Advertisement

Bulletin of Volcanology

, 80:80 | Cite as

Widespread tephra layers in the Bering Sea sediments: distal clues to large explosive eruptions from the Aleutian volcanic arc

  • A. N. Derkachev
  • V. V. PonomarevaEmail author
  • M. V. Portnyagin
  • S. A. Gorbarenko
  • N. A. Nikolaeva
  • M. I. Malakhov
  • E. A. Zelenin
  • D. Nürnberg
  • Yanguang Liu
Research Article
  • 240 Downloads

Abstract

Tephra layers within marine sediments provide information on past explosive eruptions, which is especially important in the case of remote island arcs where data on proximal pyroclastic deposits can be scarce. Three Alaska-Aleutian tephras (labeled Br2, SR2, and SR4) were found in the late Pleistocene-Holocene sediments of the Bering Sea (north Pacific). We fingerprint glass from these tephras with the help of single-shard electron microprobe and LA-ICP-MS analyses and provide microprobe data on minerals from two of these tephras. The large compositional variability of the Alaska-Aleutian volcanoes permits the use of ratios of highly incompatible trace elements (Ba/Nb, Th/Nb, Th/La, La/Nb) for identification of distal tephra sources by comparison of these ratios in tephra glass and proximal bulk rock analyses. This method, along with mapped tephra dispersal, has allowed us to link tephras under study to Aniakchak, Semisopochnoi, and Okmok volcanoes, respectively. Our results indicate that tephra Br2 was derived from the ~ 3.6 ka Aniakchak II caldera-forming eruption (Alaska, USA). This is the first ever finding of the Aniakchak II tephra in Bering Sea sediments, which permits enlargement of its tephra volume and eruption magnitude to ~ 100 km3 and 6.8, respectively. Tephra SR2, dated at ~ 12.2 ka, is likely associated with a post-glacial caldera on the Semisopochnoi Island, Aleutians (USA). Tephra SR4 (dated at ~ 64.5 ka), likely was derived from an earlier undocumented eruption from Okmok volcano (Aleutians). All three regionally spread tephra layers are valuable isochrones, which can be used for correlating and dating of Bering Sea sediments.

Keywords

North Pacific Late Quaternary Marine tephrochronology Volcanic glass chemistry Electron microprobe LA-ICP-MS 

Notes

Acknowledgements

The tephra samples were obtained during cruises: (i) SO201-2 KALMAR (grant # 03G0672A and B) and SO249 BERING of R/V Sonne funded by the German Federal Ministry for Education and Research (BMBF), (ii) Lv63 of R/V Akademik Lavrentiev supported by grants #41420104005 and #40710069004 from the National Natural Science Foundation of China (NSFC). We acknowledge the GEOMAR Helmholtz Centre for Ocean Research Kiel for funding analytical studies and thank Mario Thöner (GEOMAR) for his assistance with EPMA, and Dieter Garbe-Schönberg and Ulrike Westernströer (both at Kiel University) for their assistance with LA-ICP-MS analyses. Visits by A.D. to Kiel for tephra analyses were funded by the Russian Foundation for Basic Research (RFBR) grant #11-05-00506 and the cooperative NSFC-RFBR grant #16-55-53048. We are grateful to Gene Yogodzinski for sharing his compilation of geochemical data on Aleutian rocks. Work on the manuscript was funded by the Russian Science Foundation grant #16-17-10035. We thank Kristi Wallace, Richard Brown, and Andrew Harris for their useful comments and English editing that substantially improved the quality of this manuscript.

Supplementary material

445_2018_1254_MOESM1_ESM.xlsx (13 kb)
Online Resource 1 (XLSX 12 kb)
445_2018_1254_MOESM2_ESM.xlsx (335 kb)
Online Resource 2 (XLSX 335 kb)
445_2018_1254_MOESM3_ESM.xlsx (33 kb)
Online Resource 3 (XLSX 33 kb)
445_2018_1254_MOESM4_ESM.xlsx (110 kb)
Online Resource 4 (XLSX 109 kb)
445_2018_1254_MOESM5_ESM.kml (40 kb)
Online Resource 5 (KML 39 kb)

References

  1. Alekseeva TN, Murdmaa IO, Ivanova EV, Ovsepyan EA, Kuz’mina TG, Seitkalieva EA (2015) Sedimentation in the submarine Shirshov ridge area (Bering Sea) during the last 180–185 ka (Penultimate glaciation-Holocene). Lithol Miner Resour 50(5):341–360CrossRefGoogle Scholar
  2. Alloway BV, Pillans BJ, Carter L, Naish TR, Westgate JA (2005) Onshore–offshore correlation of Pleistocene rhyolitic eruptions from New Zealand: implications for TVZ eruptive history and paleoenvironmental construction. Quat Sci Rev 24:1601–1622.  https://doi.org/10.1016/j.quascirev.2004.07.026 CrossRefGoogle Scholar
  3. Aoki K, Asahi H, Nagatsuma Y, Kurihara K, Fukuoka T, Sakamoto T, Iijima I (2012) Geochemical characters of Quaternary tephra beds and their stratigraphic position in the sedimentary core drilled at the site U1343 in the central Bering Sea. AGU Fall Meeting, San Francisco, CA, pp 3–7 December 2012. Abstract #V43B-2828Google Scholar
  4. Arculus RJ (2003) Use and abuse of the terms calcalkaline and calcalkalic. J Petrol 44(5):929–935CrossRefGoogle Scholar
  5. Bindeman IN, Fournelle JH, Valley JW (2001) Low-δ 18 O tephra from a compositionally zoned magma body: Fisher caldera, Unimak Island, Aleutians. J Volcanol Geotherm Res 111:35–53.  https://doi.org/10.1016/S0377-0273(01)00219-0 CrossRefGoogle Scholar
  6. Blockley SP, Bourne AJ, Brauer A, Davies SM, Hardiman M, Harding PR et al (2014) Tephrochronology and the extended intimate (integration of ice-core, marine and terrestrial records) event stratigraphy 8-128 ka b2k. Quat Sci Rev 106:88–100CrossRefGoogle Scholar
  7. Braitseva OA, Ponomareva VV, Sulerzhitsky LD, Melekestsev IV, Bailey J (1997) Holocene key-marker tephra layers in Kamchatka Russia. Quat Res 47(2):125–139CrossRefGoogle Scholar
  8. Cameron CE and Nye CJ (2014) Preliminary database of Quaternary vents in Alaska: Alaska Division of Geological & Geophysical Surveys Miscellaneous Publication 153, 11 p. doi: https://doi.org/10.14509/27357
  9. Cameron CE, Snedigar SF, Nye CJ (2014) Alaska Volcano Observatory Geochemical Database: Alaska Division of Geological & Geophys Surv Digital Data Series 8, https://www.avo.alaska.edu/geochem/index.php, doi: https://doi.org/10.14509/29120
  10. Carson EC, Fournelle JH, Miller TP, Mickelson DM (2002) Holocene tephrochronology of the Cold Bay area, Southwest Alaska peninsula. Quat Sci Rev 21:2213–2228.  https://doi.org/10.1016/S0277-3791(02)00023-9 CrossRefGoogle Scholar
  11. Cook E, Portnyagin M, Ponomareva V, Bazanova L, Svensson A, Garbe-Schönberg D (2018) First identification of cryptotephra from the Kamchatka peninsula in a Greenland ice core: implications of a widespread marker deposit that links Greenland to the Pacific northwest. Quat Sci Rev 181:200–206.  https://doi.org/10.1016/j.quascirev.2017.11.036 CrossRefGoogle Scholar
  12. Coombs ML, Larsen JF, Neal CA (2018) Postglacial eruptive history and geochemistry of Semisopochnoi volcano, western Aleutian Islands. Alaska: US Geological Survey Scientific Investigations Report 2017–5150:33.  https://doi.org/10.3133/sir20175150 CrossRefGoogle Scholar
  13. Costa A, Smith V, Macedonio G, Matthews N (2014) The magnitude and impact of the youngest Toba Tuff super-eruption. Front Earth Sci 2. doi: https://doi.org/10.3389/feart.2014.00016
  14. Coulter SE, Pilcher JR, Plunkett G, Baillie M, Hall VA, Steffensen JP, Vinther BM, Clausen HB, Johnsen SJ (2012) Holocene tephras highlight complexity of volcanic signals in Greenland ice cores. J Geophys Res-Atmos 117(D21), 16):D21303.  https://doi.org/10.1029/2012JD017698 CrossRefGoogle Scholar
  15. Creager JS, Scholl DW (1973) Initial reports of the deep sea drilling project, V.19. Washington (US Government Printing Office):913Google Scholar
  16. Davies SM (2015) Cryptotephras: the revolution in correlation and precision dating. J Quat Sci 30:114–130.  https://doi.org/10.1002/jqs.2766 CrossRefGoogle Scholar
  17. Davies LJ, Jensen BJL, Froese DG, Wallace KL (2016) Late Pleistocene and Holocene tephrostratigraphy of interior Alaska and Yukon: key beds and chronologies over the past 30,000 years. Quat Sci Rev 146:28–53CrossRefGoogle Scholar
  18. Delong SE, Perfit MR, McCulloch MT, Ach J (1985) Magmatic evolution of Semisopochnoi Island, Alaska: trace-element and isotopic constraints. J Geol 93(5):609–618.  https://doi.org/10.1086/628985 CrossRefGoogle Scholar
  19. Derkachev AN, Portnyagin MV, Ponomareva VV, Gorbarenko SA, Malakhov MI, Nikolaeva NA, Nürnberg D, Shi Xuefa, Liu Yanguang (2015) Marker tephra layers of large explosive eruptions from volcanoes of Aleutian Islands and Alaska in Quaternary deposits of the Bering Sea. Geology of Seas and Oceans Proc XXI Int Conf on Marine Geol Moscow, Russia, November 16–20, 2015, vol I, 107–111 (in Russian) http://geoschool.ocean.ru/index.php/materialy/2017.html
  20. Dullo WC, Baranov B, van den Bogaard C (2009) FS Sonne Fahrtbericht/cruise report SO201-2 KALMAR: Kurile-Kamchatka and ALeutian MARginal sea-island arc systems: geodynamic and climate interaction in space and time. Busan/Korea-Tomakomai/Japan 3008-0810:2009 http://oceanrepgeomarde/7135/1/945_Dullo_2009_FsSonneFahrtberichtCruise_Monogr_pubid12967pdf Google Scholar
  21. Elliott T, Plank T, Zindler A, White W, Bourdon B (1997) Element transport from slab to volcanic front at the Mariana arc. J Geophys Res 102(B7):14991–15019CrossRefGoogle Scholar
  22. Expedition 323 Scientists (2010) Bering Sea paleoceanography: Pliocene–Pleistocene paleoceanography and climate history of the Bering Sea. IODP Prel Rept 323 doi: https://doi.org/10.2204/iodp.pr.323.2010
  23. Finney B, Turner S, Hawkesworth C, Larsen J, Nye C, George R, Bindeman I, Eichelberger J (2008) Magmatic differentiation at an island-arc caldera: Okmok volcano, Aleutian Islands, Alaska. J Petrol 49(5):857–884CrossRefGoogle Scholar
  24. GEOROC (Geochemistry of Rocks of the Oceans and Continents), http://www.georocmpch-mainzgwdgde/georoc/
  25. Gersonde R (2012) The expedition of the research vessel “Sonne” to the Subpolar North Pacific and the Bering Sea in 2009 (SO202-INOPEX), in: Reports on Polar and Marine Research. Alfred Wegener Institute, Bremerhaven, p 323Google Scholar
  26. Gill JB (1981) Orogenic andesites and plate tectonics. Springer-Verlag, Berlin-Heidelberg, p 390CrossRefGoogle Scholar
  27. Gorbarenko SA, Artyomova AV (2003) Chronostratigraphy of the Upper Quaternary sediments of the northwestern Pacific and the Bering Sea, change of the environment and productivity of the region. Tikhookeanskaya Geologiya (Pacific Geology) 22(5):23–38 (in Russian)Google Scholar
  28. Gorbarenko SA, Basov IA, Chekhovskaya MP, Southon J (2005) Orbital and millennium scale environmental changes in the southern Bering Sea during last glacial–Holocene: geochemical and paleontological evidences. Deep-Sea Research II 52:2174–2185CrossRefGoogle Scholar
  29. Gorbarenko SA, Wang P, Wang R, Cheng X (2010) Orbital and suborbital environmental changes in the southern Bering Sea during last 50 kyr. Palaeogeogr Palaeoclimatol Palaeoecol 286:97–106.  https://doi.org/10.1016/j.palaeo.2009.12.014 CrossRefGoogle Scholar
  30. Graham RW, Belmecheri S, Choy K, Culleton BJ, Davies LJ, Froese D, Heintzman PD, Hritz C, Kapp JD, Newsom LA, Rawcliffe R (2016) Timing and causes of mid-Holocene mammoth extinction on St. Paul Island, Alaska. P Nat Acad Sci USA 113:9310–9314.  https://doi.org/10.1073/pnas.1604903113 CrossRefGoogle Scholar
  31. Harada N (ed) (2006) Cruise report, MR06–04, leg 1 and 2. JAMSTEC, Japan http://www.godac.jamstec.go.jp/catalog/data/doc_catalog/media/MR06-04_leg1-2_all.pdf Google Scholar
  32. Hart SR, Staudigel H (1982) The control of alkalies and uranium in seawater by ocean crust alteration. Earth Planet Sci Lett 58:202–212CrossRefGoogle Scholar
  33. Jarosewich EJ, Nelen JA, Norberg JA (1980) Reference samples for electron microprobe analysis. Geostand Newslett 4(1):43–47CrossRefGoogle Scholar
  34. Jennings A, Thordarson T, Zalzal K, Stoner J, Hayward C, Geirsdóttir Á, Miller G (2014) Holocene tephra from Iceland and Alaska in SE Greenland shelf sediments. Geol Soc London Spec Pub - Marine Tephrochronol 398(1):157–193CrossRefGoogle Scholar
  35. Jensen BJL, Froese DG, Preece SJ, Westgate JA, Stachel T (2008) An extensive middle to Late Pleistocene tephrochronologic record from east-Central Alaska. Quat Sci Rev 27(3–4):411–427CrossRefGoogle Scholar
  36. Jensen BJL, Preece SJ, Lamothe M, Pearce NJG, Froese DG, Westgate JA, Schaefer J, Begét J (2011) The variegated (VT) tephra: a new regional marker for middle to late marine isotope stage 5 across Yukon and Alaska. Quat Int 246(1–2):312–323CrossRefGoogle Scholar
  37. Jensen BJL, Reyes AV, Froese DG, Stone DB (2013) The palisades is a key reference site for the middle Pleistocene of eastern Beringia: new evidence from paleomagnetics and regional tephrostratigraphy. Quat Sci Rev 63:91–108CrossRefGoogle Scholar
  38. Jochum KP, Stoll B, Herwig K, Willbold M, Hofmann AW, Amini M, Aarburg S, Abouchami W, Hellebrand E, Mocek B, Raczek I (2006) MPI-DING reference glass for in situ microanalysis: new reference values for element concentrations and isotope ratios. Geochem Geophys Geosyst 7:Q02008.  https://doi.org/10.1029/2005GC001060 CrossRefGoogle Scholar
  39. Jochum KP, Nohl U (2008) Reference materials in geochemistry and environmental research and the GeoReM database. Chem Geol 253(1):50–53.  https://doi.org/10.1016/j.chemgeo.2008.04.002 CrossRefGoogle Scholar
  40. Katoh S, Nagaoka S, WoldeGabriel G, Renne P, Snow MG, Beyene Y, Suwa G (2000) Chronostratigraphy and correlation of the Plio-Pleistocene tephra layers of the Konso formation, southern main Ethiopian rift, Ethiopia. Quat Sci Rev 19(13):1305–1317.  https://doi.org/10.1016/S0277-3791(99)00099-2 CrossRefGoogle Scholar
  41. Kaufman DS, Jensen BJL, Reyes AV, Schiff CJ, Froese DG, Pearce NJG (2012) Late Quaternary tephrostratigraphy, Ahklun Mountains, SW Alaska. J Quat Sci 27:344–359.  https://doi.org/10.1002/jqs.1552 CrossRefGoogle Scholar
  42. Kay SM, Kay RW (1994) Aleutian magmas in space and time. In: Plafker G, Berg HC (eds) The geology of Alaska, Geological Society of America, doi: https://doi.org/10.1130/DNAG-GNA-G1.687
  43. Kelemen PB, Hangøj K, Greene AR (2003a) One view of the geochemistry of subduction-related magmatic arcs, with an emphasis on primitive andesite and lower crust. In: Treatise on geochemistry, vol 3 Elsevier, pp 593–659Google Scholar
  44. Kelemen PB, Yogodzinski GM, Scholl DW (2003b) Along-strike variations in the Aleutian Island arc: genesis of high Mg# andesite and implications for continental crust. In: Inside the subduction Factory, Geophysical Monograph 138, American Geophysical Union, pp 223–276Google Scholar
  45. Kuehn H, Lembke-Jene L, Gersonde R, Esper O, Lamy F, Arz H, Kuhn G, Tiedemann R (2014) Laminated sediments in the Bering Sea reveal atmospheric teleconnections to Greenland climate on millennial to decadal timescales during the last deglaciation. Clim Past 10(6):2215–2236CrossRefGoogle Scholar
  46. Kutterolf S, Freundt A, Perez W, Morz T, Schacht U, Wehrmann H, Schmincke HU (2008a) Pacific offshore record of plinian arc volcanism in Central America: 1 along-arc correlations. Geochem Geophy Geosy 9. doi: https://doi.org/10.1029/2007gc001631 Google Scholar
  47. Kutterolf S, Freundt A, Perez W (2008b) Pacific offshore record of plinian arc volcanism in Central America: 2 tephra volumes and erupted masses. Geochem Geophy Geosy 9. doi: https://doi.org/10.1029/2007gc001791 Google Scholar
  48. Kyle PR, Ponomareva VV, Schluep RR (2011) Geochemical characterization of marker tephra layers from major Holocene eruptions, Kamchatka peninsula, Russia. Int Geol Rev 53(9):1059–1097.  https://doi.org/10.1080/00206810903442162 CrossRefGoogle Scholar
  49. Larsen JF, Neal CA, Schaefer JG, Beget J, Nye CJ (2007) Late Pleistocene and Holocene caldera-forming eruptions of Okmok caldera, Aleutian Islands, Alaska. In: Eichelberger J, Gordeev E, Izbekov P, Kasahara M, Lees J (Eds), Volcanism and subduction: the Kamchatka region, American Geophysical Union, Geophys Monograph Ser 172: 343–364Google Scholar
  50. Larsen JF, Śliwiński MG, Nye C, Cameron C, Schaefer JR (2013) The 2008 eruption of Okmok volcano, Alaska: petrological and geochemical constraints on the subsurface magma plumbing system. J Volcanol Geotherm Res 264:85–106CrossRefGoogle Scholar
  51. Le Bas MJ, Le Maitre RW, Streckeisen A, Zanettin B (1986) A chemical classification of volcanic-rocks based on the total alkali-silica diagram. J Petrol 27(3):745–750CrossRefGoogle Scholar
  52. Legros F (2000) Minimum volume of a tephra fallout deposit estimated from a single isopach. J Volcanol Geotherm Res 96(1–2):25–32CrossRefGoogle Scholar
  53. Lowe DJ (2011) Tephrochronology and its application: a review. Quat Geochronol 6(2):107–153CrossRefGoogle Scholar
  54. Lowe DJ, Pearce NJ, Jorgensen MA, Kuehn SC, Tryon CA, Hayward CL (2017) Correlating tephras and cryptotephras using glass compositional analyses and numerical and statistical methods: review and evaluation. Quat Sci Rev 175:1–44CrossRefGoogle Scholar
  55. Mason BG, Pyle DM, Oppenheimer C (2004) The size and frequency of the largest explosive eruptions on earth. Bull Volcanol 66(8):735–748.  https://doi.org/10.1007/s00445-004-0355-9 CrossRefGoogle Scholar
  56. Max L, Riethdorf JR, Tiedemann R, Smirnova M, Lembke-Jene L, Fahl K, Nürnberg D, Matul A, Mollenhauer G (2012) Sea surface temperature variability and sea-ice extent in the subarctic Northwest Pacific during the past 15,000 years. Paleoceanogr Paleoceanol 27(3).  https://doi.org/10.1029/2012PA002292 CrossRefGoogle Scholar
  57. McDonough WF, Sun S-S (1995) The composition of the earth. Chem Geol 120:223–253CrossRefGoogle Scholar
  58. Miller TP, Smith RL (1987) Late Quaternary caldera-forming eruptions in the eastern Aleutian arc, Alaska. Geology 15(5):434–438CrossRefGoogle Scholar
  59. Miyashiro A (1975) Volcanic rock series and tectonic setting. Annu Rev Earth Planet Sci 3(1):251–269CrossRefGoogle Scholar
  60. Moll-Stalcup EJ (1994) Latest cretaceous and Cenozoic magmatism in mainland Alaska in: Plafker G, Berg HC (eds) the geology of Alaska: Boulder, Colorado, Geological Society of America, The Geology of North America, Volume G-1, pp 589–619Google Scholar
  61. Neal CA, Larsen JF, Schaefer J (2009) The July-August 2008 hydrovolcanic eruption of Okmok volcano, Umnak Island, Alaska. Alaska Geol Soc Newslett 39(5):1–3Google Scholar
  62. Newhall CG, Self S (1982) The volcanic explosivity index (VEI) an estimate of explosive magnitude for historical volcanism. J Geophys Res Oceans 87(C2):1231–1238CrossRefGoogle Scholar
  63. Nye CJ, Begét JE, Layer PW, Mangan MT, McConnell VS, McGimsey RG, Miller TP, Moore RB, Stelling PL (2018) Geochemistry of some quaternary lavas from the Aleutian Arc and Mt Wrangell: Alaska Division of Geological & Geophysical Surveys Raw Data File 2018–1, 29 doi: https://doi.org/10.14509/29843
  64. Pearce JA, Parkinson IJ (1993) Trace element models for mantle melting: application to volcanic arc petrogenesis in: Prichard HM, Alabaster T, Harris NB, Neary CR (eds) magmatic processes and plate tectonics, vol 76 geological society special publication, pp 373–403CrossRefGoogle Scholar
  65. Pearce C, Varhelyi A, Wastegård S, Muschitiello F, Barrientos N, O’Regan M, Cronin TM, Gemery L, Semiletov I, Backman J, Jakobsson M (2017) The 36 ka Aniakchak tephra in the Arctic Ocean: a constraint on the Holocene radiocarbon reservoir age in the Chukchi Sea. Clim Past 13(4):303–316CrossRefGoogle Scholar
  66. Pearce NJG, Westgate JA, Preece SJ, Eastwood WJ, Perkins WT (2004) Identification of Aniakchak (Alaska) tephra in Greenland ice core challenges the 1645 BC date for Minoan eruption of Santorini. Geochem Geophys Geosyst 5(3):Q03005.  https://doi.org/10.1029/2003GC000672 CrossRefGoogle Scholar
  67. Plunkett G, Coulter SE, Ponomareva VV, Blaauw M, Klimaschewski A, Hammarlund D (2015) Distal tephrochronology in volcanic regions: challenges and insights from Kamchatkan lake sediments. Glob Planet Chang 134:26–40.  https://doi.org/10.1016/j.gloplacha.2015.04.006 CrossRefGoogle Scholar
  68. Ponomareva V, Portnyagin M, Derkachev A, Juschus O, Garbe-Schönberg D, Nürnberg D (2013a) Identification of a widespread Kamchatkan tephra: a middle Pleistocene tie-point between Arctic and Pacific paleoclimatic records. Geophys Res Lett 40(14):3538–3543.  https://doi.org/10.1002/grl.50645 CrossRefGoogle Scholar
  69. Ponomareva V, Portnyagin M, Derkachev A, Pendea IF, Bourgeois J, Reimer PJ, Garbe-Schönberg D, Krasheninnikov S, Nürnberg D (2013b) Early Holocene M~6 explosive eruption from Plosky volcanic massif (Kamchatka) and its tephra as a link between terrestrial and marine paleoenvironmental records. Int J Earth Sci 102:1673–1699.  https://doi.org/10.1007/s00531-013-0898-0 CrossRefGoogle Scholar
  70. Ponomareva V, Portnyagin M, Pevzner M, Blaauw M, Kyle P, Derkachev A (2015a) Tephra from andesitic Shiveluch volcano, Kamchatka, NW Pacific: chronology of explosive eruptions and geochemical fingerprinting of volcanic glass. Int J Earth Sci 104(5):1459–1482CrossRefGoogle Scholar
  71. Ponomareva V, Portnyagin M, Davies S (2015b) Tephra without borders: far-reaching clues into past explosive eruptions. Front Earth Sci/Volcanol 3:83.  https://doi.org/10.3389/feart.2015.00083 CrossRefGoogle Scholar
  72. Ponomareva V, Portnyagin M, Pendea F, Zelenin E, Bourgeois J, Pinegina T, Kozhurin A (2017) A full Holocene tephrochronology for the Kamchatsky peninsula region: applications from Kamchatka to North America. Quat Sci Rev 168:101–122.  https://doi.org/10.1016/j.quascirev.2017.04.031 CrossRefGoogle Scholar
  73. Ponomareva V, Polyak L, Portnyagin M, Abbott P, Zelenin E, Vakhrameeva P, Garbe-Schönberg D (2018) Holocene tephra from the Chukchi-Alaskan margin. Arctic Ocean: Implications for sediment chronostratigraphy and volcanic history Quat Geochronol 45:85–97.  https://doi.org/10.1016/j.quageo.2017.11.001 CrossRefGoogle Scholar
  74. Preece SJ, Westgate JA, Stemper BA, Pewe TL (1999) Tephrochronology of Late Cenozoic loess at Fairbanks. Central Alaska Geol Soc Am Bull 111(1):71–90CrossRefGoogle Scholar
  75. Preece SJ, Pearce NJG, Westgate JA, Froese DG, Jensen BJL, Perkins WT (2011a) Old crow tephra across eastern Beringia: a single cataclysmic eruption at the close of marine isotope stage 6. Quat Sci Rev 30:2069–2090.  https://doi.org/10.1016/j.quascirev.2010.04.020 CrossRefGoogle Scholar
  76. Preece SJ, Westgate JA, Froese DG, Pearce NJG, Perkins WT (2011b) A catalogue of late Cenozoic tephra beds in the Klondike goldfields and adjacent areas, Yukon territory. Yukon geological survey contribution 010. Can J Earth Sci 48:1386–1418.  https://doi.org/10.1139/e10-110 CrossRefGoogle Scholar
  77. Pyle DM (1995) Mass and energy budgets of explosive volcanic eruptions. Geophys Res Lett 22:563–566.  https://doi.org/10.1029/95GL00052 CrossRefGoogle Scholar
  78. Pyne-O'Donnell SDF, Hughes PDM, Froese DG, Jensen BJL, Kuehn SC, Mallon G, Amesbury MJ, Charman DJ, Daley TJ, Loader NJ, Mauquoy D, Street-Perrott FA, Woodman-Ralph J (2012) High-precision ultra-distal Holocene tephrochronology in North America. Quat Sci Rev 52:6–11.  https://doi.org/10.1016/j.quascirev.2012.07.024 CrossRefGoogle Scholar
  79. Rawson H, Naranjo JA, Smith V, Fontijn K, Pyle DM, Mather TA et al (2015) The frequency and magnitude of post-glacial explosive eruptions at Volcán Mocho-Choshuenco, southern Chile. J Volcanol Geotherm Res 299:103–129.  https://doi.org/10.1016/j.jvolgeores.2015.04.003 CrossRefGoogle Scholar
  80. Reeder JW (1990) Sugarloaf. Annual report of the world volcanic eruptions in 1987. Bulletin of Vol Erup 27:36Google Scholar
  81. Riethdorf J-R, Nürnberg D, Max L, Tiedemann R, Gorbarenko SA, Malakhov MI (2013) Millennial scale variability of marine productivity and terrigenous matter supply in the western Bering Sea over the past 180 kyr. Clim Past 9(3):1345–1373.  https://doi.org/10.5194/cp-9-1345-2013 CrossRefGoogle Scholar
  82. Rocholl A (1998) Major and trace element composition and homogeneity of microbeam reference material: basalt glass USGS BCR-2G. Geostandards Newslett: J Geostandards and Geoanalysis 22:33–45CrossRefGoogle Scholar
  83. Seliverstov NI, Gavrilenko GM, Kir'yanov VY (1989) Signs of the recent activity of the submarine Piip volcano, Komandorsky Basin. Vulkanologia i Seysmologia (Volcanology and Seismology) 6:3–18 (in Russian)Google Scholar
  84. Shane PA (2000) Tephrochronology: a New Zealand case study. Earth Sci Rev 49(1–4):223–259CrossRefGoogle Scholar
  85. Shane P, Wright IC (2011) Late Quaternary tephra layers around Raoul and Macauley Islands, Kermadec arc: implications for volcanic sources, explosive volcanism and tephrochronology. J Quat Sci 26:422–432.  https://doi.org/10.1002/jqs.1468 CrossRefGoogle Scholar
  86. Takahashi K, Ravelo AC, Alvarez Zarikian CA and the Expedition 323 Scientists (2011) Proc IODP, 323: Tokyo (Integrated Ocean Drilling Program Manag Int, Inc) doi: https://doi.org/10.2204/iodp.proc.323.2011
  87. Wallace KL, Hayden LA, Neal CA (2017) Major-element glass compositions of tephra from the circa 36 ka eruption of Aniakchak volcano, Alaska peninsula. Alaska: Alaska Division of Geological & Geophysical Surveys Raw Data File 2017-9:9.  https://doi.org/10.14509/29777 CrossRefGoogle Scholar
  88. Werner R, Hoernle K, Hauff F, Portnyagin M, Yogodzinski G, Ziegler A (2016) RV SONNE Fahrtbericht / Cruise Report SO249 BERING – Origin and Evolution of the Bering Sea: An Integrated Geochronological, Volcanological, Petrological and Geochemical Approach In, vol GEOMAR Research Centre for Ocean Research Kiel, Kiel, pp 451Google Scholar
  89. Westgate JA, Preece SJ, Kotler E, Hall S (2000) Dawson tephra; a prominent stratigraphic marker of Late Wisconsinan age in west-central Yukon, Canada. Can J Earth Sci 37(4):621–627CrossRefGoogle Scholar
  90. Wirth KR, Grandy J, Kelley K, Sadofsky S (2002) Evolution of crust and mantle beneath the Bering Sea region: evidence from xenoliths and the late Cenozoic basalts. In: Miller EL, Grantz A, Klemperer SL (eds) Tectonic evolution of the Bering shelf - Chukchi Sea- Arctic margin and adjacent landmasses, vol 360. Geological Society of America Special Paper, Boulder, Colorado, pp 167–193Google Scholar
  91. Wood, ChA, Kienle J (Eds) (1990) Volcanoes of North America: United States and Canada Cambridge University PressGoogle Scholar
  92. Yogodzinski GM, Volynets ON, Koloskov AV, Seliverstov NI, Matvenkov VV (1994) Magnesian andesites and the subduction component in a strongly calc-alkaline series at Piip volcano, Far Western Aleutians. J Petrol 35(1):163–204CrossRefGoogle Scholar
  93. Yogodzinski GM, Brown ST, Kelemen PB, Vervoort JD, Portnyagin M, Sims KWW, Hoernle K, Jicha BR, Werner R (2015) The role of subducted basalt in the source of island arc magmas: evidence from seafloor lavas of the Western Aleutians. J Petrol 56(3):441–492.  https://doi.org/10.1093/petrology/egv006 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.V.I. Il’ichev Pacific Oceanological InstituteVladivostokRussia
  2. 2.Institute of Volcanology and SeismologyPetropavlovsk-KamchatskyRussia
  3. 3.GEOMAR Helmholtz Centre for Ocean Research KielKielGermany
  4. 4.V.I. Vernadsky Institute of Geochemistry and Analytical ChemistryMoscowRussia
  5. 5.North-East Interdisciplinary Science Research InstituteMagadanRussia
  6. 6.Geological InstituteMoscowRussia
  7. 7.First Institute of Oceanography, SOAQingdaoChina

Personalised recommendations