Advertisement

Bulletin of Volcanology

, 80:4 | Cite as

Modeling the October 2005 lahars at Panabaj (Guatemala)

  • S. J. Charbonnier
  • C. B. Connor
  • L. J. Connor
  • M. F. Sheridan
  • J. P. Oliva Hernández
  • J. A. Richardson
Research Article

Abstract

An extreme rainfall event in October of 2005 triggered two deadly lahars on the flanks of Tolimán volcano (Guatemala) that caused many fatalities in the village of Panabaj. We mapped the deposits of these lahars, then developed computer simulations of the lahars using the geologic data and compared simulated area inundated by the flows to mapped area inundated. Computer simulation of the two lahars was dramatically improved after calibration with geological data. Specifically, detailed field measurements of flow inundation area, flow thickness, flow direction, and velocity estimates, collected after lahar emplacement, were used to calibrate the rheological input parameters for the models, including deposit volume, yield strength, sediment and water concentrations, and Manning roughness coefficients. Simulations of the two lahars, with volumes of 240,200 ± 55,400 and 126,000 ± 29,000 m3, using the FLO-2D computer program produced models of lahar runout within 3% of measured runouts and produced reasonable estimates of flow thickness and velocity along the lengths of the simulated flows. We compare areas inundated using the Jaccard fit, model sensitivity, and model precision metrics, all related to Bayes’ theorem. These metrics show that false negatives (areas inundated by the observed lahar where not simulated) and false positives (areas not inundated by the observed lahar where inundation was simulated) are reduced using a model calibrated by rheology. The metrics offer a procedure for tuning model performance that will enhance model accuracy and make numerical models a more robust tool for natural hazard reduction.

Keywords

Debris flow Panabaj Extreme rainfall FLO-2D Validation metrics Model precision Model sensitivity Noneruptive event 

Notes

Acknowledgements

Field work following the Panabaj disaster was funded by OxFAM. The authors thank Jennifer Connor for her assistance with field work. Licensing for the ’Pro’ version of the FLO-2D software package was obtained through the National Science Foundation (NSF) RAPID grant 1546924.The authors would like to thank two anonymous reviewers and the editors for their constructive comments.

References

  1. Barclay J, Alexander J, Sušnik J (2007) Rainfall-induced lahars in the Belham Valley, Montserrat, West Indies. J Geolog Soc 164(4):815–827.  https://doi.org/10.1144/0016-76492006-078 CrossRefGoogle Scholar
  2. Beguería S (2006) Validation and evaluation of predictive models in hazard assessment and risk management. Nat Hazards 37(3):315–329CrossRefGoogle Scholar
  3. Bucknam RC, Coe JA, Chavarria MM, Godt JW, Tarr AC, Bradley LA, Rafferty S, Hancock D, Dart RL, Johnson ML (2016) Landslides triggered by Hurricane Mitch in Guatemala – inventory and discussion. Open-File Report 01-0443, US Geological Survey. http://pubs.usgs.gov/of/2001/ofr-01-0443
  4. Caballero L, Capra L (2014) The use of FLO2D numerical code in lahar hazard evaluation at Popocatepetĺ volcano: a 2001 lahar scenario. Nat Hazards Earth Syst Sci 14(12):3345–3355.  https://doi.org/10.5194/nhess-14-3345-2014 CrossRefGoogle Scholar
  5. Capra L, Lugo-Hubp J, Borselli L (2003) Mass movements in tropical volcanic terrains: the case of Teziutlań (México). Eng Geol 69(3–4):359–379.  https://doi.org/10.1016/S0013-7952(03)00071-1 CrossRefGoogle Scholar
  6. Capra L, Borselli L, Varley N, Gavilanes-Ruiz J, Norini G, Sarocchi D, Caballero L, Cortes A (2010) Rainfall-triggered lahars at Volcań de Colima, Mexico: surface hydro-repellency as initiation process. J Volcanol Geotherm Res 189(1–2):105–117.  https://doi.org/10.1016/j.jvolgeores.2009.10.014 CrossRefGoogle Scholar
  7. Connor C, Vacher H (2016) Learning volcanology: Modules to facilitate problem solving by undergraduate volcanology students. Stat Volcanol 2(1):1–13CrossRefGoogle Scholar
  8. Córdoba G, Villarosa G, Sheridan MF, Viramonte JG, Beigt D, Salmuni G (2015) Secondary lahar hazard assessment for Villa la Angostura, Argentina, using Two-Phase-Titan modelling code during 2011 Cordón Caulle eruption. Nat Hazards Earth Syst Sci 15(4):757–766.  https://doi.org/10.5194/nhess-15-757-2015. https://www.nat-hazards-earth-syst-sci.net/15/757/2015/ CrossRefGoogle Scholar
  9. Cronin SJ, Lecointre J, Palmer A, Neall V (2000) Transformation, internal stratification, and depositional processes within a channelised, multi-peaked lahar flow. N Z J Geol Geophys 43(1):117–128.  https://doi.org/10.1080/00288306.2000.9514874 CrossRefGoogle Scholar
  10. FLO-2D Software Inc (2017) FLO-2D Pro Model. https://www.flo-2d.com/
  11. Giron JR, Garavito F (2006) Evaluación del alud tipo lahar que soterró al Cantoń de Panabaj y afecto seriamente al Cantoń de Tzanchag Municipio de Santiago Atitlán, Solol’a. Tech. rep., INSIVUMEH (Institute of Seismology Vulcanology). Meteorology and Hydrology of Guatemala, Investigacion GeológicáGoogle Scholar
  12. Giron JR, Matias O (2006) Small tsunami (seiche) in the Santiago Bay, Lake Atitlan, Solola Guatemala. Tech. rep., INSIVUMEH (Institute of Seismology Vulcanology) Meteorology and Hydrology of Guatemala,Investigacion GeológicáGoogle Scholar
  13. Griswold JP, Iverson RM (2008) Mobility statistics and automated hazard mapping for debris flows and rock avalanches. Scientific Investigation Report 2007-5276, US Geological Survey. https://pubs.er.usgs.gov/publication/sir20075276
  14. Gudmundsson MT (2015) Hazards from lahars and jökulhlaups. In: Sigurdsson H, Houghton B, McNutt S, Rymer H, Stix J (eds) The encyclopedia of volcanoes. 2nd edn. Academic Press, pp 971–984, DOI  https://doi.org/10.1016/B978-0-12-385938-9.00056-0, (to appear in print)
  15. GVP (2013) Toliman. In: Venzke E (ed) Volcanoes of the World, vol 4.6.2. Smithsonian Institution, Washington, D. C., p 342070Google Scholar
  16. Heim A (1932) Bergsturz und menschenleben. 20, Fretz & WasmuthGoogle Scholar
  17. Heslop S, Wilson L, Head HPJ (1989) Dynamics of a confined lava flow on Kilauea volcano, Hawaii. Bull Volcanol 51(6):415–432CrossRefGoogle Scholar
  18. INSIVUMEH (2005) Resumen del impacto asociado al huracan Stan en Guatemala. Tech. rep., Instituto Nacional de Sismología, Vulcanología, Meteorología e Hidrología. http://www.insivumeh.gob.gt/folletos/Informe_STAN.pdf
  19. Iverson R, Schilling S, Vallance J (1998) Objective delineation of lahar-inundation hazard zones. Geolog Soc Amer Bull 110(8):972–984.  https://doi.org/10.1130/0016-7606(1998)110<72:ODOLIH>2.3.CO;2
  20. Iverson RM, George DL (2014) A depth-averaged debris-flow model that includes the effects of evolving dilatancy. I. Physical basis. Proc R Soc London A Math Phys Eng Sci 470:2170.  https://doi.org/10.1098/rspa.2013.0819 Google Scholar
  21. Kubanek J, Richardson JA, Charbonnier SJ, Connor LJ (2015) Lava flow mapping and volume calculations for the 2012–2013 Tolbachik, Kamchatka, fissure eruption using bistatic TanDEM-X InSAR. Bull Volcanol 77(12):106CrossRefGoogle Scholar
  22. Kuenzi WD, Horst OH, McGehee RV (1979) Effect of volcanic activity on fluvial-deltaic sedimentation in a modern arc-trench gap, southwestern Guatemala. Geol Soc Am Bull 90(9):827–838CrossRefGoogle Scholar
  23. Lavigne F, Thouret JC (2003) Sediment transportation and deposition by rain-triggered lahars at Merapi volcano, central Java, Indonesia. Geomorphology 49(1–2):45–69.  https://doi.org/10.1016/S0169-555X(02)00160-5 CrossRefGoogle Scholar
  24. Lavigne F, Thouret JC, Voight B, Suwa H, Sumaryono A (2000) Lahars at Merapi volcano, central Java: an overview. J Volcanol Geotherm Res 100(1–4):423–456.  https://doi.org/10.1016/S0377-0273(00)00150-5 CrossRefGoogle Scholar
  25. Levandowsky M, Winter D (1971) Distance between sets. Nature 234 (5323):34–35.  https://doi.org/10.1038/234034a0 CrossRefGoogle Scholar
  26. Lowe DR, Williams SN, Leigh H, Connor CB, Gemmell JB, Stoiber RE (1986) Lahars initiated by the 13 November 1985 eruption of Nevado del Ruiz, Colombia. Nature 324(6092):51–53.  https://doi.org/10.1038/324051a0 CrossRefGoogle Scholar
  27. Major JJ, Schilling SP, Pullinger CR, Escobar CD (2004) Debris-flow hazards at San Salvador, San Vicente, and San Miguel volcanoes, El Salvador. In: Rose W I, Bommer J J, López D L, Carr M J, Major J J (eds) Natural hazards in El Salvador, GSA special papers, vol 375. Geological Society of America, pp 89–108, DOI  https://doi.org/10.1130/0-8137-2375-2.89
  28. Manville V, Major JJ, Fagents SA (2013) Chapter 14 - modeling lahar behavior and hazards. In: Fagents SA, Gregg T K P, Lopes R M C (eds) Modeling volcanic processes: the physics and mathematics of volcanism. Cambridge University Press, pp 300–330, DOI  https://doi.org/10.1017/CBO9781139021562.014, (to appear in print)
  29. Martinez C, Miralles-Wilhelm F, Garcia-Martinez R (2011) Quasi-three dimensional two-phase debris flow model accounting for boulder transport. Italian J Eng Geol Environ 3:457–466Google Scholar
  30. Newhall CG (1987) Geology of the Lake Atitlan region, western Guatemala. J Volcanol Geotherm Res 33 (1-3):23–55.  https://doi.org/10.1016/0377-0273(87)90053-9 CrossRefGoogle Scholar
  31. O’Brien JS, Julien PY (1988) Laboratory analysis of mudflow properties. J Hydraul Eng 114(8):877–887.  https://doi.org/10.1061/(ASCE)0733-9429(1988)114:8(877) CrossRefGoogle Scholar
  32. O’Brien J, Fullerton W (1999) Simulation of Rio Grande floodplain inundation using Flo-2D. In: Finch DM, Whitney JC, Kelly JF, Loftin SR (eds) Rio Grande ecosystems: linking land, water, and people: toward a sustainable future for the Middle Rio Grande Basin. https://www.fs.usda.gov/treesearch/pubs/34403. USDA Forest Service Proceedings RMRS-P-7, pp 52–60
  33. O’Brien J, Julien P, Fullerton W (1993) Two-dimensional water flood and mudflow simulation. J Hydraul Eng 119(2):244–261.  https://doi.org/10.1061/(ASCE)0733-9429(1993)119:2(244) CrossRefGoogle Scholar
  34. Oliva Hernández J (2007) Evaluación de amenaza por flujos de detritos en los poblados Panabaj y Tzanchaj, Santiago Atitlan,́ Guatemala. Master’s thesis Universidad Nacional Autónoma de Nicaragua. Managua, NicaraguaGoogle Scholar
  35. Petley DN (2009) On the impact of urban landslides. In: Culshaw M G, Reeves H J, Jefferson I, Spink T (eds) Engineering geology for tomorrow’s cities, engineering geology special publications, vol 22. Geological Society of London, London, pp 83–99Google Scholar
  36. Phillips JV, Tadayon S (2006) Selection of Manning’s roughness coefficient for natural and constructed vegetated and non-vegetated channels, and vegetation maintenance plan guidelines for vegetated channels in central Arizona. Scientific Investigation Report 2006-5108, US Geological Survey. https://pubs.water.usgs.gov/sir20065108
  37. Pirulli M, Bristeau MO, Mangeney A, Scavia C (2007) The effect of the earth pressure coefficients on the runout of granular material. Environ Modell Softw 22(10):1437–1454.  https://doi.org/10.1016/j.envsoft.2006.06.006 CrossRefGoogle Scholar
  38. Pitman EB, Le L (2005) A two-fluid model for avalanche and debris flows. Philos Trans R Soc London A Math Phys Eng Sci 363(1832):1573–1601.  https://doi.org/10.1098/rsta.2005.1596 CrossRefGoogle Scholar
  39. Procter J, Cronin SJ, Fuller IC, Lube G, Manville V (2010) Quantifying the geomorphic impacts of a lake-breakout lahar, Mount Ruapehu, New Zealand. Geology 38(1):67–70.  https://doi.org/10.1130/G30129.1 CrossRefGoogle Scholar
  40. Procter J, Cronin S, Sheridan M (2012) Evaluation of Titan2D modelling forecasts for the 2007 Crater Lake break-out lahar, Mt. Ruapehu, New Zealand. Geomorphology 136(1):95–105.  https://doi.org/10.1016/j.geomorph.2011.05.001 CrossRefGoogle Scholar
  41. Pudasaini SP (2012) A general two-phase debris flow model. J Geophys Res Earth Surf 117:F3.  https://doi.org/10.1029/2011JF002186 CrossRefGoogle Scholar
  42. Richardson JA (2016) Modeling the construction and evolution of distributed volcanic fields on Earth and Mars. PhD thesis, University of South Florida. https://search.proquest.com/docview/1778511363
  43. Savage SB, Hutter K (1989) The motion of a finite mass of granular material down a rough incline. J Fluid Mech 199:177–215.  https://doi.org/10.1017/S0022112089000340 CrossRefGoogle Scholar
  44. Schilling SP (1998) LAHARZ; GIS programs for automated mapping of lahar-inundation hazard zones. Open File Report 98-638, US Geological Survey. https://pubs.er.usgs.gov/publication/ofr98638
  45. Sheridan M, Stinton A, Patra A, Pitman E, Bauer A, Nichita C (2005) Evaluating Titan2D mass-flow model using the 1963 Little Tahoma Peak avalanches, Mount Rainier, Washington. J Volcanol Geotherm Res 139 (1-2):89–102.  https://doi.org/10.1016/j.jvolgeores.2004.06.011 CrossRefGoogle Scholar
  46. Spataro W, D’Ambrosio D, Rongo R, Trunfio G (2004) An evolutionary approach for modelling lava flows through cellular automata. In: Sloot P, Chopard B, Hoekstra AG (eds) Cellular automata. ACRI 2004. lecture notes in computer science, vol 3305. Springer, Berlin, pp 725–734 ,  https://doi.org/10.1007/978-3-540-30479-1_75
  47. Stock JD, Montgomery DR, Collins BD, Dietrich WE, Sklar L (2005) Field measurements of incision rates following bedrock exposure: implications for process controls on the long profiles of valleys cut by rivers and debris flows. Geol Soc Am Bull 117(1–2):174–194CrossRefGoogle Scholar
  48. Te Chow V (1959) Open channel hydraulics. McGraw-Hill Book Company Inc, New YorkGoogle Scholar
  49. Vallance J (2000) Lahars. In: Sigurdsson H, Houghton B, McNutt S, Rymer H, Stix J (eds) The encyclopedia of volcanoes. 1st edn. Academic Press, pp 601–616Google Scholar
  50. Van Westen C, Daag A (2005) Analysing the relation between rainfall characteristics and lahar activity at Mount Pinatubo, Philippines. Earth Surf Process Landf 30(13):1663–1674.  https://doi.org/10.1002/esp.1225 CrossRefGoogle Scholar
  51. Woolhiser D (1975) Simulation of unsteady overland flow. In: Mahmood K, Yevjevich V (eds) Unsteady flow in open channels, vol 2. Water Resources Publication, pp 485–508Google Scholar
  52. Worni R, Huggel C, Stoffel M, Pulgarín B (2012) Challenges of modeling current very large lahars at Nevado del Huila Volcano, Colombia. Bull Volcanol 74(2):309–324.  https://doi.org/10.1007/s00445-011-0522-8 CrossRefGoogle Scholar
  53. Worni R, Huggel C, Clague JJ, Schaub Y, Stoffel M (2014) Coupling glacial lake impact, dam breach, and flood processes: a modeling perspective. Geomorphology 224:161–176.  https://doi.org/10.1016/j.geomorph.2014.06.031 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.University of South FloridaTampaUSA
  2. 2.University at Buffalo, The State University of New YorkBuffaloUSA
  3. 3.Centro de Estudios de Desarrollo Seguro y Desastres of the Universidad de San Carlos de GuatemalaGuatemala CityGuatemala
  4. 4.NASA Goddard Spaceflight CenterGreenbeltUSA

Personalised recommendations