Advertisement

Bulletin of Volcanology

, 80:74 | Cite as

Textural, thermal, and topographic constraints on lava flow system structure: the December 2010 eruption of Piton de la Fournaise

  • A. Soldati
  • A. J. L. Harris
  • L. Gurioli
  • N. Villeneuve
  • M. Rhéty
  • F. Gomez
  • A. Whittington
Research Article

Abstract

In this study, we examine the channel-fed ‘a‘ā lava flow system that was emplaced during a very short (less than 15 h long) eruption at Piton de la Fournaise (La Réunion) in December 2010. The system had four branches, the longest of which was 1100 m long. Three branches were emplaced over a smooth-surfaced pāhoehoe flow field with a vertical relief of 1–2 m and did not undergo burial by subsequent events. The fourth branch erupted from the same vent as the 1957 eruption and re-used the pre-existing channels of that eruption. In the proximal–medial sections of the three systems that were unconfined, we identified channelized flow sections that were characterized by the presence of either a single channel or multiple braided channels. These fed short (30–260 m long) zones of dispersed flow in the distal sections. We subsequently investigated the role of lava rheology (as controlled by downflow variations in crystal and bubble content) and pre-existing topography in triggering the transitions between single-channel and braided channel flow sections. Crystal content was 10 to 70 vol% and vesicle content was 18 to 55 vol%; cooling rates over distance (derived from glass chemistry) were 11 °C/km to 27 °C/km. However, downflow textural and thermal evolution appeared to neither affect, nor be affected by, whether the channel was single or braided. Instead, the channel network architecture could be related to even modest underlying slope variations. Here, a slope increase resulted in channel confluence, and a slope decrease resulted in channel bifurcation. This process was reversible, in that downflow slope variation could drive the channel network architecture to switch back and forth between a single channel and multiple braided channels several times along its length. Dispersed flow is always present immediately behind the flow front, irrespective of underlying topography. Three previous studies of basaltic lava flows found that steeper slopes favored braided channels, the opposite of what was observed here. We suggest that the underlying substrate and lava type may exert a control on this behavior, but further studies remain necessary.

Keywords

‘A‘ā lava flow Channel network Stable channel Braided flow Dispersed flow Underlying slope Cooling Crystallization 

Notes

Acknowledgements

We wish to thank the reviewers, E. Rumpf and S. Tarquini, the Editor, H. Dietterich, and the Deputy Executive Editor, J. Taddeucci, for their constructive feedback.

Funding information

This research was funded by National Geographic Young Explorer grant #9817-15 to A.S. and Chateaubriand STEM Fellowship of the Office for Science and Technology of the Embassy of France in the United States to A.S. This research was also supported by the National Science Foundation grant EAR-1220051 to AW. The field work of L.G. in 2013 was supported by the “Action Incitative_2013” of OPGC. We thank the STRAP project funded by the Agence Nationale de la Recherche (ANR-14-CE03-0004-04). This research was financed by the French Government Laboratory of Excellence initiative no. ANR-10-LABX-0006, the Région Auvergne, and the European Regional Development Fund. This is Laboratory of Excellence Clervolc contribution number 310.

Supplementary material

445_2018_1246_MOESM1_ESM.docx (106 kb)
Supplementary Table 1 Flow dimensions and underlying terrain slope. (DOCX 105 kb)
445_2018_1246_MOESM2_ESM.docx (99 kb)
Supplementary Table 2 Glass EPMA major elements analyses. (DOCX 98 kb)
445_2018_1246_MOESM3_ESM.docx (99 kb)
Supplementary Table 3 Olivine EPMA major elements analyses. (DOCX 99 kb)
445_2018_1246_MOESM4_ESM.docx (85 kb)
Supplementary Table 4 Pyroxene EPMA major elements analyses. (DOCX 85 kb)
445_2018_1246_MOESM5_ESM.docx (118 kb)
Supplementary Table 5 Plagioclase EPMA major elements analyses. (DOCX 117 kb)

References

  1. Albarède F, Luais B, Fitton G, Semet M, Kaminski E, Upton BG, Bachèlery P, Cheminée JL (1997) The geochemical regimes of Piton de la Fournaise volcano (Réunion) during the last 530 000 years. J Petrol 38(2):171–201.  https://doi.org/10.1093/petroj/38.2.171 CrossRefGoogle Scholar
  2. Bachèlery P, Lénat JF, Di Muro A, Michon L (2016), Active volcanoes of the Southwest Indian Ocean: Piton de la Fournaise and Karthala. Active volcanoes of the world. Springer-Verlag, Berlin and Heidelberg 1–428.  https://doi.org/10.1007/978-3-642-31395-0_12
  3. Bailey JE, Harris AJ, Dehn J, Calvari S, Rowland SK (2006) The changing morphology of an open lava channel on Mt. Etna. Bull Volcanol 68(6):497–515Google Scholar
  4. Cashman KV, Thornber C, Kauahikaua JP (1999) Cooling and crystallization of lava in open channels, and the transition of Pāhoehoe lava to ‘a‘ā. Bull Volcanol 61(5):306–323.  https://doi.org/10.1007/s004450050299 CrossRefGoogle Scholar
  5. Coppola D, Villeneuve N, Di Muro A, Ferrazzini V, Peltier A, Favalli M, Bachèlery P, Gurioli L, Harris A, Moune S, Vlastélic I, Galle B, Arellano S, Aiuppa A (2017) A shallow system rejuvenation and magma discharge trends at Piton de la Fournaise volcano (La Réunion Island). Earth Planet Sci Lett 463:13–24.  https://doi.org/10.1016/j.epsl.2017.01.024 CrossRefGoogle Scholar
  6. Costa A, Caricchi L, Bagdassarov N (2009) A model for the rheology of particle‐bearing suspensions and partially molten rocks. Geochem Geophys 10(3)Google Scholar
  7. Crisp J, Baloga S (1994) Influence of crystallization and entrainment of cooler material on the emplacement of basaltic ‘a‘ā lava flows. J Geophys Res Solid Earth 99(B6):11819–11831.  https://doi.org/10.1029/94JB00134 CrossRefGoogle Scholar
  8. Crisp J, Cashman KV, Bonini JA, Hougen SB, Pieri DC (1994) Crystallization history of the 1984 Mauna Loa lava flow. J Geophys Res Solid Earth 99(B4):7177–7198Google Scholar
  9. Del Gaudio P, Ventura G, Taddeucci J (2013) The effect of particle size on the rheology of liquid-solid mixtures with application to lava flows: results from analogue experiments. Geochem Geophys Geosyst 14(8):2661–2669.  https://doi.org/10.1002/ggge.20172 CrossRefGoogle Scholar
  10. Di Muro A (2010a) Bulletin Volcanologique du 09 Décembre. Daily Bulletin of the Observatoire Volcanologique du Piton de la Fournaise, 9 December 2010, OVPF_20101209_1Google Scholar
  11. Di Muro A (2010b) Bulletin Volcanologique du 09 Décembre. Daily Bulletin of the Observatoire Volcanologique du Piton de la Fournaise, 9 December 2010, OVPF_20101209_2Google Scholar
  12. Di Muro A (2010c) Bulletin Volcanologique du 09 Décembre. Daily Bulletin of the Observatoire Volcanologique du Piton de la Fournaise, 9 December 2010, OVPF_20101209_3Google Scholar
  13. Di Muro A (2010d) Bulletin Volcanologique du 09 Décembre. Daily Bulletin of the Observatoire Volcanologique du Piton de la Fournaise, 9 December 2010, OVPF_20101209_5Google Scholar
  14. Di Muro A (2010e) Bulletin Volcanologique du 09 Décembre. Daily Bulletin of the Observatoire Volcanologique du Piton de la Fournaise, 9 December 2010, OVPF_20101209_6Google Scholar
  15. Di Muro A (2010f) Bulletin Volcanologique du 10 Décembre. Daily Bulletin of the Observatoire Volcanologique du Piton de la Fournaise, 10 December 2010, OVPF_20101210_1Google Scholar
  16. Di Muro A (2010g) Bulletin Volcanologique du 10 Décembre. Daily Bulletin of the Observatoire Volcanologique du Piton de la Fournaise, 10 December 2010, OVPF_20101210_2Google Scholar
  17. Di Muro A, Staudacher T, Ferrazzini V, Métrich N, Besson P, Garofalo C, Villemant B (2015) Shallow magma storage at Piton de la Fournaise volcano after 2007 summit caldera collapse tracked in Pele’s hairs. In: Carey RJ, Cayol V, Poland MP, Weis D (eds.), Hawaiian Volcanoes: From Source to Surface, American Geophysical Union Monograph 208:189–212Google Scholar
  18. Dietterich HR, Cashman KV (2014) Channel networks within lava flows: formation, evolution, and implications for flow behavior. J Geophys Res Earth Surf 119(8):1704–1724.  https://doi.org/10.1002/2014JF003103 CrossRefGoogle Scholar
  19. Dietterich HR, Cashman KV, Rust AC, Lev E (2015) Diverting lava flows in the lab. Nat Geosci 8(7):494–496.  https://doi.org/10.1038/ngeo2470 CrossRefGoogle Scholar
  20. DYNVOLC Database. Observatoire de Physique du Globe de Clermont-Ferrand, Aubière, France.  https://doi.org/10.25519/DYNVOLC-Database
  21. Favalli M, Harris AJL, Fornaciai A, Pareschi MT, Mazzarini F (2010) The distal segment of Etna’s 2001 basaltic lava flow. Bull Volcanol 72:119–127.  https://doi.org/10.1007/s00445-009-0300-z CrossRefGoogle Scholar
  22. Favalli M, Fornaciai A, Nannipieri L, Harris A, Calvari S, Lormand C (2018) UAV-based remote sensing surveys of lava flow fields: a case study from Etna’s 1974 channel-fed lava flows. Bull Volcanol 80:29.  https://doi.org/10.1007/s00445-018-1192-6 CrossRefGoogle Scholar
  23. Garry WB, Zimbelman JR, Gregg TK (2007) Morphology and emplacement of a long channeled lava flow near Ascraeus Mons Volcano, Mars. J Geophys Res Planets 112(E8).  https://doi.org/10.1029/2006JE002803
  24. Glaze LS, Baloga SM, Fagents SA, Wright R (2014) The influence of slope breaks on lava flow surface disruption. J Geophys Res Solid Earth 119(3):1837–1850.  https://doi.org/10.1002/2013JB010696 CrossRefGoogle Scholar
  25. Gurioli L, Di Muro A, Vlastélic I, Moune S, Thivet S, Valer M, Villeneuve N, Boudoire G, Peltier A, Bachèlery P, Ferrazzini V, Métrich N, Benbakkar M, Cluzel N, Constantin C, Devidal JL, Fonquernie C, Hénot JM (2018) Integrating field, textural, and geochemical monitoring to track eruption triggers and dynamics: a case study from Piton de la Fournaise. Solid Earth 9(2):431–455.  https://doi.org/10.5194/se-9-431-2018 CrossRefGoogle Scholar
  26. Hammer JE, Cashman KV, Voight B (2000) Magmatic processes revealed by textural and compositional trends in Merapi dome lavas. J Volcanol Geotherm Res 100(1):165–192.  https://doi.org/10.1016/S0377-0273(00)00136-0 CrossRefGoogle Scholar
  27. Harris AJL, Rowland SL (2001) FLOWGO: a kinematic thermo-rheological model for lava flowing in a channel. Bull Volcanol 63(1):20–44.  https://doi.org/10.1007/s004450000120 CrossRefGoogle Scholar
  28. Harris AJL, Rowland SK (2009). Effusion rate controls on lava flow length and the role of heat loss: a review. In: Thordarson T, Self S, Larsen G, Rowland SK & Hoskuldsson A (eds) Studies. In Volcanology: the legacy of George Walker. IAVCEI, Special Publications 2:33–51Google Scholar
  29. Harris AJL, Murray JB, Aries SE, Davies MA, Flynn LP, Wooster MJ, Wright R, Rothery DA (2000) Effusion rate trends at Etna and Krafla and their implications for eruptive mechanisms. J Volcanol Geotherm Res 102:237–270.  https://doi.org/10.1016/S0377-0273(00)00190-6 CrossRefGoogle Scholar
  30. Harris AJL, Flynn LP, Matias O, Rose WI, Cornejo J (2004) The evolution of an active silicic lava flow field: an ETM+ perspective. J Volcanol Geotherm Res 135(1):147–168.  https://doi.org/10.1016/j.jvolgeores.2003.12.011 CrossRefGoogle Scholar
  31. Harris AJL, Dehn J, Calvari S (2007) Lava effusion rate definition and measurement: a review. Bull Volcanol 70:1–22.  https://doi.org/10.1007/s00445-007-0120-y CrossRefGoogle Scholar
  32. Harris AJ, Rhéty M, Gurioli L, Villeneuve N, Paris R (2015) Simulating the thermorheological evolution of channel-contained lava: FLOWGO and its implementation in EXCEL. Geol Soc Spec Publ 426:SP426–9Google Scholar
  33. Harris AJL, Rhéty M, Gurioli L, Villeneuve N, Paris R (2016) Simulating the thermorheological evolution of channel-contained lava: FLOWGO and its implementation in EXCEL. Geol Soc Spec Publ 426(1):313–336.  https://doi.org/10.1144/SP426.9 CrossRefGoogle Scholar
  34. Harris AJ, Belousov A, Calvari S, Delgado-Granados H, Hort M, Koga K, Mei E, Harijoko A, Pacheco J, Prival J, Solana C, Poroarson P, Thouret J, Van Wyk De Vries B (2017) Translations of volcanological terms: cross-cultural standards for teaching, communication, and reporting. Bull Volcanol 79(7):57.  https://doi.org/10.1007/s00445-017-1141-9 CrossRefGoogle Scholar
  35. Heltz RT, Thornber CR (1987) Geothermometry of Kīlauea Iki lavas, Hawaii. Bull Volcanol 49:651–668.  https://doi.org/10.1007/BF01080357 CrossRefGoogle Scholar
  36. Houghton BF, Wilson CJN (1989) A vesicularity index for pyroclastic deposits. Bull Volcanol 51(6):451–462.  https://doi.org/10.1007/BF01078811 CrossRefGoogle Scholar
  37. Huppert H (1982) Flow and instability of a viscous current down a slope. Nature 300:427–429.  https://doi.org/10.1038/300427a0 CrossRefGoogle Scholar
  38. Jeffreys H (1925) The flow of water in an inclined channel of rectangular section. Philos Mag 49:793–807.  https://doi.org/10.1080/14786442508634662 CrossRefGoogle Scholar
  39. Keszthelyi L, Denlinger R (1996) The initial cooling of pāhoehoe flow lobes. Bull Volcanol 58(1):5–18.  https://doi.org/10.1007/s004450050121 CrossRefGoogle Scholar
  40. Kilburn CRJ, Guest JE (1993) ‘A‘a lavas of Mount Etna, Sicily. In: Active lava. UCL Press, London, pp 73–106Google Scholar
  41. Kilburn CRJ, Lopes RMC (1988) The growth of aa lava fields on Mount Etna, Sicily. J Geophys Res 93:14,759–14,772.  https://doi.org/10.1029/JB093iB12p14759 CrossRefGoogle Scholar
  42. Krauskopf KB (1948) Lava movement at Paricutin volcano, Mexico. Geol Soc Am Bull 59(12):1267–1284. https://doi.org/10.1130/0016-7606(1948)59[1267:LMAPVM]2.0.CO;2Google Scholar
  43. Lev E, James MR (2014) The influence of cross-sectional channel geometry on rheology and flux estimates for active lava flows. BullVolcanol 76:1–15.  https://doi.org/10.1007/s00445-014-0829-3 CrossRefGoogle Scholar
  44. Lipman PW, Banks NG (1987) ‘A‘ā flow dynamics, Mauna Loa 1984. US Geol Surv Prof Pap 1350:1527–1567Google Scholar
  45. Lister JR (1992) Viscous flows down an inclined plane from point and line sources. J Fluid Mech 242:631–653.  https://doi.org/10.1017/S0022112092002520 CrossRefGoogle Scholar
  46. Llewellin EW, Mader HM, Wilson SDR (2002) The constitutive equation and flow dynamics of bubbly magmas. Geophys Res Lett 29(24):23–1Google Scholar
  47. Mader HM, Llewellin EW, Mueller SP (2013) The rheology of two-phase magmas: a review and analysis. J Volcanol Geotherm Res 257:135–158.  https://doi.org/10.1016/j.jvolgeores.2013.02.014 CrossRefGoogle Scholar
  48. Moore HJ (1987) Preliminary estimates of the rheological properties of 1984 Mauna Loa lava. US Geol Surv Prof Pap 1350:1569–1588Google Scholar
  49. Naranjo JA, Sparks RSJ, Stasiuk MV, Moreno H, Ablay GJ (1992) Morphological, structural and textural variations in the 1988–1990 andesite lava of Lonquimay Volcano, Chile. Geol Mag 129(6):657–678.  https://doi.org/10.1017/S0016756800008426 CrossRefGoogle Scholar
  50. Noguchi S, Toramaru A, Nakada S (2008) Relation between microlite textures and discharge rate during the 1991–1995 eruptions at Unzen, Japan. J Volcanol Geotherm Res 175(1–2):141–155.  https://doi.org/10.1016/j.jvolgeores.2008.03.025 CrossRefGoogle Scholar
  51. Parfitt EA, Wilson L, Head III JW (1993) Basaltic magma reservoirs: factors controlling their rupture characteristics and evolution. J Volcanol Geotherm Res 55(1-2):1–14Google Scholar
  52. Peltier A, Bachèlery P, Staudacher T (2009) Magma transport and storage at Piton de La Fournaise (La Réunion) between 1972 and 2007: a review of geophysical and geochemical data. J Volcanol Geotherm Res 184(1):93–108.  https://doi.org/10.1016/j.jvolgeores.2008.12.008 CrossRefGoogle Scholar
  53. Peterson DW, Tilling RI (1980). Transition of basaltic lava from pāhoehoe to aa, Kilauea Volcano, Hawaii: field observations and key factors. J Volcanol Geotherm Res 7(3-4):271-293Google Scholar
  54. Pioli L, Pistolesi M, Rosi M (2014) Transient explosions at open-vent volcanoes: the case of Stromboli (Italy). Geology 42(10):863–866.  https://doi.org/10.1130/G35844.1 CrossRefGoogle Scholar
  55. Putirka KD (2005) Igneous thermometers and barometers based on plagioclase + liquid equilibria: tests of some existing models and new calibrations. Am Mineral 90(2–3):336–346.  https://doi.org/10.2138/am.2005.1449 CrossRefGoogle Scholar
  56. Putirka KD (2008) Thermometers and barometers for volcanic systems. Rev Mineral Geochem 69(1):61–120.  https://doi.org/10.2138/rmg.2008.69.3 CrossRefGoogle Scholar
  57. Putirka K, Johnson M, Kinzler R, Longhi J, Walker D (1996) Thermobarometry of mafic igneous rocks based on clinopyroxene-liquid equilibria, 0–30 kbar. Contrib Mineral Petrol 123(1):92–108.  https://doi.org/10.1007/s004100050145 CrossRefGoogle Scholar
  58. Putirka KD, Perfit M, Ryerson FJ, Jackson MG (2007) Ambient and excess mantle temperatures, olivine thermometry, and active vs. passive upwelling. Chem Geol 241(3):177–206.  https://doi.org/10.1016/j.chemgeo.2007.01.014 CrossRefGoogle Scholar
  59. Rhéty M (2014) Down-channel cooling and crystallization of lava during a short-lived eruption. B.Sc. thesis, Université Blaise PascalGoogle Scholar
  60. Rhéty M, Harris A, Villeneuve N, Gurioli L, Médard E, Chevrel O, Bachélery P (2017) A comparison of cooling-limited and volume-limited flow systems: examples from channels in the Piton de la Fournaise April 2007 lava-flow field. Geochem Geophys Geosyst 18:3270–3291.  https://doi.org/10.1002/2017GC006839 CrossRefGoogle Scholar
  61. Richardson JA (2016). Modeling the construction and evolution of distributed volcanic fields on Earth and Mars. Dissertation, University of South FloridaGoogle Scholar
  62. Riker JM, Cashman KV, Kauahikaua JP, Montierth CM (2009) The length of channelized lava flows: insight from the 1859 eruption of Mauna Loa Volcano, Hawai ‘i. J Volcanol Geotherm Res 183(3):139–156.  https://doi.org/10.1016/j.jvolgeores.2009.03.002 CrossRefGoogle Scholar
  63. Robert B, Harris A, Gurioli L, Médard E, Sehlke A, Whittington A (2014) Textural and rheological evolution of basalt flowing down a lava channel. Bull Volcanol 76(6):824.  https://doi.org/10.1007/s00445-014-0824-8 CrossRefGoogle Scholar
  64. Roult G, Peltier A, Staudacher T, Ferrazzini V, Taisne B, Di Muro A, The OVPF Team (2012) A comprehensive classification of the Piton de la Fournaise eruptions (La Réunion Island) spanning the 1986–2010 period Search for eruption precursors from the broad-band GEOSCOPE RER station analysis and interpretation in terms of volcanic processes. J Volcanol Geotherm Res 241:78–104.  https://doi.org/10.1016/j.jvolgeores.2012.06.012 CrossRefGoogle Scholar
  65. Ryerson FJ, Weed HC, Piwinskii AJ (1988) Rheology of subliquidus magmas: 1. Picritic compositions. J Geophys Res Solid Earth 93(B4):3421–3436.  https://doi.org/10.1029/JB093iB04p03421 CrossRefGoogle Scholar
  66. Sehlke A, Whittington AG, Robert B, Harris AJL, Gurioli L, Médard E (2014) Pāhoehoe to ‘a‘ā transition of Hawaiian lavas: an experimental study. Bull Volcanol 76:876.  https://doi.org/10.1007/s00445-014-0876-9 CrossRefGoogle Scholar
  67. Shea T, Houghton BF, Gurioli L, Cashman KV, Hammer JE, Hobden BJ (2010) Textural studies of vesicles in volcanic rocks: an integrated methodology. J Volcanol Geotherm Res 190(3):271–289.  https://doi.org/10.1016/j.jvolgeores.2009.12.003 CrossRefGoogle Scholar
  68. Soldati A, Sehlke A, Chigna G, Whittington A (2016) Field and experimental constraints on the rheology of arc basaltic lavas: the January 2014 eruption of Pacaya (Guatemala). Bull Volcanol 78(6):43.  https://doi.org/10.1007/s00445-016-1031-6 CrossRefGoogle Scholar
  69. Soule SA, Cashman KV, Kauahikaua JP (2004) Examining flow emplacement through the surface morphology of three rapidly emplaced, solidified lava flows, Kīlauea Volcano, Hawai'i. Bull Volcanol 66(1):1–14.  https://doi.org/10.1007/s00445-003-0291-0 CrossRefGoogle Scholar
  70. Sparks RSJ, Pinkerton H, Hulme G (1976) Classification and formation of lava levees on Mount Etna, Sicily. Geology 4(5):269–271.  https://doi.org/10.1130/0091-7613(1976)4<269:CAFOLL>2.0.CO;2 CrossRefGoogle Scholar
  71. Tarquini S (2017) A review of mass and energy flow through a lava flow system: insights provided from a non-equilibrium perspective. Bull Volcanol 79(8):64.  https://doi.org/10.1007/s00445-017-1145-5 CrossRefGoogle Scholar
  72. Villeneuve N, Bachèlery P (2006). Revue de la typologie des éruptions au Piton de La Fournaise, processus et risques volcaniques associés. Cybergeo: Eur J Geogr 336.  https://doi.org/10.4000/cybergeo.2536
  73. Wadge G (1981) The variation of magma discharge during basaltic eruptions. J Volcanol Geotherm Res 11:139–168.  https://doi.org/10.1016/0377-0273(81)90020-2 CrossRefGoogle Scholar
  74. Walker GPL (1972) Compound and simple lava flows and flood basalts. Bull Volcanol 35:579–590.  https://doi.org/10.1007/BF02596829 CrossRefGoogle Scholar
  75. Walker GPL, Huntingdon AT, Sanders AT, Dinsdale JL (1973) Lengths of lava flows. Philos Trans A Math Phyl Eng Sci 274(1238):107–118.  https://doi.org/10.1098/rsta.1973.0030 CrossRefGoogle Scholar
  76. Welsch B, Faure F, Bachèlery P, Famin V (2009) Microcrysts record transient convection at Piton de la Fournaise volcano (La Réunion hotspot). J Petrol 50(12):2287–2305.  https://doi.org/10.1093/petrology/egp076 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • A. Soldati
    • 1
  • A. J. L. Harris
    • 2
  • L. Gurioli
    • 2
  • N. Villeneuve
    • 3
    • 4
  • M. Rhéty
    • 2
  • F. Gomez
    • 1
  • A. Whittington
    • 1
  1. 1.Department of Geological SciencesUniversity of MissouriColumbiaUSA
  2. 2.CNRS, IRD, OPGC, Laboratoire Magmas et VolcansUniversité Clermont AuvergneClermont-FerrandFrance
  3. 3.Observatoire Volcanologique du Piton de la Fournaise, Institut de Physique du Globe de Paris, Sorbonne Paris Cité, CNRSUniversité Paris DiderotParisFrance
  4. 4.Laboratoire GéoSciences Réunion, Institut de Physique du Globe de Paris, Sorbonne Paris Cité, CNRSUniversité de La RéunionSaint DenisFrance

Personalised recommendations