Advertisement

Bulletin of Volcanology

, 80:11 | Cite as

Historic hydrovolcanism at Deception Island (Antarctica): implications for eruption hazards

  • Dario PedrazziEmail author
  • Károly Németh
  • Adelina Geyer
  • Antonio M. Álvarez-Valero
  • Gerardo Aguirre-Díaz
  • Stefania Bartolini
Research Article

Abstract

Deception Island (Antarctica) is the southernmost island of the South Shetland Archipelago in the South Atlantic. Volcanic activity since the eighteenth century, along with the latest volcanic unrest episodes in the twentieth and twenty-first centuries, demonstrates that the volcanic system is still active and that future eruptions are likely. Despite its remote location, the South Shetland Islands are an important touristic destination during the austral summer. In addition, they host several research stations and three summer field camps. Deception Island is characterised by a Quaternary caldera system with a post-caldera succession and is considered to be part of an active, dispersed (monogenetic), volcanic field. Historical post-caldera volcanism on Deception Island involves monogenetic small-volume (VEI 2–3) eruptions such forming cones and various types of hydrovolcanic edifices. The scientific stations on the island were destroyed, or severely damaged, during the eruptions in 1967, 1969, and 1970 mainly due to explosive activity triggered by the interaction of rising (or erupting) magma with surface water, shallow groundwater, and ice. We conducted a detailed revision (field petrology and geochemistry) of the historical hydrovolcanic post-caldera eruptions of Deception Island with the aim to understand the dynamics of magma-water interaction, as well as characterise the most likely eruptive scenarios from future eruptions. We specifically focused on the Crimson Hill (estimated age between 1825 and 1829), and Kroner Lake (estimated age between 1829 and 1912) eruptions and 1967, 1969, and 1970 events by describing the eruption mechanisms related to the island’s hydrovolcanic activity. Data suggest that the main hazards posed by volcanism on the island are due to fallout, ballistic blocks and bombs, and subordinate, dilute PDCs. In addition, Deception Island can be divided into five areas of expected activity due to magma-water interaction, providing additional data for correct hazard assessment on the island.

Keywords

Crimson Hill Kroner Lake Monogenetic volcanism South Shetland Islands Historical activity Hydrovolcanism 

Notes

Acknowledgments

A.G. is grateful for her Ramón y Cajal contract (RYC-2012-11024). D.P. is grateful for his Beatriu de Pinós contract (2016 BP 00086). We thank the Associated Editor Jacopo Taddeucci, the Executive Editor Andrew Harris, and two anonymous reviewers for their constructive and supportive comments that significantly helped us to improve the manuscript. We thank all the military staff of the Spanish Antarctic Base Gabriel de Castilla for their constant help and for the logistic support, without which this research would not have been possible. We also thank the Laboratorio de Astronomía, Geodesia y Cartografía (Universidad de Cádiz) for providing the orthophotomap of Deception Island as well as the digital elevation model and the shape files of the geological map. English text was corrected by Dr. Grant George Buffett of Terranova Scientific.

Funding

This research was supported by the MICINN grant CTM2011-13578-E and was partially funded by the POSVOLDEC project (CTM2016-79617-P) (AEI/FEDER-UE). Analyses of stable isotopes were funded by the grant Programa Propio I (Usal-2014) through A.M.A-V.

Supplementary material

445_2017_1186_MOESM1_ESM.docx (16 kb)
Supplementary Material 1 UTM coordinates (Zone 20 S) of stratigraphic logs of Figs. 2, 3, 5. (DOCX 16 kb)
445_2017_1186_MOESM2_ESM.jpg (977 kb)
Supplementary Material 2 Grain Size analysis of Kroner Lake pyroclastic deposits. (JPEG 977 kb)
445_2017_1186_MOESM3_ESM.jpg (988 kb)
(JPEG 987 kb)
445_2017_1186_MOESM4_ESM.xlsx (24 kb)
Supplementary Material 3 Selected representative rock samples of this study and geochemical data from previous papers. (XLSX 23 kb)

References

  1. Agustín-Flores J, Németh K, Cronin SJ, Lindsay JM, Kereszturi G, Brand BD, Smith IEM (2014) Phreatomagmatic eruptions through unconsolidated coastal plain sequences, Maungataketake, Auckland Volcanic Field (New Zealand). J Volcanol Geotherm Res 276(Supplement C):46–63CrossRefGoogle Scholar
  2. Agustín-Flores J, Németh K, Cronin SJ, Lindsay JM, Kereszturi G (2015a) Construction of the North Head (Maungauika) tuff cone: a product of Surtseyan volcanism, rare in the Auckland Volcanic Field, New Zealand. Bull Volcanol 77(2):11.  https://doi.org/10.1007/s00445-014-0892-9 CrossRefGoogle Scholar
  3. Agustín-Flores J, Németh K, Cronin SJ, Lindsay JM, Kereszturi G (2015b) Shallow-seated explosions in the construction of the Motukorea tuff ring (Auckland, New Zealand): evidence from lithic and sedimentary characteristics. J Volcanol Geotherm Res 304(Supplement C):272–286CrossRefGoogle Scholar
  4. Almendros J, Carmona E, Jiménez V, Díaz-Moreno A, Lorenzo F, Berrocoso M, de Gil A, Fernández-Ros A, Rosado B, Prates G, Peci LM (2015) Deception Island: sustained deformation and large increase in seismic activity during the 2014-2015 survey. Expert Group on Antarctic Volcanism (ANTVOLC). SCAR, Kickstart Meeting, Catania, ItalyGoogle Scholar
  5. Aramaki S, Hayakawa Y, Fujii T, Nakamura K, Fukuoka T (1986) The October 1983 eruption of Miyakejima volcano. J Volcanol Geotherm Res 29(1):203–229.  https://doi.org/10.1016/0377-0273(86)90045-4 CrossRefGoogle Scholar
  6. Baker PE, McReath I (1971) Geological investigations on Deception Island. Antarct J US 6(4):85–86Google Scholar
  7. Baker PE, McReath I, Harvey MR, Roobol MJ, Davies TG (1975) The geology of the South Shetland Islands. V. Volcanic evolution of Deception Island. British Antarctic Survey. 78:81 PPGoogle Scholar
  8. Barclay AH, Wilcock WSD, Ibáñez JM (2009) Bathymetric constraints on the tectonic and volcanic evolution of Deception Island Volcano, South Shetland Islands. Antarct Sci 21(2):153–167Google Scholar
  9. Bartolini S, Geyer A, Martí J, Pedrazzi D, Aguirre-Díaz G (2014) Volcanic hazard on Deception Island (South Shetland Islands, Antarctica). J Volcanol Geotherm Res 285(Supplement C):150–168CrossRefGoogle Scholar
  10. Bender NA, Crosbie K, Lynch HJ (2016) Patterns of tourism in the Antarctic Peninsula region: a 20-year analysis. Antarct Sci 28(3):194–203.  https://doi.org/10.1017/S0954102016000031 CrossRefGoogle Scholar
  11. Bigeleisen J, Perlman ML, Prosser HC (1952) Conversion of hydrogenic materials to hydrogen for isotopic analysis. Anal Chem 24(8):1356–1357.  https://doi.org/10.1021/ac60068a025 CrossRefGoogle Scholar
  12. Bindeman I (2008) Oxygen isotopes in mantle and crustal magmas as revealed by single crystal analysis. Rev Mineral Geochem 69(1):445–478.  https://doi.org/10.2138/rmg.2008.69.12 CrossRefGoogle Scholar
  13. Björnsson H (2003) Subglacial lakes and jökulhlaups in Iceland. Glob Planet Chang 35(3):255–271.  https://doi.org/10.1016/S0921-8181(02)00130-3 CrossRefGoogle Scholar
  14. Blaikie TN, van Otterloo J, Ailleres L, Betts PG, Cas RAF (2015) The erupted volumes of tephra from maar volcanoes and estimates of their VEI magnitude: Examples from the late Cenozoic Newer Volcanics Province, south-eastern Australia. J Volcanol Geotherm Res 301(Supplement C):81–89CrossRefGoogle Scholar
  15. Bonadonna C, Costa A (2013) Plume height, volume, and classification of explosive volcanic eruptions based on the Weibull function. Bull Volcanol 75(8):742.  https://doi.org/10.1007/s00445-013-0742-1 CrossRefGoogle Scholar
  16. Breard ECP, Lube G, Cronin SJ, Valentine GA (2015) Transport and deposition processes of the hydrothermal blast of the 6 August 2012 Te Maari eruption, Mt. Tongariro. Bull Volcanol 77(11):100.  https://doi.org/10.1007/s00445-015-0980-5 CrossRefGoogle Scholar
  17. Brenna M, Németh K, Cronin SJ, Sohn YK, Smith IEM, Wijbrans J (2015) Co-located monogenetic eruptions ~200 kyr apart driven by tapping vertically separated mantle source regions, Chagwido, Jeju Island, Republic of Korea. Bull Volcanol 77(5):43.  https://doi.org/10.1007/s00445-015-0928-9 CrossRefGoogle Scholar
  18. Büttner R, Zimanowski B, Mohrholz C-O, Kümmel R (2005) Analysis of thermohydraulic explosion energetics. J Appl Phys 98(4):043524.  https://doi.org/10.1063/1.2033149 CrossRefGoogle Scholar
  19. Carmona J, Romero C, Dóniz J, García A (2011) Characterization and facies analysis of the hydrovolcanic deposits of Montaña Pelada tuff ring: Tenerife, Canary Islands. J Afr Earth Sci 59(1):41–50.  https://doi.org/10.1016/j.jafrearsci.2010.07.003 CrossRefGoogle Scholar
  20. Carrivick JL (2007) Hydrodynamics and geomorphic work of jökulhlaups (glacial outburst floods) from Kverkfjöll volcano, Iceland. Hydrol Process 21(6):725–740.  https://doi.org/10.1002/hyp.6248 CrossRefGoogle Scholar
  21. Carrivick JL, Russell AJ, Tweed FS (2004) Geomorphological evidence for jökulhlaups from Kverkfjöll volcano, Iceland. Geomorphology 63(1):81–102.  https://doi.org/10.1016/j.geomorph.2004.03.006 CrossRefGoogle Scholar
  22. Cas RAF, Wright JV (1987) Volcanic successions, modern and ancient. A geological approach to processes products and successions. 528 ppGoogle Scholar
  23. Clarke H, Troll VR, Carracedo JC (2009) Phreatomagmatic to Strombolian eruptive activity of basaltic cinder cones: Montaña Los Erales, Tenerife, Canary Islands. J Volcanol Geotherm Res 180(2):225–245.  https://doi.org/10.1016/j.jvolgeores.2008.11.014 CrossRefGoogle Scholar
  24. Clayton RN, Mayeda TK (1963) The use of bromine pentafluoride in the extraction of oxygen from oxides and silicates for isotopic analysis. Geochim Cosmochim Acta 27(1):43–52.  https://doi.org/10.1016/0016-7037(63)90071-1 CrossRefGoogle Scholar
  25. Cole P, Guest J, Duncan A, Pacheco J (2001) Capelinhos 1957–1958, Faial, Azores: deposits formed by an emergent Surtseyan eruption. Bull Volcanol 63(2):204–220.  https://doi.org/10.1007/s004450100136 CrossRefGoogle Scholar
  26. Cole PD, Neri A, Baxter PJ (2015) Hazards from pyroclastic density currents. In: Sigurdsson H, Houghton BF, McNutt SR, Rymer H, Stix J (eds) Encyclopedia of volcanoes. Academic Press, San Diego, pp 943–956.  https://doi.org/10.1016/B978-0-12-385938-9.00054-7 CrossRefGoogle Scholar
  27. Connor CB, Conway FM (2000) Basaltic volcanic fields. In: Sigurdsson H (ed) Encyclopedia of volcanoes. Academic Press, San Francisco, pp 331–343Google Scholar
  28. Dalziel IWD (1984) Tectonic evolution of a forearc terrane, southern Scotia Ridge, Antarctica. In: Dalziel IWD (ed) Tectonic evolution of a forearc terrane. Geological Society of America, Southern Scotia Ridge.  https://doi.org/10.1130/SPE200-p1 Google Scholar
  29. De La Nuez J, Alonso J, Quesada M, Macu M (1993) Edificios hidromagmáticos costeros de Tenerife (Islas Canarias). Rev Soc Geol España 6(1–2):47–59Google Scholar
  30. De Silva S, Lindsay JM (2015) Primary volcanic landforms. In Sigurdsson, Haraldur, et al., eds. The encyclopedia of volcanoes. Elsevier: 273–297. doi: https://doi.org/10.1016/B978-0-12-385938-9.00015-8
  31. Eagles G (2004) Tectonic evolution of the Antarctic–Phoenix plate system since 15 Ma. Earth Planet Sci Lett 217(1):97–109.  https://doi.org/10.1016/S0012-821X(03)00584-3 CrossRefGoogle Scholar
  32. Fretzdorff S, Smellie JL (2002) Electron microprobe characterization of ash layers in sediments from the central Bransfield basin (Antarctic Peninsula): evidence for at least two volcanic sources. Antarct Sci 14(4):412–421Google Scholar
  33. Geerts B, Linacre E (1997) Sunspots and climate. Reproduced at uwyo. edu, 1997 - http://www-das.uwyo.edu
  34. Godfrey JD (1962) The deuterium content of hydrous minerals from the East-Central Sierra Nevada and Yosemite National Park. Geochim Cosmochim Acta 26(12):1215–1245.  https://doi.org/10.1016/0016-7037(62)90053-4 CrossRefGoogle Scholar
  35. González-Ferrán O, Munizafa F, Moreno H (1971) Sintesis de la evolución volcánica de Isla Decepción y la erupción de 1970. Instituto Antártico Chileno Serie Científicas 2:1–14Google Scholar
  36. Gràcia E, Canals M, Lí Farràn M, José Prieto M, Sorribas J, Team G (1996) Morphostructure and evolution of the central and eastern Bransfield basins (NW Antarctic Peninsula). Mar Geophys Res 18(2):429–448.  https://doi.org/10.1007/BF00286088 CrossRefGoogle Scholar
  37. Grad M, Guterch A, Środa P (1992) Upper crustal structure of Deception Island area, Bransfield Strait, West Antarctica. Antarct Sci 4(4):469–476Google Scholar
  38. Graettinger AH, Valentine GA, Sonder I, Ross PS, White JDL, Taddeucci J (2014) Maar-diatreme geometry and deposits: subsurface blast experiments with variable explosion depth. Geochem Geophys Geosyst 15(3):740–764.  https://doi.org/10.1002/2013GC005198 CrossRefGoogle Scholar
  39. Graettinger AH, Valentine GA, Sonder I (2015a) Circum-crater variability of deposits from discrete, laterally and vertically migrating volcanic explosions: Experimental evidence and field implications. J Volcanol Geotherm Res 308(Supplement C):61–69CrossRefGoogle Scholar
  40. Graettinger AH, Valentine GA, Sonder I, Ross P-S, White JDL (2015b) Facies distribution of ejecta in analog tephra rings from experiments with single and multiple subsurface explosions. Bull Volcanol 77(8):66.  https://doi.org/10.1007/s00445-015-0951-x CrossRefGoogle Scholar
  41. Gudmundsson G (2011) Respiratory health effects of volcanic ash with special reference to Iceland. A review. Clin Respir J 5(1):2–9.  https://doi.org/10.1111/j.1752-699X.2010.00231.x CrossRefGoogle Scholar
  42. Gudmundsson MT, Sigmundsson F, Björnsson H (1997) Ice–volcano interaction of the 1996 Gjálp subglacial eruption, Vatnajökull, Iceland. Nature 389(6654):954–957.  https://doi.org/10.1038/40122 CrossRefGoogle Scholar
  43. Hawkes DD (1961) The geology of the South Shetland Islands: II. The geology and petrology of Deception Island 27 (HMSO)Google Scholar
  44. Horwell CJ, Baxter PJ (2006) The respiratory health hazards of volcanic ash: a review for volcanic risk mitigation. Bull Volcanol 69(1):1–24.  https://doi.org/10.1007/s00445-006-0052-y CrossRefGoogle Scholar
  45. Houghton BF, Hackett WR (1984) Strombolian and phreatomagmatic deposits of Ohakune craters, Ruapehu, New Zealand: a complex interaction between external water and rising basaltic magma. J Volcanol Geotherm Res 21(3–4):207–231.  https://doi.org/10.1016/0377-0273(84)90023-4 CrossRefGoogle Scholar
  46. Houghton BF, Wilson CJN, Smith IEM (1999) "Shallow-seated controls on styles of explosive basaltic volcanism: a case study from New Zealand." J Volcanol Geotherm Res 91(1):97-120Google Scholar
  47. Ibáñez JM, Almendros J, Carmona E, Martí C, Abril M (2003) The recent seismo-volcanic activity at Deception Island volcano. Deep-Sea Res II Top Stud Oceanogr 50(10):1611–1629.  https://doi.org/10.1016/S0967-0645(03)00082-1 CrossRefGoogle Scholar
  48. Irvine TN, Baragar WRA (1971) A guide to the chemical classification of the common volcanic rocks. Can J Earth Sci 8(5):523–548.  https://doi.org/10.1139/e71-055 CrossRefGoogle Scholar
  49. Jeffers J, Anderson J (1990) Sequence stratigraphy of the Bransfield Basin, Antarctica: implications for tectonic history and hydrocarbonpotential In: St. John B (ed) Antarctica as an exploration frontier: hydrocarbon potential, geology and hazards Am Ass Petrol Geol Stud Geol 31:13–29Google Scholar
  50. Keller RA, Fisk MR, White WM, Birkenmajer K (1992) Isotopic and trace element constraints on mixing and melting models of marginal basin volcanism, Bransfield Strait, Antarctica. Earth Planet Sci Lett 111(2):287–303.  https://doi.org/10.1016/0012-821X(92)90185-X CrossRefGoogle Scholar
  51. Kendal L (1831) Account of the island of deception, one of the New Shetland Isles. J R Geogr Soc Lond 1:62–66Google Scholar
  52. Kereszturi G, Németh K (2012) Monogenetic basaltic volcanoes: genetic classification, growth, geomorphology and degradation. In: Nemeth K (ed) Updates in volcanology—new advances in understanding volcanic systems. InTech, Rijeka, p Ch. 1Google Scholar
  53. Kereszturi G, Németh K, Cronin SJ, Agustín-Flores J, Smith IEM, Lindsay J (2013) A model for calculating eruptive volumes for monogenetic volcanoes—implication for the Quaternary Auckland Volcanic Field, New Zealand. J Volcanol Geotherm Res 266(Supplement C):16–33CrossRefGoogle Scholar
  54. Kereszturi G, Németh K, Cronin SJ, Procter J, Agustín-Flores J (2014) Influences on the variability of eruption sequences and style transitions in the Auckland Volcanic Field, New Zealand. J Volcanol Geotherm Res 286(Supplement C):101–115CrossRefGoogle Scholar
  55. Kereszturi G, Bebbington M, Németh K (2017) Forecasting transitions in monogenetic eruptions using the geologic record. Geology 45(3):283–286.  https://doi.org/10.1130/G38596.1 CrossRefGoogle Scholar
  56. Kienle J, Kyle PR, Self S, Motyka RJ, Lorenz V (1980) Ukinrek Maars, Alaska, I. April 1977 eruption sequence, petrology and tectonic setting. J Volcanol Geotherm Res 7(1):11–37.  https://doi.org/10.1016/0377-0273(80)90018-9 CrossRefGoogle Scholar
  57. Lawver LA, Keller RA, Fisk MR, Strelin JA (1995) Bransfield Strait, Antarctic Peninsula active extension behind a dead arc. In: Taylor B (ed) Backarc basins: tectonics and magmatism. Springer US, Boston, MA, pp 315–342. doi: https://doi.org/10.1007/978-1-4615-1843-3_8
  58. Le Bas MJ, Le Maitre RW, Streckeisen A, Zanettin B (1986) A chemical classification of volcanic rocks based on the total alkali-silica diagram. J Petrol 27(3):745–750.  https://doi.org/10.1093/petrology/27.3.745 CrossRefGoogle Scholar
  59. Lorenz V (1986) On the growth of maars and diatremes and its relevance to the formation of tuff rings. Bull Volcanol 48(5):265–274.  https://doi.org/10.1007/BF01081755 CrossRefGoogle Scholar
  60. Lorenz V (2003) Maar-diatreme volcanoes, their formation, and their setting in hard-rock or soft-rock environments. GeoLines 15:72–83Google Scholar
  61. Lorenz V, Suhr P, Suhr S (2017) Phreatomagmatic maar-diatreme volcanoes and their incremental growth: a model. Geol Soc Lond, Spec Publ 446(1):29–59.  https://doi.org/10.1144/SP446.4 CrossRefGoogle Scholar
  62. Machado F, Parsons WH, Richards AF, Mulford JW (1962) Capelinhos eruption of Fayal Volcano, Azores, 1957-1958. J Geophys Res 67(9):3519–3529.  https://doi.org/10.1029/JZ067i009p03519 CrossRefGoogle Scholar
  63. Macorps É, Graettinger AH, Valentine GA, Ross P-S, White JDL, Sonder I (2016) The effects of the host-substrate properties on maar-diatreme volcanoes: experimental evidence. Bull Volcanol 78(4):26.  https://doi.org/10.1007/s00445-016-1013-8 CrossRefGoogle Scholar
  64. Maeno F, Nakada S, Oikawa T, Yoshimoto M, Komori J, Ishizuka Y, Takeshita Y, Shimano T, Kaneko T, Nagai M (2016) Reconstruction of a phreatic eruption on 27 September 2014 at Ontake volcano, central Japan, based on proximal pyroclastic density current and fallout deposits. Earth Planets Space 68(1):82.  https://doi.org/10.1186/s40623-016-0449-6 CrossRefGoogle Scholar
  65. Martí J, Planagumà L, Geyer A, Canal E, Pedrazzi D (2011) Complex interaction between Strombolian and phreatomagmatic eruptions in the Quaternary monogenetic volcanism of the Catalan Volcanic Zone (NE of Spain). J Volcanol Geotherm Res 201(1):178–193.  https://doi.org/10.1016/j.jvolgeores.2010.12.009 CrossRefGoogle Scholar
  66. Martí J, Geyer A, Aguirre-Diaz G (2013) Origin and evolution of the Deception Island caldera (South Shetland Islands, Antarctica). Bull Volcanol 75(6):732.  https://doi.org/10.1007/s00445-013-0732-3 CrossRefGoogle Scholar
  67. Moreton SG, Smellie JL (1998) Identification and correlation of distal tephra layers in deep-sea sediment cores, Scotia Sea, Antarctica. Ann Glaciol 27(1):285–289.  https://doi.org/10.3189/1998AoG27-1-285-289 CrossRefGoogle Scholar
  68. Needham AJ, Lindsay JM, Smith IEM, Augustinus P, Shane PA (2011) Sequential eruption of alkaline and sub-alkaline magmas from a small monogenetic volcano in the Auckland Volcanic Field, New Zealand. J Volcanol Geotherm Res 201(1–4):126–142.  https://doi.org/10.1016/j.jvolgeores.2010.07.017 CrossRefGoogle Scholar
  69. Németh K, Cronin SJ (2007) Syn- and post-eruptive erosion, gully formation, and morphological evolution of a tephra ring in tropical climate erupted in 1913 in West Ambrym, Vanuatu. Geomorphology 86(1):115–130.  https://doi.org/10.1016/j.geomorph.2006.08.016 CrossRefGoogle Scholar
  70. Németh K, Cronin SJ (2009) Phreatomagmatic volcanic hazards where rift-systems meet the sea, a study from Ambae Island, Vanuatu. J Volcanol Geotherm Res 180(2):246–258.  https://doi.org/10.1016/j.jvolgeores.2008.08.011 CrossRefGoogle Scholar
  71. Németh K, Cronin SJ (2011) Drivers of explosivity and elevated hazard in basaltic fissure eruptions: the 1913 eruption of Ambrym Volcano, Vanuatu (SW-Pacific). J Volcanol Geotherm Res 201(1–4):194–209.  https://doi.org/10.1016/j.jvolgeores.2010.12.007 CrossRefGoogle Scholar
  72. Németh K, Kereszturi G (2015) Monogenetic volcanism: personal views and discussion. Int J Earth Sci 104(8):2131–2146.  https://doi.org/10.1007/s00531-015-1243-6 CrossRefGoogle Scholar
  73. Newhall CG, Self S (1982) The volcanic explosivity index (VEI) an estimate of explosive magnitude for historical volcanism. J Geophys Res: Oceans 87(C2):1231–1238.  https://doi.org/10.1029/JC087iC02p01231 CrossRefGoogle Scholar
  74. Oliva-Urcia B, Gil-Peña I, Maestro A, López-Martínez J, Galindo-Zaldívar J, Soto R, Gil-Imaz A, Rey J, Pueyo O (2016) Paleomagnetism from Deception Island (South Shetlands archipelago, Antarctica), new insights into the interpretation of the volcanic evolution using a geomagnetic model. Int J Earth Sci 105(5):1353–1370.  https://doi.org/10.1007/s00531-015-1254-3 CrossRefGoogle Scholar
  75. Orheim O (1971) Volcanic activity on Deception Island, South Shetland Islands. In: ADIE RJ (ed) Antarctic geology and geophysics. Universitetsforlaget, Oslo, pp 117–120Google Scholar
  76. Orheim O (1972) Volcanic activity on Deception Island, South Shetland Islands. Ohio State University, Institute of Polar StudiesGoogle Scholar
  77. Palladino D, Valentine G, Sottili G, Taddeucci J (2015) Maars to calderas: end-members on a spectrum of explosive volcanic depressions. Front Earth Sci 3(36)Google Scholar
  78. Pardo N, Macias JL, Giordano G, Cianfarra P, Avellán DR, Bellatreccia F (2009) The ∼ 1245 yr BP Asososca maar eruption: the youngest event along the Nejapa–Miraflores volcanic fault, Western Managua, Nicaragua. J Volcanol Geotherm Res 184(3–4):292–312.  https://doi.org/10.1016/j.jvolgeores.2009.04.006 CrossRefGoogle Scholar
  79. Pardo N, Cronin SJ, Németh K, Brenna M, Schipper CI, Breard E, White JDL, Procter J, Stewart B, Agustín-Flores J, Moebis A, Zernack A, Kereszturi G, Lube G, Auer A, Neall V, Wallace C (2014) Perils in distinguishing phreatic from phreatomagmatic ash; insights into the eruption mechanisms of the 6 August 2012 Mt. Tongariro eruption, New Zealand. J Volcanol Geotherm Res 286(Supplement C):397–414CrossRefGoogle Scholar
  80. Parfitt EA (2004) A discussion of the mechanisms of explosive basaltic eruptions. J Volcanol Geotherm Res 134(1):77–107.  https://doi.org/10.1016/j.jvolgeores.2004.01.002 CrossRefGoogle Scholar
  81. Peccerillo A, Tripodo A, Villari L, Currieri S, Zimbalaiti E (1991) Genesis and evolution of volcanism in back-arc areas. A case history, the Island of Deception (Western Antarctica). Periodico di Mineral 60(1–3):29–44Google Scholar
  82. Pedrazzi D, Martí J, Geyer A (2013) Stratigraphy, sedimentology and eruptive mechanisms in the tuff cone of El Golfo (Lanzarote, Canary Islands). Bull Volcanol 75(7):740.  https://doi.org/10.1007/s00445-013-0740-3 CrossRefGoogle Scholar
  83. Pedrazzi D, Aguirre-Díaz G, Bartolini S, Martí J, Geyer A (2014) The 1970 eruption on Deception Island (Antarctica): eruptive dynamics and implications for volcanic hazards. J Geol Soc 171(6):765–778.  https://doi.org/10.1144/jgs2014-015 CrossRefGoogle Scholar
  84. Prata F, Rose B (2015) Volcanic ash hazards to aviation. In: Sigurdsson H, Houghton BF, McNutt SR, Rymer H, Stix J (eds) Encyclopedia of volcanoes. Academic Press, San Diego, pp 911–934.  https://doi.org/10.1016/B978-0-12-385938-9.00052-3 CrossRefGoogle Scholar
  85. Roach P (1978) Nature of back-arc extension in bransfield strait. In Geophysical Journal of the Royal Astronomical Society (Vol. 53, No. 1, pp. 165–165) osney mead, oxford, oxon, england ox2 0el: blackwell science ltdGoogle Scholar
  86. Roobol MJ (1973) Historic volcanic activity at Deception Island. Brit Antarct Surv Bull 32:23–30Google Scholar
  87. Roobol MJ (1980) A model for the eruptive mechanism of Deception Island from 1820 to 1970. Brit Antarct Surv Bull 49:137–156Google Scholar
  88. Roobol MJ (1982) The volcanic hazard at Deception Island, South Shetland Islands. Brit Antarc Surv Bull 51:237-245Google Scholar
  89. Ross P-S, Delpit S, Haller MJ, Németh K, Corbella H (2011) Influence of the substrate on maar–diatreme volcanoes—an example of a mixed setting from the Pali Aike volcanic field, Argentina. J Volcanol Geotherm Res 201(1–4):253–271.  https://doi.org/10.1016/j.jvolgeores.2010.07.018 CrossRefGoogle Scholar
  90. Rottas KM, Houghton BF (2012) Structure, stratigraphy, and eruption dynamics of a young tuff ring: Hanauma Bay, O’ahu, Hawai’i. Bull Volcanol 74(7):1683–1697.  https://doi.org/10.1007/s00445-012-0624-y CrossRefGoogle Scholar
  91. Schipper CI, White JDL, Zimanowski B, Büttner R, Sonder I, Schmid A (2011) Experimental interaction of magma and “dirty” coolants. Earth Planet Sci Lett 303(3):323–336.  https://doi.org/10.1016/j.epsl.2011.01.010 CrossRefGoogle Scholar
  92. Self S, Kienle J, Huot J-P (1980) Ukinrek Maars, Alaska, II. Deposits and formation of the 1977 craters. J Volcanol Geotherm Res 7(1):39–65.  https://doi.org/10.1016/0377-0273(80)90019-0 CrossRefGoogle Scholar
  93. Sheridan MF, Wohletz KH (1983) Hydrovolcanism: basic considerations and review. J Volcanol Geotherm Res 17(1):1–29.  https://doi.org/10.1016/0377-0273(83)90060-4 CrossRefGoogle Scholar
  94. Shultz CH (1972) Eruption at Deception Island, Antarctica, August 1970. GSA Bull 83(9):2837–2842.  https://doi.org/10.1130/0016-7606(1972)83[2837:EADIAA]2.0.CO;2 CrossRefGoogle Scholar
  95. Smellie JL (1988) Recent observations on the volcanic history of Deception Island, South Shetland Islands. Brit Antarct Surv Bull 81:83Google Scholar
  96. Smellie JL (1999) The upper Cenozoic tephra record in the south polar region: a review. Glob Planet Chang 21(1):51–70.  https://doi.org/10.1016/S0921-8181(99)00007-7 CrossRefGoogle Scholar
  97. Smellie JL (2001) Lithostratigraphy and volcanic evolution of Deception Island, South Shetland Islands. Antarct Sci 73(2):788–209Google Scholar
  98. Smellie JL (2002) The 1969 subglacial eruption on Deception Island (Antarctica): events and processes during an eruption beneath a thin glacier and implications for volcanic hazards. Geol Soc Lond, Spec Publ 202(1):59–79.  https://doi.org/10.1144/GSL.SP.2002.202.01.04 CrossRefGoogle Scholar
  99. Smellie JL, López-Martínez J, Headland RK, Hernández-Cifuentes F, Maestro A, Millar IL, Rey J, Serrano E, Somoza L, Thomson JW (2002) Geology and geomorphology of Deception Island. (BAS Geomap Series, Sheets 6A and 6B).77ppGoogle Scholar
  100. Smith IEM, Németh K (2017) Source to surface model of monogenetic volcanism: a critical review. Geol Soc Lond, Spec Publ 446(1):1–28.  https://doi.org/10.1144/SP446.14 CrossRefGoogle Scholar
  101. Sohn YK, Chough SK (1989) Depositional processes of the Suwolbong tuff ring, Cheju Island (Korea). Sedimentology 36(5):837–855.  https://doi.org/10.1111/j.1365-3091.1989.tb01749.x CrossRefGoogle Scholar
  102. Sohn YK, Park KH (2005) Composite tuff ring/cone complexes in Jeju Island, Korea: possible consequences of substrate collapse and vent migration. J Volcanol Geotherm Res 141(1-2):157–175.  https://doi.org/10.1016/j.jvolgeores.2004.10.003 CrossRefGoogle Scholar
  103. Sohn YK, Park JB, Khim BK, Park KH, Koh GW (2003) Stratigraphy, petrochemistry and Quaternary depositional record of the Songaksan tuff ring, Jeju Island, Korea. J Volcanol Geotherm Res 119(1):1–20.  https://doi.org/10.1016/S0377-0273(02)00302-5 CrossRefGoogle Scholar
  104. Sohn YK, Cronin SJ, Brenna M, Smith IEM, Németh K, White JDL, Murtagh RM, Jeon YM, Kwon CW (2012) Ilchulbong tuff cone, Jeju Island, Korea, revisited: a compound monogenetic volcano involving multiple magma pulses, shifting vents, and discrete eruptive phases. GSA Bull 124(3–4):259–274.  https://doi.org/10.1130/B30447.1 CrossRefGoogle Scholar
  105. Solgevik H, Mattsson HB, Hermelin O (2007) Growth of an emergent tuff cone: fragmentation and depositional processes recorded in the Capelas tuff cone, São Miguel, Azores. J Volcanol Geotherm Res 159(1):246–266.  https://doi.org/10.1016/j.jvolgeores.2006.06.020 CrossRefGoogle Scholar
  106. Sonder I, Graettinger AH, Valentine GA (2015) Scaling multiblast craters: general approach and application to volcanic craters. J Geophys Res: Solid Earth 120(9):6141–6158CrossRefGoogle Scholar
  107. Sottili G, Taddeucci J, Palladino DM, Gaeta M, Scarlato P, Ventura G (2009) Sub-surface dynamics and eruptive styles of maars in the Colli Albani Volcanic District, Central Italy. J Volcanol Geotherm Res 180(2–4):189–202.  https://doi.org/10.1016/j.jvolgeores.2008.07.022 CrossRefGoogle Scholar
  108. Sottili G, Palladino DM, Gaeta M, Masotta M (2012) Origins and energetics of maar volcanoes: examples from the ultrapotassic Sabatini Volcanic District (Roman Province, Central Italy). Bull Volcanol 74(1):163–186.  https://doi.org/10.1007/s00445-011-0506-8 CrossRefGoogle Scholar
  109. Stroncik NA, Schmincke H-U (2002) Palagonite—a review. Int J Earth Sci 91(4):680–697.  https://doi.org/10.1007/s00531-001-0238-7 CrossRefGoogle Scholar
  110. Taylor Jr HP (1967) Oxygen isotope studies of hydrothermal mineral deposits. Geochemistry of hydrothermal ore deposits:109–142Google Scholar
  111. Torrecillas C, Berrocoso M, García-García A (2006) The Multidisciplinary Scientific Information Support System (SIMAC) for Deception Island. In: Fütterer DK, Damaske D, Kleinschmidt G, Miller H, Tessensohn F (eds) Antarctica: contributions to global earth sciences. Springer Berlin Heidelberg, Berlin, pp 397–402.  https://doi.org/10.1007/3-540-32934-X_50 CrossRefGoogle Scholar
  112. Valencio DA, Mendía J, Vilas JF (1979) Palaeomagnetism and KAr age of Mesozoic and Cenozoic igneous rocks from Antarctica. Earth Planet Sci Lett 45(1):61–68.  https://doi.org/10.1016/0012-821X(79)90107-9 CrossRefGoogle Scholar
  113. Valentine GA, Graettinger AH, Sonder I (2014) Explosion depths for phreatomagmatic eruptions. Geophys Res Lett 41(9):3045–3051.  https://doi.org/10.1002/2014GL060096 CrossRefGoogle Scholar
  114. Valentine GA, Graettinger AH, Macorps É, Ross P-S, White JDL, Döhring E, Sonder I (2015a) Experiments with vertically and laterally migrating subsurface explosions with applications to the geology of phreatomagmatic and hydrothermal explosion craters and diatremes. Bull Volcanol 77(3):15.  https://doi.org/10.1007/s00445-015-0901-7 CrossRefGoogle Scholar
  115. Valentine GA, Sottili G, Palladino DM, Taddeucci J (2015b) Tephra ring interpretation in light of evolving maar–diatreme concepts: Stracciacappa maar (central Italy). J Volcanol Geotherm Res 308(Supplement C):19–29CrossRefGoogle Scholar
  116. Verwoerd WJ, Chevallier L (1987) Contrasting types of Surtseyan tuff cones on Marion and Prince Edward islands, southwest Indian Ocean. Bull Volcanol 49(1):399–413.  https://doi.org/10.1007/BF01046633 CrossRefGoogle Scholar
  117. Vespermann D, Schmincke HU (2000) Scoria cones and tuff rings. In: Sigurdsson H, Houghton BF, McNutt SR, Rymer H, Stix J (eds) Encyclopedia of volcanoes. Academic Press, San Diego, pp 683–694Google Scholar
  118. Vuan A, Robertson Maurice SD, Wiens DA, Panza GF (2005) Crustal and upper mantle S-wave velocity structure beneath the Bransfield Strait (West Antarctica) from regional surface wave tomography. Tectonophysics 397(3):241–259.  https://doi.org/10.1016/j.tecto.2004.12.011 CrossRefGoogle Scholar
  119. Walker GPL (2000) Basaltic volcanoes and volcanic systems. In: Sigurdsson H (ed) Encyclopedia of volcanoes. Academic Press, San Francisco, pp 283–289Google Scholar
  120. White JDL (1996) Impure coolants and interaction dynamics of phreatomagmatic eruptions. J Volcanol Geotherm Res 74(3):155–170.  https://doi.org/10.1016/S0377-0273(96)00061-3 CrossRefGoogle Scholar
  121. White JDL, Houghton B (2000) Surtseyan and related phreatomagmatic eruptions. In: Sigurdsson, H., Houghton, B.F., McNutt, S.R., Rymer H., Stix J. (Editors), Encyclopedia of Volcanoes. Academic Press, San Diego, pp 495-511Google Scholar
  122. White JDL, Houghton BF (2006) Primary volcaniclastic rocks. Geology 34(8):677–680.  https://doi.org/10.1130/G22346.1 CrossRefGoogle Scholar
  123. White JDL, Ross PS (2011) Maar-diatreme volcanoes: a review. J Volcanol Geotherm Res 201(1):1–29.  https://doi.org/10.1016/j.jvolgeores.2011.01.010 CrossRefGoogle Scholar
  124. White JDL, Schmincke H-U (1999) Phreatomagmatic eruptive and depositional processes during the 1949 eruption on La Palma (Canary Islands). J Volcanol Geotherm Res 94(1):283–304.  https://doi.org/10.1016/S0377-0273(99)00108-0 CrossRefGoogle Scholar
  125. White JDL, Valentine GA (2016) Magmatic versus phreatomagmatic fragmentation: absence of evidence is not evidence of absence. Geosphere 12(5):1478–1488.  https://doi.org/10.1130/GES01337.1 CrossRefGoogle Scholar
  126. Wohletz KH (1983) Mechanisms of hydrovolcanic pyroclast formation: grain-size, scanning electron microscopy, and experimental studies. J Volcanol Geotherm Res 17(1):31–63.  https://doi.org/10.1016/0377-0273(83)90061-6 CrossRefGoogle Scholar
  127. Wohletz KH, McQueen RG (1984) Volcanic and stratospheric dustlike particles produced by experimental water-melt interactions. Geology 12(10):591–594.  https://doi.org/10.1130/0091-7613(1984)12<591:VASDPP>2.0.CO;2 CrossRefGoogle Scholar
  128. Wohletz KH, Zimanowski B, Büttner R (2013) Magma-water interactions. Modeling volcanic processes. Cambridge University Press, New York, pp 230–257CrossRefGoogle Scholar
  129. Zanon V, Pacheco JM, Pimentel A (2009) Growth and evolution of an emergent tuff cone: considerations from structural geology, geomorphology and facies analysis of São Roque Volcano, São Miguel (Azores). J Volcanol Geotherm Res 180(2–4):277–291.  https://doi.org/10.1016/j.jvolgeores.2008.09.018 CrossRefGoogle Scholar
  130. Zimanowski B, Buttner R, Koopmann A (2004) Solid Earth-L09612. Experiments on magma mixing. Geophys Res Lett 31(9).  https://doi.org/10.1029/2004GLO19687
  131. Zimanowski B, Fröhlich G, Lorenz V (1991) Quantitative experiments on phreatomagmatic explosions. J Volcanol Geotherm Res 48(3):341–358.  https://doi.org/10.1016/0377-0273(91)90050-A CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  1. 1.ICTJA, CSIC, Group of Volcanology, SIMGEO UB-CSICInstitute of Earth Sciences Jaume AlmeraBarcelonaSpain
  2. 2.Volcanic Risk Solutions, CS-INRMassey UniversityPalmerston NorthNew Zealand
  3. 3.Departamento de GeologíaUniversidad de SalamancaSalamancaSpain
  4. 4.Centro de GeocienciasUniversidad Nacional Autónoma de MéxicoQuerétaroMexico

Personalised recommendations