445_2018_1263_MOESM3_ESM.xlsx (46 kb)
ESM 3 (XLSX 45 kb)

References

  1. Babrauskas V (2002) Ignition of wood: a review of the state of the art. J Fire Prot Eng 12:163–189. ​ https://doi.org/10.1177/10423910260620482 CrossRefGoogle Scholar
  2. Bella P, Gaál L (2007) Tree mould caves within the framework of cave genetic classification. Nat Conserv 63:7–11Google Scholar
  3. Belousov A, Belousova M (2018) Dynamics and viscosity of ‘a‘ā and pāhoehoe lava flows of the 2012-2013 eruption of Tolbachik volcano, Kamchatka (Russia). Bull Volcanol 80:.  https://doi.org/10.1007/s00445-017-1180-2
  4. Bernabeu N, Saramito P, Harris AJL (2018) Laminar shallow viscoplastic fluid flowing through an array of vertical obstacles. J Nonnewton Fluid Mech 257:59–70.  https://doi.org/10.1016/j.jnnfm.2018.04.001 CrossRefGoogle Scholar
  5. Bernabeu N, Saramito P, Smutek C (2016) Modelling lava flow advance using a shallow-depth approximation for three-dimensional cooling of viscoplastic flows. Geol Soc Lond Spec Publ 426:409–423.  https://doi.org/10.1144/SP426.27 CrossRefGoogle Scholar
  6. Carveni P, Mele G, Benfatto S, Imposa S, Puntillo MS (2011) Lava trees and tree molds ( “ cannon stones ” ) of Mt. Etna. 633–638.  https://doi.org/10.1007/s00445-011-0446-3
  7. Cashman KV, Thornber C, Kauahikaua JP (1999) Cooling and crystallization of lava in open channels, and the transition of pāhoehoe lava to ‘a‘ā. Bull Volcanol 61:306–323.  https://doi.org/10.1007/s004450050299 CrossRefGoogle Scholar
  8. Castruccio A, Contreras MA (2016) The influence of effusion rate and rheology on lava flow dynamics and morphology: a case study from the 1971 and 1988-1990 eruptions at Villarrica and Lonquimay volcanoes, Southern Andes of Chile. J Volcanol Geotherm Res 327:469–483.  https://doi.org/10.1016/j.jvolgeores.2016.09.015 CrossRefGoogle Scholar
  9. Chevrel MO, Harris AJL, James MR, Calabrò L, Gurioli L, Pinkerton H (2018) The viscosity of pāhoehoe lava: in situ syn-eruptive measurements from Kilauea, Hawaii. Earth Planet Sci Lett 493:161–171.  https://doi.org/10.1016/j.epsl.2018.04.028 CrossRefGoogle Scholar
  10. Chevrel MO, Platz T, Hauber E, Baratoux D, Lavallée Y, Dingwell DB (2013) Lava flow rheology: a comparison of morphological and petrological methods. Earth Planet Sci Lett 384:102–120.  https://doi.org/10.1016/j.epsl.2013.09.022 CrossRefGoogle Scholar
  11. Chirico GD, Favalli M, Papale P, Boschi E, Pareschi MT, Mamou-Mani A (2009) Lava flow hazard at Nyiragongo volcano, DRC 2 Hazard reduction in urban areas. Bull Volcanol 71:375–387.  https://doi.org/10.1007/s00445-008-0232-z CrossRefGoogle Scholar
  12. Crisp J, Baloga S (1994) Influence of crystallization and entrainment of cooler material on the emplacement of basaltic ‘a’a lava flows. J Geophys Res 99:11,819–11,831.  https://doi.org/10.1029/94JB00134 CrossRefGoogle Scholar
  13. Crisp J, Cashman KV, Bonini JA, Hougen SB, Pieri DC (1994) Crystallization history of the 1984 Mauna Loa lava flow. J Geophys Res 99:7177–7198.  https://doi.org/10.1029/93JB02973 CrossRefGoogle Scholar
  14. Dietterich HR, Cashman KV (2014) Channel networks within lava flows: formation, evolution, and implications for flow behavior. J Geophys Res Earth Surf 119:1704–1724.  https://doi.org/10.1002/2014JF003103 CrossRefGoogle Scholar
  15. Dietterich HR, Cashman KV, Rust AC, Lev E (2015) Diverting lava flows in the lab. Nat Geosci 8:8–10.  https://doi.org/10.1038/ngeo2470 CrossRefGoogle Scholar
  16. Dragoni M, Tallarico A (1994) The effect of crystallization on the rheology and dynamics of lava flows. J Volcanol Geotherm Res 59:241–252.  https://doi.org/10.1016/0377-0273(94)90098-1 CrossRefGoogle Scholar
  17. Finch R (1931) Lava tree casts and tree molds. Geol Soc Am Bull 442:299Google Scholar
  18. Fiske RS, Koyanagi RY (1968) The December 1965 eruption of Kilauea Volcano, Hawaii. US Geol Surv Prof Pap 607:21Google Scholar
  19. Garel F, Kaminski E, Tait S, Limare A (2014) An analogue study of the influence of solidification on the advance and surface thermal signature of lava flows. Earth Planet Sci Lett 396:46–55.  https://doi.org/10.1016/j.epsl.2014.03.061 CrossRefGoogle Scholar
  20. Giordano D, Russell JK, Dingwell DB (2008) Viscosity of magmatic liquids: a model. Earth Planet Sci Lett 271:123–134.  https://doi.org/10.1016/j.epsl.2008.03.038 CrossRefGoogle Scholar
  21. Glatzer H (1974) Spectacular show at summit. In: Hawaii Trib Her. 20 July 1974. p. 5Google Scholar
  22. Guest JE, Kilburn CRJ, Pinkerton H, Duncan A (1987) The evolution of flow fields: observations of the 1981 and 1983 eruptions of Mount Etna, Sicily. Bull Volcanol 49:527–540.  https://doi.org/10.1007/BF01080447 CrossRefGoogle Scholar
  23. Guilbaud MN, Blake S, Thordarson T, Self S (2007) Role of Syn-eruptive cooling and degassing on textures of lavas from the ad 1783-1784 Laki eruption, South Iceland. J Petrol 48:1265–1294.  https://doi.org/10.1093/petrology/egm017 CrossRefGoogle Scholar
  24. Harris AJL, Rowland SK (2015) Lava flows and rheology. Encycl Volcanoes, 2nd Ed Eds Sigurdsson H, Hought B, McNutt SR, Rymer H, Styx JGoogle Scholar
  25. Harris AJL, Rowland SK (2001) FLOWGO: a kinematic thermo-rheological model for lava flowing in a channel. Bull Volcanol 63:20–44.  https://doi.org/10.1007/s004450000120 CrossRefGoogle Scholar
  26. Harris AJL, Rowland SK (2009) Effusion rate controls on lava flow length and the role of heat loss: a review. Leg Georg PL Walker, Spec Publ IAVCEI Eds Hoskuldsson A, Thordarson T, Larsen G, Self S, Rowl S Geol Soc London 2:33–51Google Scholar
  27. Harris AJL, Villeneuve N, Di Muro A et al (2017) Effusive crises at Piton de la Fournaise 2014-2015: a review of a multi-national response model. J Appl Volcanol 6:11.  https://doi.org/10.1186/s13617-017-0062-9 CrossRefGoogle Scholar
  28. Hazlett RW (1993) Geological field guide at Kilauea Volcano. Hawaii Natural History Association, Honolulu, Hawaii, 127 p.Google Scholar
  29. Helz RT, Thornber CR (1987) Geothermometry of Kilauea Iki lava lake, Hawaii. Bull Volcanol 49:651–668.  https://doi.org/10.1007/BF01080357 CrossRefGoogle Scholar
  30. Heslop SE, Wilson L, Pinkerton H, Head JW (1989) Dynamics of a confined lava flow on Kilauea Volcano, Hawaii. Bull Volcanol 51:415–432.  https://doi.org/10.1007/BF01078809 CrossRefGoogle Scholar
  31. Honda T (1998) Physico-chemical explanation for remeleting process of inner surface wall of Tainai tree molds located on the flank of Mt. Fuji. J Speleol Soc Japan 23:29–38. https://ci.nii.ac.jp/naid/10027009711/en/
  32. Houghton BF, Wilson CJN (1989) A vesicularity index for pyroclastic deposits. Bull Volcanol 51:451–462.  https://doi.org/10.1007/BF01078811 CrossRefGoogle Scholar
  33. Hulme G (1974) The interpretation of lava flow morphology. Geophys J R Astron Soc 39:361–383.  https://doi.org/10.1111/j.1365-246X.1974.tb05460.x CrossRefGoogle Scholar
  34. Jaggar TA (1945) Volcanoes declare war: logistics and strategy of Pacific volcano science. Honolulu, Hawaii. Paradise of the Pacific, Ltd., 166 pGoogle Scholar
  35. James MR, Pinkerton H, Robson S (2007) Image-based measurement of flux variation in distal regions of active lava flows. Geochem. Geophys. Geosys. 8, Q03006.  https://doi.org/10.1029/2006GC001448
  36. Jeffreys H (1925) The flow of water in an inclined channel of rectangular section. Philos Mag serie 6(4):293,793–293,807Google Scholar
  37. Jones TJ, Llewellin EW, Houghton BF, Brown RJ (2017) Proximal lava drainage controls on basaltic fissure eruption dynamics. Bull Volcanol 79:81.  https://doi.org/10.1007/s00445-017-1164-2
  38. Kawabata E, Cronin SJ, Bebbington MS, Moufti MRH, El-Masry N, Wang T (2015) Identifying multiple eruption phases from a compound tephra blanket: an example of the AD1256 Al-Madinah eruption, Saudi Arabia. Bull Volcanol 77:6.  https://doi.org/10.1007/s00445-014-0890-y
  39. Kelfoun K, Vargas SV (2016) VolcFlow capabilities and potential development for the simulation of lava flows. In: Harris AJL, De Groeve T, Garel F, Carn SA (eds) Detecting, Modelling and Responding to Effusive Eruptions. Geological Society, London, pp 337–343Google Scholar
  40. Keszthelyi L (1995) Measurements of the cooling at the base of pahoehoe flows. Geophys Res Lett 22:2195–2198.  https://doi.org/10.1029/95GL01812 CrossRefGoogle Scholar
  41. Keszthelyi L, Self S (1998) Some physical requirements for the emplacement of long basaltic lava flows. J Geophys Res B 11:27,447–27,464.  https://doi.org/10.1029/98JB00606 CrossRefGoogle Scholar
  42. Kolzenburg S, Giordano D, Thordarson T, Hoskuldsson A, Dingwell DB (2017) The rheological evolution of the 2014/2015 eruption at Holuhraun, Central Iceland. Bull Volcanol 79:45.  https://doi.org/10.1007/s00445-017-1128-6
  43. Kuntz MA, Spiker EC, Rubin M, Champion DE, Lefebvre RH (1986) Radiocarbon studies of latest Pleistocene and Holocene lava flows of the Snake River Plain, Idaho: data, lessons, interpretations. Quat Res 25:163–176.  https://doi.org/10.1016/0033-5894(86)90054-2
  44. Lincoln NK (2009) Amy Greenwell Garden Ethnobotanical Guide to Native Hawaiian plants & Polynesian-introduced plants. Bishop museum press, Honolulu, Hawaii, p 135Google Scholar
  45. Lipman PW, Banks NG (1987) Aa flow dynamics, Mauna Loa 1984. US Geol Surv Prof Pap 1350:1527–1567Google Scholar
  46. Llewellin EW, Manga M (2005) Bubble suspension rheology and implications for conduit flow. J Volcanol Geotherm Res 143:205–217.  https://doi.org/10.1016/j.jvolgeores.2004.09.018 CrossRefGoogle Scholar
  47. Lockwood JP, Hazlett RW (2010) Volcanoes global perspectives. Wiley-Blackwell. Chichester, United Kingdom, p 539Google Scholar
  48. Lockwood JP, Tilling RI, Holcomb RT, Klein F, Okamura AT, Peterson DW (1999) Magma migration and resupply during the 1974 summit eruptions of Kilauea volcano, Hawai’i. US Geol Surv Prof Pap 1613(37)Google Scholar
  49. Lockwood JP, Williams IS (1978) Lava trees and tree moulds as indicators of lava flow direction. Geol. Mag. 115:69–74.  https://doi.org/10.1017/S0016756800041005
  50. MacDonald GA, Abbott AT, Peterson FL (1983) Volcanoes and the sea - The geology of Hawaii. University of Hawaii Press, Honolulu, Hawaii, p 517Google Scholar
  51. Mader HM, Llewellin EW, Mueller SP (2013) The rheology of two-phase magmas: a review and analysis. J Volcanol Geotherm Res 257:135–158.  https://doi.org/10.1016/j.jvolgeores.2013.02.014
  52. Malin MC (1980) Lengths of Hawaiian lava flows. Geology 8:306–308.  https://doi.org/10.1130/0091-7613(1980)8<306:LOHLF>2.0.CO;2 CrossRefGoogle Scholar
  53. Maron SH, Pierce PE (1956) Application of Ree-Eyring generalized flow theory to suspensions of spherical particles. J Colloid Sci 11:80–95.  https://doi.org/10.1016/0095-8522(56)90023-X CrossRefGoogle Scholar
  54. Merlin M (1995) Hawaiian forest plants. Pacific guide books, Honolulu, Hawaii. 80 p.Google Scholar
  55. Moore HJ (1987) Preliminary estimates of the rheological properties of 1984 Mauna Loa Lava. US Geol Surv Prof Pap 1350(99):1569–1588Google Scholar
  56. Moore HJ, Kachadoorian R (1980) Estimates of lava-flow velocities using lava trees. Reports Plan Geol Prog 1979–1980:201–203Google Scholar
  57. Moore JG, Richter DH (1962) Lava tree molds of the September 1961 eruption, Kilauea volcano, Hawaii. Geol Soc Am Bull 73:1153–1158. https://doi.org/10.1130/0016-7606(1962)73[1153:LTMOTS]2.0.CO;2CrossRefGoogle Scholar
  58. Mouginis-mark PJ, Garbeil H (2005) Quality of TOPSAR topographic data for volcanology studies at Kilauea Volcano, Hawaii: an assessment using airborne lidar data. Remote Sensing of Environment 96:149–164.  https://doi.org/10.1016/j.rse.2005.01.017
  59. Mueller S, Llewellin EW, Mader HM (2010) The rheology of suspensions of solid particles. Philos Trans R Soc Lond A 466:1201–1228.  https://doi.org/10.1098/rspa.2009.0445 CrossRefGoogle Scholar
  60. Nichols RL (1939) Superficial banding and shark’s-touth projections in the cracks of basaltic lava. Amer 237:188–194.  https://doi.org/10.2475/ajs.237.3.188 CrossRefGoogle Scholar
  61. Parcheta CE, Houghton BF, Swanson DA (2012) Hawaiian fissure fountains 1: decoding deposits—episode 1 of the 1969–1974 Mauna Ulu eruption. Bull Volcanol 74:1729–1743.  https://doi.org/10.1007/s00445-012-0621-1
  62. Peterson DW, Tilling RI (1980) Transition of basaltic lava from pāhoehoe to ‘a‘ā, Kilauea volcano, Hawaii: field observations and key factors. J Volcanol Geotherm Res 7:271–293.  https://doi.org/10.1016/0377-0273(80)90033-5 CrossRefGoogle Scholar
  63. Pinkerton H, Stevenson RJ (1992) Methods of determining the rheological properties of magmas at sub-liquidus temperatures. J Volcanol Geotherm Res 53:47–66.  https://doi.org/10.1016/0377-0273(92)90073-M CrossRefGoogle Scholar
  64. Pinkerton H, Wilson L (1988) The lengths of lava flows. Lunar Planet Sci. Abstr., XIX. pp 937–938Google Scholar
  65. Pinkerton H, Wilson L (1994) Factor controlling the lengths of channel-fed lava flows. Bull Volcanol 6:108–120.  https://doi.org/10.1007/BF00304106 CrossRefGoogle Scholar
  66. Pratt L, Gon SM III (1998) Terrestrial ecosystems. In: Atlas of Hawaii. University of Hawaii Press, Honolulu, Hawaii, pp 121–129Google Scholar
  67. Rhéty M, Harris A, Villeneuve N, Gurioli L, Médard E, Chevrel O, Bachélery P (2017) A comparison of cooling-limited and volume-limited flow systems: Examples from channels in the Piton de la Fournaise April 2007 lava-flow field, Geochem Geophys Geosyst 18  https://doi.org/10.1002/2017GC006839
  68. Riker JM, Cashman KV, Kauahikaua JP, Montierth CM (2009) The length of channelised lava flows: insight from the 1859 eruption of Mauna Loa Volcano, Hawaii. J Volcanol Geotherm Res 183:139–156.  https://doi.org/10.1016/j.jvolgeores.2009.03.002 CrossRefGoogle Scholar
  69. Robert B, Harris A, Gurioli G, Medard E, Sehlke A, Whittington A (2014) Textural and rheological evolution of basalt flowing down a lava channel. Bull Volcanol 76:824.  https://doi.org/10.1007/s00445-014-0824-8 CrossRefGoogle Scholar
  70. Rumpf ME, Lev E, Wysocki R (2018) The influence of topographic roughness on lava flow emplacement. Bull Volcanol 80:63. https://doi.org/10.1007/s00445-018-1238-9
  71. Sakimoto SEH, Gregg TKP (2001) Channeled flow: analytic solutions, laboratory experiments, and applications to lava flows. J Geophys Res 106:8629–8644.  https://doi.org/10.1029/2000JB900384 CrossRefGoogle Scholar
  72. Scifoni S, Coltelli M, Marsella M, Proietti C, Napoleoni Q, Vicari A, Del Negro C (2010) Mitigation of lava flow invasion hazard through optimized barrier configuration aided by numerical simulation: the case of the 2001 Etna eruption. J Volcanol Geotherm Res 192:16–26.  https://doi.org/10.1016/j.jvolgeores.2010.02.002 CrossRefGoogle Scholar
  73. Searle EJ (1958) A note on the formation of native iron and other effects associated with contact of basalt and carbonized wood at Auckland, New Zealand. New Zeal J Geol Geophys 1:451–458CrossRefGoogle Scholar
  74. Sehlke A, Whittington A, Robert B, Harris AJL, Gurioli L, Médard E (2014) Pahoehoe to ‘a’a transition of Hawaiian lavas: an experimental study. Bull Volcanol 76:876.  https://doi.org/10.1007/s00445-014-0876-9 CrossRefGoogle Scholar
  75. Shea T, Houghton BF, Gurioli L, Cashman KV, Hammer JE, Hobden BJ (2010) Textural studies of vesicles in volcanic rocks: an integrated methodology. J Volcanol Geotherm Res 190:271–289.  https://doi.org/10.1016/j.jvolgeores.2009.12.003 CrossRefGoogle Scholar
  76. Smathers GA, Mueller-Dombois D (2007) Hawai'i, the fires of life. Mutual Publishing, Honolulu, p 141Google Scholar
  77. Soule SA, Cashman KV, Kauahikaua JP (2004) Examining flow emplacement through the surface morphology of three rapidly emplaced, solidified lava flows, Kīlauea Volcano, Hawai’i. Bull Volcanol 66:1–14.  https://doi.org/10.1007/s00445-003-0291-0 CrossRefGoogle Scholar
  78. Swanson DA (1973) Pāhoehoe flows from the 1969-1971 Mauna Ulu eruption, Kīlauea volcano, Hawaii. Bull Geol Soc Am 84:615–626.  https://doi.org/10.1130/0016-7606 CrossRefGoogle Scholar
  79. Thivet S (2016) Caractérisation magmatique du système superficiel du Piton de la Fournaise à travers l’étude des produits de l’éruption de Juillet 2015. Université Clermont-AuvegneGoogle Scholar
  80. Van Wagner CE (1967) Calculations on forest fire spread by flame radiation. Government of Canada, Department of Forestry and Rural Development, Petawawa Forest Experiment Station, Chalk River, Ontario. Departmental publication 1185. 18 p.Google Scholar
  81. Wilson L, Head JW (1994) Mars review and analysis of volcanic eruption theory and relationships to observed landforms. Rev Geophys 32:221–263.  https://doi.org/10.1029/94RG01113

Copyright information

© International Association of Volcanology & Chemistry of the Earth's Interior 2019

Authors and Affiliations

  1. 1.Université Clermont Auvergne, CNRS, IRD, OPGC, Laboratoire Magmas et VolcansClermont-FerrandFrance

Personalised recommendations