Bulletin of Volcanology

, 80:85 | Cite as

Reconstructing lava flow emplacement histories with rheological and morphological analyses: the Harrat Rahat volcanic field, Kingdom of Saudi Arabia

  • Hannah R. DietterichEmail author
  • Drew T. Downs
  • Mark E. Stelten
  • Hani Zahran
Research Article


Mafic volcanic fields are widespread, but few have erupted in historic times, providing limited observations of the magnitudes, dynamics, and timescales of lava flow emplacement in these settings. To expand our knowledge of effusive mafic eruptions, we must evaluate solidified flows to discern syn-eruptive conditions. The Harrat Rahat volcanic field in western Saudi Arabia offers a good opportunity for this, with a historical eruption in 1256 CE and many well-preserved prehistoric flows. We combine historical observations and rheological and morphological analyses of the youngest flows with analytical models to reconstruct eruptive histories and lava flow emplacement conditions in Harrat Rahat. Petrologic analysis of samples for emplacement temperatures and crystallinities shows cooling trends from vent to toe of ~ 1140 to ~ 1090 °C at rates of 2–7 °C km−1, crystallinities increasing from 0.5 to 60%, and apparent viscosities increasing from 102 to 109 Pa s. High-resolution topographic data facilitates quantitative analysis of morphology and interpolation of pre-eruptive surfaces to measure flow thicknesses, channels, and levees, and enables calculation of eruptive volumes. Analytical models relating flow morphology to emplacement conditions are applied to estimate effusion rates. Within the suite of studied flows, volume estimates range from 0.07 to 0.42 km3 dense rock equivalent, with effusion rates on the order of 10 to 100 s of m3 s−1 and durations from 1 to 15 weeks. These integrated analyses quantify past lava flow emplacement conditions and dynamics in Harrat Rahat, improving our understanding and observations of fundamental parameters and controls of effusive eruptions in mafic volcanic fields.


‘A‘ā lava flow Channel morphology Cooling Crystallization Effusion rate 



We thank Tom Sisson, Dave Sherrod, and the Saudi Geological Survey staff for help with field sampling and Leslie O’Brien and Dawnika Blatter for analytical assistance. Reviews by Carmen Solana, Oryaëlle Chevrel, and Elise Rumpf, along with editing by Mike James and Andy Harris greatly improved this manuscript. Any use of trade, firm, or product names is for descriptive purposes only, and does not imply endorsement by the United States government.

Funding information

This research was funded by the Saudi Geological Survey through a Technical Cooperative Agreement between the Saudi Geological Survey and U.S. Geological Survey.

Supplementary material

445_2018_1259_MOESM1_ESM.pdf (109 kb)
Online Resource 1 Example cross-section to demonstrate the method for interpolating beneath the flow surface and calculating thickness. (PDF 108 kb)
445_2018_1259_MOESM2_ESM.xlsx (95 kb)
Online Resource 2 Spreadsheet with supplementary tables containing sample names and locations for X-ray fluorescence (Table 1) and textural samples (Table 2), full microprobe results (Tables 35), and full geothermometry results (Table 6). (XLSX 94 kb)


  1. Beattie P (1993) Olivine-melt and orthopyroxene-melt equilibria. Contr Mineral Petr 115:103–111. CrossRefGoogle Scholar
  2. Bergantz GW, Schleicher JM, Burgisser A (2017) On the kinematics and dynamics of crystal-rich systems. J Geophys Res 122:6131–6159. CrossRefGoogle Scholar
  3. Blake S, Bruno BC (2000) Modelling the emplacement of compound lava flows. Earth Planet Sci Lett 184:181–197. CrossRefGoogle Scholar
  4. Bonny E, Wright R (2017) Predicting the end of lava flow-forming eruptions from space. Bull Volcanol 79:52. CrossRefGoogle Scholar
  5. Camp VE, Roobol MJ (1989) The Arabian continental alkali basalt province: part I. Evolution of Harrat Rahat, Kingdom of Saudi Arabia. Geol Soc Am Bull 101:71–95CrossRefGoogle Scholar
  6. Camp VE, Roobol MJ (1991) Geologic map of the Cenozoic lava field of Harrat Rahat, Kingdom of Saudi Arabia. Saudi Geological Survey map GM-123Google Scholar
  7. Camp VE, Hooper PR, Roobol MJ, White DL (1987) The Madinah eruption, Saudi Arabia: magma mixing and simultaneous extrusion of three basaltic chemical types. Bull Volcanol 49:489–508CrossRefGoogle Scholar
  8. Cashman KV, Thornber C, Kauahikaua J (1999) Cooling and crystallization of lava in open channels, and the transition of pāhoehoe lava to ‘a‘ā. Bull Volcanol 61:306–323.
  9. Cashman KV, Soule SA, Mackey BH, Deligne NI, Deardorff ND, Dietterich HR (2013) How lava flows: new insights from applications of lidar technologies to lava flow studies. Geosphere 9:1664–1680. CrossRefGoogle Scholar
  10. Castruccio A, Rust AC, Sparks RSJ (2013) Evolution of crust- and core-dominated lava flows using scaling analysis. Bull Volcanol 75.
  11. Castruccio A, Rust AC, Sparks RSJ (2014) Assessing lava flow evolution from post-eruption field data using Herschel–Bulkley rheology. J Volcanol Geoth Res 275:71–84. CrossRefGoogle Scholar
  12. Chevrel MO, Guilbaud M, Siebe C (2016) The ∼AD 1250 effusive eruption of El Metate shield volcano (Michoacán, Mexico): magma source, crustal storage, eruptive dynamics, and lava rheology. Bull Volcanol 78:32. CrossRefGoogle Scholar
  13. Chevrel MO, Platz T, Hauber E, Baratoux D, Lavallée Y, Dingwell DB (2013) Lava flow rheology: a comparison of morphological and petrological methods. Earth Planet Sci Lett 384:109–120. CrossRefGoogle Scholar
  14. Cimarelli C, Costa A, Mueller S, Mader HM (2011) Rheology of magmas with bimodal crystal size and shape distributions: insights from analog experiments. Geochem Geophys Geosyst 12:Q07024. CrossRefGoogle Scholar
  15. Coltelli M, Proietti C, Branca S, Marsella M, Andronico D, Lodato L (2007) Analysis of the 2001 lava flow eruption of Mt. Etna from three-dimensional mapping. J Geophys Res 112:F02029. CrossRefGoogle Scholar
  16. Costa A (2005) Viscosity of high crystal content melts: dependence on solid fraction. Geophys Res Lett 32:L22308. CrossRefGoogle Scholar
  17. Costa A, Caricchi L, Bagdassarov N (2009) A model for the rheology of particle-bearing suspensions and partially molten rocks. Geochem Geophys Geosyst 10:Q03010. CrossRefGoogle Scholar
  18. Crisp J, Cashman KV, Bonini JA, Hougen SB, Pieri DC (1994) Crystallization history of the 1984 Mauna Loa lava flow. J Geophys Res 99:7177–7198. CrossRefGoogle Scholar
  19. Deardorff ND, Cashman KV (2012) Emplacement conditions of the c. 1,600-year bp Collier Cone lava flow, Oregon: a LiDAR investigation. Bull Volcanol 74:2051–2066. CrossRefGoogle Scholar
  20. Deligne NI, Conrey RM, Cashman KV, Champion DE, Amidon WH (2016) Holocene volcanism of the upper McKenzie River catchment, central Oregon Cascades, USA. Geo Soc Am Bull 128:1618–1635. CrossRefGoogle Scholar
  21. Dietterich HR, Cashman KV (2014) Channel networks within lava flows: formation, evolution, and implications for flow behavior. J Geophys Res Earth Surf 119:2014JF003103. CrossRefGoogle Scholar
  22. Downs DT, Stelten ME, Champion DE, Dietterich HR, Nawab Z, Zahran H, Hassan K, Shawali J (2018) Volcanic history of the northernmost part of the Harrat Rahat volcanic field, Saudi Arabia. Geosphere 14:1253–1282. CrossRefGoogle Scholar
  23. Foshag WF, González J (1956) Birth and development of Parícutin Volcano Mexico. Geol Surv Bull 956-D:335–489Google Scholar
  24. Fries C (1953) Volumes and weights of pyroclastic material, lava, and water erupted by Paricutin volcano, Michoacan, Mexico. Eos Trans AGU 34:603–616. doi:
  25. Ghiorso MS, Sack RO (1995) Chemical mass transfer in magmatic processes IV. A revised and internally consistent thermodynamic model for the interpolation and extrapolation of liquid-solid equilibria in magmatic systems at elevated temperatures and pressures. Contr Mineral and Petrol 119:197–212. CrossRefGoogle Scholar
  26. Giordano D, Russell JK, Dingwell DB (2008) Viscosity of magmatic liquids: a model. Earth Planet Sci Lett 271:123–134. CrossRefGoogle Scholar
  27. Griffiths RW (2000) The dynamics of lava flows. Annu Rev Fluid Mech 32:477–518. CrossRefGoogle Scholar
  28. Guest JE, Kilburn CRJ, Pinkerton H, Duncan AM (1987) The evolution of lava flow-fields: observations of the 1981 and 1983 eruptions of Mount Etna, Sicily. Bull Volcanol 49:527–540. CrossRefGoogle Scholar
  29. Harris A, Rowland S (2001) FLOWGO: a kinematic thermo-rheological model for lava flowing in a channel. Bull Volcanol 63(1):20–44Google Scholar
  30. Harris A, Bailey J, Calvari S, Dehn J (2005) Heat loss measured at a lava channel and its implications for down-channel cooling and rheology. Geol S Am S 396:125–146. CrossRefGoogle Scholar
  31. Harris AJL, Dehn J, Calvari S (2007a) Lava effusion rate definition and measurement: a review. Bull Volcanol 70(1):1–22. CrossRefGoogle Scholar
  32. Harris A, Favalli M, Mazzarini F, Pareschi MT (2007b) Best-fit results from application of a thermo-rheological model for channelized lava flow to high spatial resolution morphological data. Geophys Res Lett 34:L01301. CrossRefGoogle Scholar
  33. Harris AJL, Favalli M, Mazzarini F, Hamilton CW (2009) Construction dynamics of a lava channel. Bull Volcanol 71:459. CrossRefGoogle Scholar
  34. Harris A, Steffke A, Calvari S, Spampinato L (2011) Thirty years of satellite-derived lava discharge rates at Etna: implications for steady volumetric output. J Geophys Res 116:B8. CrossRefGoogle Scholar
  35. Harris AJL (2015) Basaltic lava flow hazard. In: Volcanic hazards, risks, and disasters. Elsevier, pp 17–46.
  36. Heliker C, Mattox TN (2003) The first two decades of the Pu‘u ‘Ō‘ō-Kupaianaha eruption: chronology and selected bibliography. In: Heliker C, Swanson DA, Takahashi TJ (eds) The Pu‘u ‘Ō‘ō-Kupaianaha eruption of Kīlauea Volcano, Hawai‘i: the first 20 years. US Geol Surv Prof Paper 1676:1–28Google Scholar
  37. Helz RT, Thornber CR (1987) Geothermometry of Kilauea Iki lava lake, Hawaii. Bull Volcanol 49:651–668. CrossRefGoogle Scholar
  38. Higgins MD (2000) Measurement of crystal size distributions. Amer Min 85:1105–1116. CrossRefGoogle Scholar
  39. Hulme G (1974) The interpretation of lava flow morphology. Geophys J Int 39(2):361–383Google Scholar
  40. Kauahikaua J, Sherrod DR, Cashman KV, Heliker C, Hon K, Mattox TN, Johnson JA (2003) Hawaiian lava-flow dynamics during the Puu Oo-Kupaianaha eruption: a tale of two decades. In: Heliker C, Swanson DA, Takahashi TJ (eds) The Pu‘u ‘Ō‘ō-Kupaianaha eruption of Kīlauea Volcano, Hawai‘i: the first 20 years. US Geol Surv Prof Paper 1676:63–87Google Scholar
  41. Kawabata E, Cronin SJ, Bebbington MS, Moufti MRH, El-Masry N, Wang T (2015) Identifying multiple eruption phases from a compound tephra blanket: an example of the AD1256 Al-Madinah eruption, Saudi Arabia. Bull Volcanol 77:6. CrossRefGoogle Scholar
  42. Kereszturi G, Németh K, Cronin SJ, Agustín-Flores J, Smith IEM, Lindsay J (2013) A model for calculating eruptive volumes for monogenetic volcanoes—implication for the quaternary Auckland volcanic field, New Zealand. J Volcanol Geoth Res 266:16–33. CrossRefGoogle Scholar
  43. Kereszturi G, Németh K, Moufti MR, Cappello A, Murcia H, Ganci G, Del Negro C, Procter J, Zahran HMA (2016) Emplacement conditions of the 1256 AD Al-Madinah lava flow field in Harrat Rahat, Kingdom of Saudi Arabia—insights from surface morphology and lava flow simulations. J Volcanol Geoth Res 309:14–30. CrossRefGoogle Scholar
  44. Kerr RC, Griffiths RW, Cashman KV (2006) Formation of channelized lava flows on an unconfined slope. J Geophys Res 111:B10206. CrossRefGoogle Scholar
  45. Kerr RC, Lyman AW (2007) Importance of surface crust strength during the flow of the 1988–1990 andesite lava of Lonquimay Volcano, Chile. J Geophys Res 112:B03209. CrossRefGoogle Scholar
  46. Kilburn CRJ, Lopes RMC (1991) General patterns of flow field growth: aa and blocky lavas. J Geophys Res 96:19721–19732. CrossRefGoogle Scholar
  47. Kolzenburg S, Giordano D, Thordarson T, Höskuldsson A, Dingwell DB (2017) The rheological evolution of the 2014/2015 eruption at Holuhraun, central Iceland. Bull Volcanol 79:45. CrossRefGoogle Scholar
  48. Kolzenburg S, Jaenicke J, Münzer U, Dingwell DB (2018) The effect of inflation on the morphology-derived rheological parameters of lava flows and its implications for interpreting remote sensing data—a case study on the 2014/2015 eruption at Holuhraun, Iceland. J Volcanol Geoth Res 357:200–212. CrossRefGoogle Scholar
  49. Krauskopf KB (1948) Lava movement at Parícutin Volcano, Mexico. Geol Soc Am Bull 59:1267–1284.[1267:LMAPVM]2.0.CO;2Google Scholar
  50. Llewellin EW, Manga M (2005) Bubble suspension rheology and implications for conduit flow. J Volcanol Geoth Res 143:205–217. CrossRefGoogle Scholar
  51. Lipman P, Banks N (1987) A’a flow dynamics, Mauna Loa 1984. In: Decker RW, Wright TL, Stauffer PH (eds) Volcanism in Hawaii. US Geol Surv Prof Paper 1350:1527–1567Google Scholar
  52. Lockwood JP, Lipman PW (1987) Holocene eruptive history of Mauna Loa Volcano. In: Decker RW, Wright TL, Stauffer PH (eds) Volcanism in Hawaii. US Geol Surv Prof Paper 1350:509–535Google Scholar
  53. Loock S, van Wyk de Vries B, Hénot J (2010) Clinker formation in basaltic and trachybasaltic lava flows. Bull Volcanol 72:859–870. CrossRefGoogle Scholar
  54. Lyman AW, Kerr RC (2006) Effect of surface solidification on the emplacement of lava flows on a slope. J Geophys Res 111:B05206. CrossRefGoogle Scholar
  55. Macdonald GA (1953) Pahoehoe, aa, and block lava. Am J Sci 251:169–191. CrossRefGoogle Scholar
  56. Mader HM, Llewellin EW, Mueller SP (2013) The rheology of two-phase magmas: a review and analysis. J Volcanol Geoth Res 257:135–158. CrossRefGoogle Scholar
  57. Maron SH, Pierce PE (1956) Application of ree-eyring generalized flow theory to suspensions of spherical particles. J Colloid Sci 11:80–95. CrossRefGoogle Scholar
  58. Mazzarini F, Pareschi MT, Favalli M, Isola I, Tarquini S, Boschi E (2005) Morphology of basaltic lava channels during the Mt. Etna September 2004 eruption from airborne laser altimeter data. Geophys Res Lett 32:L04305. CrossRefGoogle Scholar
  59. Montierth C, Johnston AD, Cashman KV (1995) An empirical glass-composition-based geothermometer for Mauna Loa lavas. In: Rhodes JM, Lockwood JP (eds) Mauna Loa revealed: structure, composition, history, and hazards. Geophysical Monograph, vol 92. Am Geophys Union, Washington, DC, pp 207–217CrossRefGoogle Scholar
  60. Moufti MR, Moghazi AM, Ali KA (2012) Geochemistry and Sr–Nd–Pb isotopic composition of the Harrat Al-Madinah volcanic field, Saudi Arabia. Gondwana Res 21:670–689. CrossRefGoogle Scholar
  61. Moufti MR, Moghazi AM, Ali KA (2013) 40Ar/39Ar geochronology of the Neogene-Quaternary Harrat Al-Madinah intercontinental volcanic field, Saudi Arabia: implications for duration and migration of volcanic activity. J Asian Earth Sci 62:253–268. CrossRefGoogle Scholar
  62. Mueller S, Llewellin EW, Mader HM (2011) The effect of particle shape on suspension viscosity and implications for magmatic flows. Geophys Res Lett 38:L13316. CrossRefGoogle Scholar
  63. Murcia H, Németh K, Moufti MR, Lindsay JM, El-Masry N, Cronin SJ, Qaddah A, Smith IEM (2014) Late Holocene lava flow morphotypes of northern Harrat Rahat, Kingdom of Saudi Arabia: implications for the description of continental lava fields. J Asian Earth Sci 84:131–145. CrossRefGoogle Scholar
  64. Murcia H, Lindsay JM, Németh K, Smith, IEM, Cronin SJ, Moufti MRH, El-Masry NN, Niedermann S (2017) Geology and geochemistry of Late Quaternary volcanism in northern Harrat Rahat, Kingdom of Saudi Arabia: implications for eruption dynamics, regional stratigraphy and magma evolution. In: Monogenetic volcanism. Geol Soc Spec Publ 446 London, pp 173–204. doi:
  65. Newman S, Lowenstern JB (2002) VolatileCalc: a silicate melt–H2O–CO2 solution model written in Visual Basic for Excel. Comput Geosci 28:597–604. CrossRefGoogle Scholar
  66. Pedersen GBM, Höskuldsson A, Dürig T, Thordarson T, Jónsdóttir I, Riishuus MS, Óskarsson BV, Dumont S, Magnusson E, Gudmundsson MT, Sigmundsson F, Drouin VJPB, Gallagher C, Askew R, Gudnason J, Moreland WM, Nikkola P, Reynolds HI, Schmith J (2017) Lava field evolution and emplacement dynamics of the 2014–2015 basaltic fissure eruption at Holuhraun, Iceland. J Volcanol Geoth Res 340:155–169. CrossRefGoogle Scholar
  67. Peltier A, Bachèlery P, Staudacher T (2009) Magma transport and storage at Piton de La Fournaise (La Réunion) between 1972 and 2007: a review of geophysical and geochemical data. J Volcanol Geoth Res 184:93–108. CrossRefGoogle Scholar
  68. Peterson DW, Tilling RI (1980) Transition of basaltic lava from pahoehoe to aa, Kilauea Volcano, Hawaii: field observations and key factors. J Volcanol Geoth Res 7:271–293. CrossRefGoogle Scholar
  69. Pinkerton H, Wilson L (1994) Factors controlling the lengths of channel-fed lava flows. Bull Volcanol 56:108–120. CrossRefGoogle Scholar
  70. Putirka KD (2008) Thermometers and barometers for volcanic systems. Rev Mineral Geochem 69:61–120. CrossRefGoogle Scholar
  71. Putirka KD, Perfit M, Ryerson FJ, Jackson MG (2007) Ambient and excess mantle temperatures, olivine thermometry, and active vs. passive upwelling. Chem Geol 241:177–206. CrossRefGoogle Scholar
  72. Rhéty M, Harris A, Villeneuve N, Gurioli L, Médard E, Chevrel O, Bachélery P (2017) A comparison of cooling-limited and volume-limited flow systems: examples from channels in the Piton de la Fournaise April 2007 lava-flow field. Geochem Geophys Geosys 18:3270–3291. CrossRefGoogle Scholar
  73. Riker JM, Cashman KV, Kauahikaua JP, Montierth CM (2009) The length of channelized lava flows: insight from the 1859 eruption of Mauna Loa Volcano, Hawai‘i. J Volcanol Geoth Res 183:139–156. CrossRefGoogle Scholar
  74. Robert B, Harris A, Gurioli L, Médard E, Sehlke A, Whittington A (2014) Textural and rheological evolution of basalt flowing down a lava channel. Bull Volcanol 76:824. CrossRefGoogle Scholar
  75. Sehlke A, Whittington A, Robert B, Harris A, Gurioli L, Médard E (2014) Pahoehoe to ‘a‘a transition of Hawaiian lavas: an experimental study. Bull Volcanol 76:876. CrossRefGoogle Scholar
  76. Shea T, Houghton BF, Gurioli L, Cashman KV, Hammer JE, Hobden BJ (2010) Textural studies of vesicles in volcanic rocks: an integrated methodology. J Volcanol Geoth Res 190:271–289. CrossRefGoogle Scholar
  77. Siebert L, Simkin T, Kimberly P (2010) Volcanoes of the world, third edn. University of California Press, Washington, DCGoogle Scholar
  78. Siebert L, Cottrell E, Venzke E, Andrews B (2015) Chapter 12–Earth’s volcanoes and their eruptions: an overview. In: Sigurdsson H (ed) The encyclopedia of volcanoes, second edn. Academic Press, Amsterdam, pp 239–255.
  79. Sisson TW, Grove TL (1993) Temperatures and H2O contents of low-MgO high-alumina basalts. Contr Mineral and Petrol 113:167–184. CrossRefGoogle Scholar
  80. Smith IEM, Németh K (2017) Source to surface model of monogenetic volcanism: a critical review. In: Monogenetic volcanism. Geol Soc Spec Publ 446 London, pp 173–204. doi:
  81. Solana MC (2012) Development of unconfined historic lava flow fields in tenerife: implications for the mitigation of risk from a future eruption. Bull Volcanol 74(10):2397–2413Google Scholar
  82. Soldati A, Beem J, Gomez F, Huntley JW, Robertson T, Whittington A (2017) Emplacement dynamics and timescale of a Holocene flow from the Cima volcanic field (CA): insights from rheology and morphology. J Volcanol Geoth Res 347:91–111. CrossRefGoogle Scholar
  83. Soldati A, Harris AJL, Gurioli L, Villeneuve N, Rhéty M, Gomez F, Whittington A (2018) Textural, thermal, and topographic constraints on lava flow system structure: the December 2010 eruption of Piton de la Fournaise. Bull Volcanol 80(10)Google Scholar
  84. Soule SA, Cashman KV, Kauahikaua JP (2004) Examining flow emplacement through the surface morphology of three rapidly emplaced, solidified lava flows, Kīlauea Volcano, Hawai’i. Bull Volcanol 66:1–14. CrossRefGoogle Scholar
  85. Stelten ME, Downs DT, Dietterich HR, Mahood GA, Calvert AT, Sisson TW, Zahran H, Shawali J (2018) Timescales of magmatic differentiation from alkali basalt to trachyte within the Harrat Rahat volcanic field, Kingdom of Saudi Arabia. Contrib Mineral Petrol 173:68. CrossRefGoogle Scholar
  86. Stevens NF (2002) Emplacement of the large andesite lava flow in the Oturere Stream valley, Tongariro Volcano, from airborne interferometric radar. New Zeal J Geol Geop 45:387–394. CrossRefGoogle Scholar
  87. Tarquini S, de’ Michieli Vitturi M (2014) Influence of fluctuating supply on the emplacement dynamics of channelized lava flows. Bull Volcanol 76:801. CrossRefGoogle Scholar
  88. Truby JM, Mueller SP, Llewellin EW, Mader HM (2015) The rheology of three-phase suspensions at low bubble capillary number. Proc R Soc A 471:20140557. CrossRefGoogle Scholar
  89. Valentine GA, Connor CB (2015) Chapter 23—Basaltic volcanic fields. In: Sigurdsson H (ed) The encyclopedia of volcanoes, second edn. Academic Press, Amsterdam, pp 423–439Google Scholar
  90. Wadge G (1981) The variation of magma discharge during basaltic eruptions. J Volcanol Geoth Res 11:139–168. CrossRefGoogle Scholar
  91. Walker GPL (1971) Compound and simple lava flows and flood basalts. Bull Volcanol 35:579–590. CrossRefGoogle Scholar
  92. Walker GPL (1973) Lengths of lava flows. Phil Trans R Soc A 274:107–118. CrossRefGoogle Scholar
  93. Walker GPL (2000) Basaltic volcanoes and volcanic systems. In: Sigurdsson H (ed) The encyclopedia of volcanoes. Academic Press, Amsterdam, pp 283–289Google Scholar
  94. Wolfe EW, Garcia MO, Jackson DB, Koyanagi RY, Neal CA, Okamura AT (1987) The Puu Oo eruption of Kilauea Volcano, episodes 1–20, January 3, 1983, to June 8, 1984. In: Decker RW, Wright TL, Stauffer PH (eds) Volcanism in Hawaii. US Geol Surv Prof Paper 1350:471–508Google Scholar

Copyright information

© This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply 2018

Authors and Affiliations

  1. 1.Alaska Volcano ObservatoryU.S. Geological SurveyAnchorageUSA
  2. 2.California Volcano ObservatoryU.S. Geological SurveyMenlo ParkUSA
  3. 3.National Center for Earthquakes and VolcanoesSaudi Geological SurveyJeddahSaudi Arabia

Personalised recommendations