Advertisement

Bulletin of Volcanology

, 80:10 | Cite as

Paleomagnetism of Holocene lava flows from the Reykjanes Peninsula and the Tungnaá lava sequence (Iceland): implications for flow correlation and ages

  • Annamaria PintonEmail author
  • Guido Giordano
  • Fabio Speranza
  • Þorvaldur Þórðarson
Research Article

Abstract

The impact of Holocene eruptive events from hot spots like Iceland may have had significant global implications; thus, dating and knowledge of past eruptions chronology is important. However, at high-latitude volcanic islands, the paucity of soils severely limits 14C dating, while the poor K content of basalts strongly restricts the use of K/Ar and Ar/Ar methods. Even tephrochronology, based on 14C age determinations, refers to layers that rarely lie directly above lava flows to be dated. We report on the paleomagnetic dating of 25 sites from the Reykjanes Peninsula and the Tungnaá lava sequence of Iceland. The gathered paleomagnetic directions were compared with the available reference paleosecular variation curves of the Earth magnetic field to obtain the possible emplacement age intervals. To test the method’s validity, we sampled the precisely dated Laki (1783–1784 AD) and Eldgjà (934–938 AD) lavas. The age windows obtained for these events encompass the true flow ages. For sites from the Reykjanes peninsula and the Tugnaá lava sequence, we derived multiple possible eruption events and ages. In the Reykjanes peninsula, we propose an older emplacement age (immediately following the 870 AD Iceland Settlement age) for Ogmundarhraun and Kapelluhraun lava fields. For pre-historical (older than the settlement age) Tugnaá eruptions, the method has a dating precision of 300–400 years which allows an increase of the detail in the chronostratigraphy and distribution of lavas in the Tugnaá sequence.

Keywords

Paleomagnetism Dating Basaltic lava flows Reykjanes peninsula Tungnaá lava sequence 

Notes

Acknowledgments

Many thanks to F. Salvini and P. Cianfarra for helping in the field. We are also grateful to an anonymous referee and Conall Mac Niocaill for providing careful and constructive reviews of our manuscript, and to BV Associate and Executive Editors for contributing significantly to final manuscript polish.

Supplementary material

445_2017_1187_MOESM1_ESM.docx (50 kb)
ESM 1 (DOCX 50 KB)

References

  1. Alexandrescu M, Gibert D, Hulot G, Le Mouël J-L, Saracco G (1996) Worldwide wavelet analysis of geomagnetic jerks. J Geophys Res Solid Earth 101(B10):21975–21994.  https://doi.org/10.1029/96JB01648 CrossRefGoogle Scholar
  2. Butler RF (1992) Paleomagnetism: magnetic domains to geologic terranes. Blackwell Scientific, Boston, OxfordGoogle Scholar
  3. Carlut J, Quidelleur X, Courtillot V, Boudon G (2000) Paleomagnetic directions and K/Ar dating of 0 to 1 Ma lava flows from La Guadeloupe Island (French West Indies): implications for time-averaged field models. J Geophys Res 105(B1):835–849.  https://doi.org/10.1029/1999JB900238 CrossRefGoogle Scholar
  4. Casas L, Incoronato A (2007) Distribution analysis of errors due to relocation of geomagnetic data using the “Conversion via Pole” (CVP) method: implications on archaeomagnetic data. Geophys J Int 169(2):448–454.  https://doi.org/10.1111/j.1365-246X.2007.03346.x CrossRefGoogle Scholar
  5. Chenet A, Fluteau F, Courtillot V (2005) Modelling massive sulphate aerosol pollution, following the large 1783 Laki basaltic eruption. Earth Planet Sci Lett 236(3-4):721–731.  https://doi.org/10.1016/j.epsl.2005.04.046 CrossRefGoogle Scholar
  6. Cromwell G, Tauxe L, Staudigel H, Constable CG, Koppers AAP, Pedersen R-B (2013) In search of long-term hemispheric asymmetry in the geomagnetic field: results from high northern latitudes. Geochem Geophys Geosyst 14(8):3234–3249.  https://doi.org/10.1002/ggge.20174 CrossRefGoogle Scholar
  7. Cromwell G, Tauxe L, Halldórsson SA (2015) New paleointensity results from rapidly cooled Icelandic lavas: implications for Arctic geomagnetic field strength. J Geophys Res Solid Earth 120(5):2913–2934.  https://doi.org/10.1002/2014JB011828 CrossRefGoogle Scholar
  8. Devine J, Sigurdsson H, Davis AN, Self S (1984) Estimates of sulfur and chlorine yield to the atmosphere from volcanic eruptions and potential climatic effects. J Geophys Res 89(B7):6309–6325.  https://doi.org/10.1029/JB089iB07p06309 CrossRefGoogle Scholar
  9. Di Chiara A, Speranza F, Porreca M (2012) Paleomagnetic secular variation at the Azores during the last 3 ka. J Geophys Res 117(B7):B07101.  https://doi.org/10.1029/2012JB009285 CrossRefGoogle Scholar
  10. Di Chiara A, Speranza F, Porreca M, Pimentel A, D’Ajello Caracciolo F, Pacheco J (2014) Constraining chronology and time-space evolution of Holocene volcanic activity on the Capelo Peninsula (Faial Island, Azores): the paleomagnetic contribution. Geol Soc Am Bull 126(9-10):1164–1180.  https://doi.org/10.1130/B30933.1 CrossRefGoogle Scholar
  11. Doell RR, Cox A (1963) The accuracy of the paleomagnetic method as evaluated from historic hawaiian lava flows. J Geophys Res 68(7):1997–2009.  https://doi.org/10.1029/JZ068i007p01997 CrossRefGoogle Scholar
  12. Donadini F, Motschi A, Rösch C, Hajdas I (2012) Combining an archaeomagnetic and radiocarbon study: dating of medieval fireplaces at the Mühlegasse, Zürich. J Archaeol Sci 39(7):2153–2166.  https://doi.org/10.1016/j.jas.2012.02.030 CrossRefGoogle Scholar
  13. Dugmore A, Cook G, Shore J, Newton A, Edwards K and Larsen G (1995) Radiocarbon dating tephra layers in Britain and Iceland. In: Cook GT, Harkness DD, Miller BF, Scott EM (eds) 15th International 14C conference. Radiocarbon 37 (2):379–388, DOI:  https://doi.org/10.1017/S003382220003085X
  14. Dugmore AJ, Newton AJ, Larsen G, Cook GT (2000) Tephrochronology, environmental change and the Norse settlement of Iceland. Environ Archaeol 5(1):21–34.  https://doi.org/10.1179/146141000790523377 CrossRefGoogle Scholar
  15. Einarsson S, Jóhannesson H (1989) Aldur Arnarseturshrauns á Reykjanesskaga (age of the Arnarseturshraun lava flow, Reykjanes peninsula, SW-Iceland). Fjölrit Náttúrufrædistofnunar 8:15Google Scholar
  16. Fisher R (1953) Dispersion on a sphere. Proc R Soc Lond A Math Phys Eng Sci 217(1130):295–305.  https://doi.org/10.1098/rspa.1953.0064 CrossRefGoogle Scholar
  17. Grattan JP, Charman DJ (1994) Non-climatic factors and the environmental impact of volcanic volatiles: implications of the Laki fissure eruption of AD 1783. The Holocene 4(1):101–106.  https://doi.org/10.1177/095968369400400113 CrossRefGoogle Scholar
  18. Grattan JP, Pyatt FB (1994) Acid damage to vegetation following the Laki fissure eruption in 1783—an historical review. Sci Total Environ 151(3):241–247.  https://doi.org/10.1016/0048-9697(94)90473-1 CrossRefGoogle Scholar
  19. Grattan JP, Durand M and Taylor SN (2003) Illness and elevated human mortality in Europe coincident with the Laki Fissure eruption. In: Oppenheimer C, Pyle DM, Barclay J (eds) Volcanic degassing. Geological Society of London, Special Publications (213):401–414Google Scholar
  20. Grattan JP, Rabartin R, Self S, Thordarson T (2005) Volcanic air pollution and mortality in France 1783–1784. Compt Rendus Geosci 337(7):641–651.  https://doi.org/10.1016/j.crte.2005.01.013 CrossRefGoogle Scholar
  21. Greve A, Turner GM, Conway CE, Townsend DB, Gamble JA, Leonard GS (2016) Palaeomagnetic refinement of the eruption ages of Holocene lava flows, and implications for the eruptive history of the Tongariro Volcanic Centre, New Zealand. Geophys J Int 207(2):702–718.  https://doi.org/10.1093/gji/ggw296 CrossRefGoogle Scholar
  22. Haflidason H, Eiríksson J, van Kreveld SA (2000) The tephrochronology of Iceland and the North Atlantic region during the Middle and Late Quaternary : a review. J Quat Sci 15(1):3–22.  https://doi.org/10.1002/(SICI)1099-1417(200001)15:1<3::AID-JQS530>3.0.CO;2-W CrossRefGoogle Scholar
  23. Hagstrum JT, Champion DE (1994) Paleomagnetic correlation of Late Quaternary lava flows in the lower east rift zone of Kilauea Volcano , Hawaii. J Geophys Res 99(B11):21679–21690.  https://doi.org/10.1029/94JB01852 CrossRefGoogle Scholar
  24. Halldorsson SA, Oskarsson N, Grönvold K, Sigurdsson G, Sverrisdottir G, Steinthorsson S, Gronvold K, Sigurdsson G, Sverrisdottir G, Steinthorsson S et al (2008) Isotopic-heterogeneity of the Thjorsa lava—implications for mantle sources and crustal processes within the Eastern Rift Zone, Iceland. Chem Geol 255(3-4):305–316.  https://doi.org/10.1016/j.chemgeo.2008.06.050 CrossRefGoogle Scholar
  25. Highwood EJ, Stevenson DS (2003) Atmospheric impact of the 1783-1784 Laki eruption: part II climatic effect of sulphate aerosol. Atmos Chem Phys Discuss 3(2):1599–1629.  https://doi.org/10.5194/acpd-3-1599-2003 CrossRefGoogle Scholar
  26. Hjartarson Á (1988) Þjórsárhraunið mikla - stærsta nútímahraun jarðar. Náttúrufræðingrurinn 58:1–16Google Scholar
  27. Hjartarson Á (1994) Environmental changes in Iceland following the Great Thjorsa Lava eruption 7800 14C years B.P. In: Stotter J, Wilhelm F (eds) Environmental Change in Iceland. Münchener geographische abhandlungen, Reihe B., pp 147–155Google Scholar
  28. Jacoby GC, Workman KW, D’Arrigo RD (1999) Laki eruption of 1783, tree rings, and disaster for northwest Alaska Inuit. Quat Sci Rev 18(12):1365–1371.  https://doi.org/10.1016/S0277-3791(98)00112-7 CrossRefGoogle Scholar
  29. Jakobsson SP (1979) Petrology of recent basalts of the Eastern Volcanic Zone, Iceland. Acta Nat Alia Islandica 26:1–103.  https://doi.org/10.1017/CBO9781107415324.004 Google Scholar
  30. Jóhannesson H, Einarsson S (1988a) Aldur Illahrauns við Svartsengi (Age of the Illahraun lava at Svartshengi). Fjölrit Náttúrufræðistofnunar 7:12Google Scholar
  31. Jóhannesson H, Einarsson S (1988b) Krísuvíkureldar. I: Aldur Ögmundarhrauns og miđaldalagsins (the Krýsuvík fires I: age of the Ögmundarhraun lava and the medieval tephra layer). Jökull:71–87Google Scholar
  32. Jònsson J (1978) Jarðfræðikort af Reykjanesskaga I: skýringar við jarðfræðikort. Orkustofnun, Iceland OS-JHD-7831-IGoogle Scholar
  33. Kirschvink JL (1980) The least-squares line and plane and the analysis of palaeomagnetic data. Geophys J Int 62(3):699–718.  https://doi.org/10.1111/j.1365-246X.1980.tb02601.x CrossRefGoogle Scholar
  34. Kjartansson, Thorarinsson S, Einarsson T (1964) C14-aldursakvardanir a synishornum vardandi islenzka kvarterjardfrxdi. Náttúirufrædingurinn 34:97–145Google Scholar
  35. Lanos P (2004) Bayesian inference of calibration curves: application to archaeomagnetism. In: Buck C, Millard A (eds) Tools for constructing chronologies SE - 3. Springer, London, pp 43–82.  https://doi.org/10.1007/978-1-4471-0231-1_3 CrossRefGoogle Scholar
  36. Lanza R and Meloni A (2006) The earth’s magnetism: an introduction for geologists. doi:  https://doi.org/10.1007/978-3-540-27980-8.
  37. Lanza R and Zanella E (1991) Palaeomagnetic directions (223-1.4 ka) recorded in the volcanites of Lipari, Aeolian Islands. Geophys J Int 107:191–196. doi:  https://doi.org/10.1111/j.1365-246X.1991.tb01167.x, 1.
  38. Lanza R, Zanella E (2003) Paleomagnetic secular variation at Vulcano (Aeolian Islands) during the last 135 kyr. Earth Planet Sci Lett 213(3-4):321–336.  https://doi.org/10.1016/S0012-821X(03)00326-1 CrossRefGoogle Scholar
  39. Lanza R, Zanella E (2006) Comments on “chronology of vesuvius’ activity from A.D. 79 to 1631 based on archeomagnetism of lavas and historical sources” by C. Principe et al., Bull Volcanol. Bull Volcanol 68:394–396.  https://doi.org/10.1007/s00445-005-0030-9 CrossRefGoogle Scholar
  40. Lanza R, Meloni A, Tema E (2005) Historical measurements of the Earth’s magnetic field compared with remanence directions from lava flows in Italy over the last four centuries. Phys Earth Planet Inter 148(1):97–107.  https://doi.org/10.1016/j.pepi.2004.08.005 CrossRefGoogle Scholar
  41. Larsen G (1984) Recent volcanic history of the Veidivotn fissure swarm, southern Iceland—an approach to volcanic risk assessment. J Volcanol Geotherm Res 22(1-2):33–58.  https://doi.org/10.1016/0377-0273(84)90034-9 CrossRefGoogle Scholar
  42. Larsen G (2000) Holocene eruptions within the Katla volcanic system, south Iceland: characteristics and environmental impact. Jökull 49:1–28Google Scholar
  43. Larsen G, Eiríksson J (2008) Late quaternary terrestrial tephrochronology of Iceland—frequency of explosive eruptions, type and volume of tephra deposits. J Quat Sci 23(2):109–120.  https://doi.org/10.1002/jqs.1129 CrossRefGoogle Scholar
  44. Larsen G, Thorarinsson S (1977) H4 and other acid Hekla tephra layers. Jökull 27:28–46Google Scholar
  45. Larsen G, Vilmundardóttir EG (1985) Gjóskurannsóknir á Þjórsársvæði 1983–1984 : áfangaskýrsla. Orkustofnun, Iceland OS-85037/VOD-16 B. Downloadable at: http://www.os.is/gogn/Skyrslur/OS-1985/OS-85037.pdf Google Scholar
  46. Lawrence KP, Tauxe L, Staudigel H, Constable CG, Koppers AAP, McIntosh W and Johnson CL (2009) Paleomagnetic field properties at high southern latitude. Geochem Geophys Geosyst 10: n/a-n/a. doi:  https://doi.org/10.1029/2008GC002072
  47. Mahgoub AN, Böhnel H, Siebe C, Salinas S, Guilbaud M-N (2017) Paleomagnetically inferred ages of a cluster of Holocene monogenetic eruptions in the Tacámbaro-Puruarán area (Michoacán, México): implications for volcanic hazards. J Volcanol Geotherm Res 347:360–370.  https://doi.org/10.1016/j.jvolgeores.2017.10.004 CrossRefGoogle Scholar
  48. Marra F, Gaeta M, Giaccio B, Jicha BR, Palladino DM, Polcari M, Sottili G, Taddeucci J, Florindo F, Stramondo S (2016) Assessing the volcanic hazard for Rome:40Ar/39Ar and In-SAR constraints on the most recent eruptive activity and present-day uplift at Colli Albani Volcanic District. Geophys Res Lett 43(13):6898–6906.  https://doi.org/10.1002/2016GL069518 CrossRefGoogle Scholar
  49. Nilsson A, Holme R, Korte M, Suttie N, Hill M (2014) Reconstructing holocene geomagnetic field variation: new methods, models and implications. Geophys J Int 198(1):229–248.  https://doi.org/10.1093/gji/ggu120 CrossRefGoogle Scholar
  50. Noel M, Batt CM (1990) A method for correcting geographically separated remanence directions for the purpose of archaeomagnetic dating. Geophys J Int 102(3):753–756.  https://doi.org/10.1111/j.1365-246X.1990.tb04594.x CrossRefGoogle Scholar
  51. Óladóttir BA, Larsen G, Thordarson T, Sigmarsson O (2005) The Katla volcano S-Iceland: Holocene tephra stratigraphy and eruption frequency. Jökull 55:53–74Google Scholar
  52. Óladóttir BA, Sigmarsson O, Larsen G, Thordarson T (2008) Katla volcano, Iceland: magma composition, dynamics and eruption frequency as recorded by Holocene tephra layers. Bull Volcanol 70(4):475–493.  https://doi.org/10.1007/s00445-007-0150-5 CrossRefGoogle Scholar
  53. Óladóttir BA, Larsen G, Sigmarsson O (2011a) Holocene volcanic activity at Grímsvötn, Bárdarbunga and Kverkfjöll subglacial centres beneath Vatnajökull, Iceland. Bull Volcanol 73(9):1187–1208.  https://doi.org/10.1007/s00445-011-0461-4 CrossRefGoogle Scholar
  54. Óladóttir BA, Sigmarsson O, Larsen G, Devidal J-L (2011b) Provenance of basaltic tephra from Vatnajokull subglacial volcanoes, Iceland, as determined by major- and trace-element analyses. The Holocene 21(7):1037–1048.  https://doi.org/10.1177/0959683611400456 CrossRefGoogle Scholar
  55. Orsi G, Di Vito MA, Isaia R (2004) Volcanic hazard assessment at the restless Campi Flegrei caldera. Bull Volcanol 66(6):514–530.  https://doi.org/10.1007/s00445-003-0336-4 CrossRefGoogle Scholar
  56. Panovska S, Finlay CC, Donadini F, Hirt AM (2012) Spline analysis of Holocene sediment magnetic records: uncertainty estimates for field modeling. J Geophys Res 117(B2):B02101.  https://doi.org/10.1029/2011JB008813 CrossRefGoogle Scholar
  57. Passmore E, Maclennan J, Fitton G, Thordarson T (2012) Mush disaggregation in basaltic magma chambers: evidence from the AD 1783 Laki eruption. J Petrol 53(12):2593–2623.  https://doi.org/10.1093/petrology/egs061 CrossRefGoogle Scholar
  58. Passmore E, Maclennan J, Fitton G, Thordarson T (2013) ERRATURM-mush disaggregation in basaltic magma chambers: evidence from AD 1783 Laki eruption. J Petrol 54(11):2411.  https://doi.org/10.1093/petrology/egt049. CrossRefGoogle Scholar
  59. Pavón-Carrasco FJ, Rodríguez-gonzález J, Luisa M, Torta JM, Osete ML, Torta JM (2011) A Matlab tool for archaeomagnetic dating. J Archaeol Sci 38(2):408–419.  https://doi.org/10.1016/j.jas.2010.09.021 CrossRefGoogle Scholar
  60. Pavón-Carrasco FJ, Osete ML, Torta JM, De Santis A (2014) A geomagnetic field model for the Holocene based on archaeomagnetic and lava flow data. Earth Planet Sci Lett 388:98–109.  https://doi.org/10.1016/j.epsl.2013.11.046 CrossRefGoogle Scholar
  61. Peate DW, Baker JA, Jakobsson SP, Waight TE, Kent AJR, Grassineau NV, Skovgaard AC (2009) Historic magmatism on the Reykjanes Peninsula, Iceland: a snap-shot of melt generation at a ridge segment. Contrib Mineral Petrol 157(3):359–382.  https://doi.org/10.1007/s00410-008-0339-4. CrossRefGoogle Scholar
  62. Principe C, Tanguy JC, Arrighi S, Paiotti A, Le Goff M, Zoppi U (2004) Chronology of Vesuvius’ activity from A.D. 79 to 1631 based on archeomagnetism of lavas and historical sources. Bull Volcanol 66(8):703–724.  https://doi.org/10.1007/s00445-004-0348-8 CrossRefGoogle Scholar
  63. Rampino MR (2002) Supereruptions as a threat to civilizations on earth-like planets. Icarus 156(2):562–569.  https://doi.org/10.1006/icar.2001.6808 CrossRefGoogle Scholar
  64. Rolph TC, Shaw J, Guest JE (1987) Geomagnetic field variations as a dating tool: application to Sicilian lavas. J Archaeol Sci 14(2):215–225.  https://doi.org/10.1016/0305-4403(87)90008-2 CrossRefGoogle Scholar
  65. Rutten MG and Wensink H (1960) Paleomagnetic dating, glaciations and the chronology of the Plio-Pleistocene in Iceland. In: Copenhagen, Denmark, XXI International Geological Congress, 62 Norden, Part IV, n. 53. p 62Google Scholar
  66. Sæmundsson K, Jóhannesson H, Hjartarson Á, Kristinsson SG, Sigurgeirsson MA (2010) Geological map of Southwest Iceland. 1:100′000. Iceland Geosurvey - Islenskar OrkurannsoknirGoogle Scholar
  67. Sæmundsson K, Hjartarson Á, Kaldal I, Sigurgeirsson MA, Kristinsson SG, Vikingsson S (2012) Geological map of the Northern volcanic zone, Iceland. Northern part. 1:100′000. Iceland GeoSurvey and Landsvirkjun, ReykjavikGoogle Scholar
  68. Self S, Widdowson M, Thordarson T, Jay AE (2006) Volatile fluxes during flood basalt eruptions and potential effects on the global environment: a Deccan perspective. Earth Planet Sci Lett 248(1-2):518–532.  https://doi.org/10.1016/j.epsl.2006.05.041 CrossRefGoogle Scholar
  69. Sigurdsson H (1990a) Assessment of the atmospheric impact of volcanic eruptions. Geol Soc Am Spec Pap 247:99–110Google Scholar
  70. Sigurdsson H (1990b) Evidence of volcanic loading of the atmosphere and climate response. Glob Planet Chang 89:277–289CrossRefGoogle Scholar
  71. Sigurgeirsson MÁ (1995) Yngra-Stampagosið á Reykjanesi (the Younger–Stampar eruption at Reykjanes, SW-Iceland). Náttúrufrædingurinn 64:211–230Google Scholar
  72. Sinton J, Grönvold K and Sæmundsson K (2005) Postglacial eruptive history of the Western Volcanic Zone, Iceland. Geochem Geophys Geosyst 6: 12 doi:  https://doi.org/10.1029/2005GC001021
  73. Speranza F, Pompilio M, Sagnotti L (2004) Paleomagnetism of spatter lavas from Stromboli volcano (Aeolian Islands, Italy): implications for the age of paroxysmal eruptions. Geophys Res Lett 31(2):L02607.  https://doi.org/10.1029/2003GL018944 CrossRefGoogle Scholar
  74. Speranza F, Branca S, Coltelli M, D’Ajello Caracciolo F and Vigliotti L (2006) How accurate is “paleomagnetic dating”? New evidence from historical lavas from Mount Etna. J Geophys Res 111:1–17. doi:  https://doi.org/10.1029/2006JB004496, B12.
  75. Speranza F, Pompilio M, D’Ajello Caracciolo F, Sagnotti L (2008) Holocene eruptive history of the Stromboli volcano: constraints from paleomagnetic dating. J Geophys Res 113:B9.  https://doi.org/10.1029/2007JB005139 CrossRefGoogle Scholar
  76. Speranza F, Landi P, D’Ajello Caracciolo F, Pignatelli A (2010) Paleomagnetic dating of the most recent silicic eruptive activity at Pantelleria (Strait of Sicily). Bull Volcanol 72(7):847–858.  https://doi.org/10.1007/s00445-010-0368-5 CrossRefGoogle Scholar
  77. Speranza F, Di Chiara A, Rotolo SG (2012) Correlation of welded ignimbrites on Pantelleria (Strait of Sicily) using paleomagnetism. Bull Volcanol 74(2):341–357.  https://doi.org/10.1007/s00445-011-0521-9 CrossRefGoogle Scholar
  78. Stevenson DS, Johnson CEE, Highwood EJ, Gauci V, Collins WJJ, Derwent RGG (2003) Atmospheric impact of the 1783–1784 Laki eruption : part I chemistry modelling. Atmos Chem Phys Discuss 3(1):487–507.  https://doi.org/10.5194/acpd-3-551-2003 CrossRefGoogle Scholar
  79. Stothers RB (1998) Far reach of the tenth century Eldgja eruption, Iceland. Clim Chang 39(4):715–726.  https://doi.org/10.1023/A:1005323724072 CrossRefGoogle Scholar
  80. Stuiver M, Reimer P and Reimer RW (2005) CALIB 6.0 program and documentation. WWW program downloadable at http://calib.org
  81. Tanguy J-C, Le Goff M, Principe C, Arrighi S, Chillemi V, Paiotti A, La Delfa S, Patanè G (2003) Archeomagnetic dating of Mediterranean volcanics of the last 2100 years: validity and limits. Earth Planet Sci Lett 211(1-2):111–124.  https://doi.org/10.1016/S0012-821X(03)00186-9 CrossRefGoogle Scholar
  82. Thompson R, Turner GMM (1985) Icelandic Holocene palaeolimnomagnetism. Phys Earth Planet Inter 38(4):250–261.  https://doi.org/10.1016/0031-9201(85)90072-X CrossRefGoogle Scholar
  83. Thordarson T and Hartley M (2015) Atmospheric sulfur loading by the ongoing Nornahraun eruption , North Iceland. EGU Gen Assem 2015, held 12–17 April 2015 Vienna, Austria id10708 17:10708Google Scholar
  84. Thordarson T, Hoskuldsson A (2008) Postglacial volcanism in Iceland. Jökull 58:197–228Google Scholar
  85. Thordarson T, Larsen G (2007) Volcanism in Iceland in historical time: volcano types, eruption styles and eruptive history. J Geodyn 43(1):118–152.  https://doi.org/10.1016/j.jog.2006.09.005 CrossRefGoogle Scholar
  86. Thordarson T, Self S (1993) The Laki (Skaftdr Fires) and Grimsvotn eruptions in 1783-1785. Bull Volcanol 55(4):233–263.  https://doi.org/10.1007/BF00624353 CrossRefGoogle Scholar
  87. Thordarson T, Self S (2003) Atmospheric and environmental effects of the 1783–1784 Laki eruption: a review and reassessment. J Geophys Res 108(D1):4011.  https://doi.org/10.1029/2001JD002042 CrossRefGoogle Scholar
  88. Thordarson T, Self S, Oskarsson N, Hulsebosch T, Óskarsson N, Hulsebosch T (1996) Sulfur, chlorine, and fluorine degassing and atmospheric loading by the 1783-1784 AD Laki (Skaftàr Fires) eruption in Iceland. Bull Volcanol 58(2-3):205–225.  https://doi.org/10.1007/s004450050136 CrossRefGoogle Scholar
  89. Thordarson T, Miller DJ, Larsen G, Self S, Sigurdsson H (2001) New estimates of sulfur degassing and atmospheric mass-loading by the 934 AD Eldgjà eruption, Iceland. J Volcanol Geotherm Res 108(1-4):33–54.  https://doi.org/10.1016/S0377-0273(00)00277-8 CrossRefGoogle Scholar
  90. Thordarson T, Self S, Miller DJ, Larsen G and Vilmundardóttir EG (2003) Sulphur release from flood lava eruptions in the Veidivotn, Grimsvotn and Katla volcanic systems, Iceland. In: Oppenheimer C, Pyle DM, Barclay J (eds) Volcanic degassing. Geological Society of London, Special Publications (213), pp 103–121Google Scholar
  91. Thordarson T, Sigmarsson O, Hartley MEME, Miller J, Thordarson T, Sigmarsson O, Hartley MEME, Miller J (2010) Is formation segregation melts in basaltic lava flows a viable analogue to melt generation in basaltic systems? Geophys Res Abstr 12:13401–13401Google Scholar
  92. Turner GM, Thompson R (1981) Lake sediment record of the geomagnetic secular variation in Britain during Holocene times. Geophys J R Astron Soc 65(3):703–725.  https://doi.org/10.1111/j.1365-246X.1981.tb04879.x CrossRefGoogle Scholar
  93. Turner GM, Thompson R (1982) Detransformation of the British geomagnetic secular variation record for Holocene times. Geophys J R Astron Soc 70(3):789–792.  https://doi.org/10.1111/j.1365-246X.1982.tb05983.x CrossRefGoogle Scholar
  94. Vezzoli L, Principe C, Malfatti J, Arrighi S, Tanguy JC, Le Goff M (2009) Modes and times of caldera resurgence: the < 10 ka evolution of Ischia Caldera, Italy, from high-precision archaeomagnetic dating. J Volcanol Geotherm Res 186(3-4):305–319.  https://doi.org/10.1016/j.jvolgeores.2009.07.008 CrossRefGoogle Scholar
  95. Vilmundardóttir EG (1977) Tungnárhraun Jarðfræðiskýrsla. Orkustofnun OS ROD 7702Google Scholar
  96. Vilmundardóttir EG, Gudmundsson A, Snorrason SP (1983) Geological map, Burfell-Langalda, 3540-B, 1:50′000. Orkustofnun, Vatnsorkudeild-Landsvirkjun, Reykjavik, Iceland VOD-JK-840-EGV/Ag.G/SPSGoogle Scholar
  97. Vilmundardóttir EG, Snorrason SP, Larsen G, Gudmundsson A (1988) Geological map, Sigalda-Veidivotn, 3340-B, 1:50′000. Orkustofnun, Reykjavik.Google Scholar
  98. Vilmundardóttir EG, Gudmundsson A, Snorrason SP, Larsen G (1990) Geological map, Botnafjoll, 1913 IV, 1:50′000. Orkustofnun, Vatnsorkudeild-Landsvirkjun, Reykjavik, Iceland VOD-JK-840-89.06.033IGoogle Scholar
  99. Zanella E, De Astis G, Lanza R (2001) Palaeomagnetism of welded, pyroclastic-fall scoriae at Vulcano, Aeolian archipelago. J Volcanol Geotherm Res 107(1-3):71–86.  https://doi.org/10.1016/S0377-0273(00)00298-5 CrossRefGoogle Scholar
  100. Zielinski GA, Germani MS, Larsen G, Baillie MGL, Whitlow S, Twickler MS, Taylor K (1995) Evidence of the Eldgja (Iceland) eruption in the GISP2 Greenland ice core: relationship to eruption processes and climatic conditions in the tenth century. The Holocene 5(2):129–140.  https://doi.org/10.1177/095968369500500201 CrossRefGoogle Scholar
  101. Zijderveld JDA (1967) AC demagnetization of rocks: analysis of results. Methods Paleomagn:254–286Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Dipartimento di Scienze, Sezione di GeologiaUniversità Roma TreRomeItaly
  2. 2.Istituto Nazionale di Geofisica e VulcanologiaRomeItaly
  3. 3.Faculty of Earth SciencesUniversity of IcelandReykjavikIceland

Personalised recommendations