Bulletin of Volcanology

, 79:65 | Cite as

Isotopically (δ13C and δ18O) heavy volcanic plumes from Central Andean volcanoes: a field study

  • C. Ian Schipper
  • Yves Moussallam
  • Aaron Curtis
  • Nial Peters
  • Talfan Barnie
  • Philipson Bani
  • H. J. Jost
  • Doug Hamilton
  • Alessandro Aiuppa
  • Giancarlo Tamburello
  • Gaetano Giudice
Research Article


Stable isotopes of carbon and oxygen in volcanic gases are key tracers of volatile transfer between Earth’s interior and atmosphere. Although important, these data are available for few volcanoes because they have traditionally been difficult to obtain and are usually measured on gas samples collected from fumaroles. We present new field measurements of bulk plume composition and stable isotopes (δ13CCO2 and δ18OH2O+CO2) carried out at three northern Chilean volcanoes using MultiGAS and isotope ratio infrared spectroscopy. Carbon and oxygen in magmatic gas plumes of Lastarria and Isluga volcanoes have δ13C in CO2 of +0.76‰ to +0.77‰ (VPDB), similar to slab carbonate; and δ18O in the H2O + CO2 system ranging from +12.2‰ to +20.7‰ (VSMOW), suggesting significant contributions from altered slab pore water and carbonate. The hydrothermal plume at Tacora has lower δ13CCO2 of −3.2‰ and δ18OH2O+CO2 of +7.0‰, reflecting various scrubbing, kinetic fractionation, and contamination processes. We show the isotopic characterization of volcanic gases in the field to be a practical complement to traditional sampling methods, with the potential to remove sampling bias that is a risk when only a few samples from accessible fumaroles are used to characterize a given volcano’s volatile output. Our results indicate that there is a previously unrecognized, relatively heavy isotopic signature to bulk volcanic gas plumes in the Central Andes, which can be attributed to a strong influence from components of the subducting slab, but may also reflect some local crustal contamination. The techniques we describe open new avenues for quantifying the roles that subduction zones and arc volcanoes play in the global carbon cycle.


Carbon isotopes Isotope ratio infrared spectroscopy Volcanic gases δ13δ18


  1. Ague JJ, Nicolescu S (2014) Carbon dioxide released from subduction zones by fluid-mediated reactions. Nat Geosci 7:355–360. doi:10.1038/NGEO2143 CrossRefGoogle Scholar
  2. Aguilera F, Tassi F, Darrah T, Moune S, Vaselli O (2012) Geochemical model of a magmatic-hydrothermal system at the Lastarria volcano, northern Chile. Bull Volcanol 74:119–134. doi:10.1007/s00445-011-0489-5 CrossRefGoogle Scholar
  3. Aguilera F, Layana S, Rodríguez-Dias A, González C, Cortés J, Inostroza M (2016) Hydrothermal alteration, fumarolic deposits and fluids from Lastarria volcanic complex: a multidisciplinary study. Andean Geol 42:166–196. doi:10.5027/andgeoV43n2-a02 Google Scholar
  4. Aiuppa A, Federico C, Giudice G, Gurrieri S (2005) Chemical mapping of a fumarolic field: La Fossa Crater, Vulcano Island (Aolian Islands, Italy). Geophys Res Lett 32:L13309. doi:10.1029/2005GL023207 CrossRefGoogle Scholar
  5. Burton MR, Sawyer GM, Granieri D (2013) Deep carbon emissions from volcanoes. Rev Mineral Geochem 75:323–354. doi:10.2138/rmg.2013.75.11 CrossRefGoogle Scholar
  6. Cahill T, Isacks BL (1992) Seismicity and shape of the subducted Nazca plate. J Geophys Res 97:17503–17529CrossRefGoogle Scholar
  7. Capaccioni B, Aguilera F, Tassi F, Darrah T, Poreda RJ, Vaselli O (2011) Geochemical and isotopic evidences of magmatic inputs in the hydrothermal reservoir feeding the fumarolic discharges of Tacora volcano (northern Chile). J Volcanol Geotherm Res 208:77–85. doi:10.1016/j.jvolgeores.2011.09.015 CrossRefGoogle Scholar
  8. Capasso G, Favara R, Inguaggiato S (1997) Chemical features and isotopic composition of gaseous manifestations on Vulcano Island, Aeolian Islands, Italy: an interpretative model of fluid circulation. Geochim Cosmochim Acta 61:3425–3440CrossRefGoogle Scholar
  9. Capasso G, Favara R, Francofonte S, Inguaggiato S (1999) Chemical and isotopic variations in fumarolic discharge and thermal waters at Vulcano Island (Aeolian islands, Italy) during 1996: evidence of resumed volcanic activity. J Volcanol Geotherm Res 88:167–175CrossRefGoogle Scholar
  10. Chaffaut I, Coudrain-Ribstein A, Michelot JL, Pouyaud B (1998) Précipitations d’altitude du Nord-Chile, origine des sources de vapeur et données isotopiques. Bull Inst Fr Etudes Andines 27:367–384Google Scholar
  11. Chen P-F, Bina CR, Okal EA (2001) Variations in slab dip along the subducting Nazca Plate, as related to stress patterns and moment release of intermediate-depth seismicity and to surface volcanism. Geochem Geophys Geosys 2:2001GC000153. doi:10.1029/2001GC000153 CrossRefGoogle Scholar
  12. Chiodini G, Cioni R, Marini L, Panichi C (1995) Origin of the fumarolic fluids of Vulcano Island, Italy and implications for volcanic surveillance. Bull Volcanol 57:99–110CrossRefGoogle Scholar
  13. Chiodini G, Allard P, Caliro S, Parello F (2000) 18O exchange between steam and carbon dioxide in volcanic and hydrothermal gases: implications for the source of water. Geochim Cosmochim Acta 64:2479–2488CrossRefGoogle Scholar
  14. Chiodini G, Caliro S, Aiuppa A, Avino R, Granieri D, Moretti R, Parello F (2011) First 13C/12C isotopic characterisation of volcanic plume CO2. Bull Volcanol 73:531–542. doi:10.1007/s00445-010-0423-2 CrossRefGoogle Scholar
  15. Cortecci G, Boschetti T, Mussi M, Herrera LC, Mucchino C, Barbieri M (2005) New chemical and original isotopic data on waters from El Tatio geothermal field, northern Chile. Geochem J 39:547–571CrossRefGoogle Scholar
  16. Dasgupta R, Hirschmann MM (2010) The deep carbon cycle and melting in Earth’s interior. Earth Planet Sci Lett 298:1–13. doi:10.1016/j.epsl.2010.06.039 CrossRefGoogle Scholar
  17. de Silva SL, Francis PW (1991) Volcanoes of the Central Andes. Springer-Verlag, Berlin, p 216Google Scholar
  18. Eby P, Gibson JJ, Yi Y (2015) Suitability of selected free-gas and dissolved-gas sampling containers for carbon isotopic analysis. Rapid Commun Mass Spectrom 29:1215–1226. doi:10.1002/rcm.7213 CrossRefGoogle Scholar
  19. Eiler JM, McInnes B, Valley JW, Graham CM, Stolper EM (1998) Oxygen isotope evidence for slab-derived fluids in the sub-arc mantle. Nature 393:777–781CrossRefGoogle Scholar
  20. Fischer TP, Chiodini G (2015) Volcanic, magmatic and hydrothermal gases. In: Sigurdsson H et al. (eds), pp 779–797Google Scholar
  21. Fischer TP, Lopez TM (2016) First airborne samples of a volcanic plume for δ13C of CO2 determinations. Geophys Res Lett 43:3272–3279. doi:10.1002/2016GL068499 CrossRefGoogle Scholar
  22. Giggenbach WF (1987) Redox processes governing the chemistry of fumarolic gas discharges from White Island, New Zealand. Appl Geochem 2:143–161Google Scholar
  23. Giggenbach WF (1992) Isotopic shifts in waters from geothermal and volcanic systems along convergent plate boundaries and their origin. Earth Planet Sci Lett 113:495–510CrossRefGoogle Scholar
  24. Giggenbach WF (1996) Chemical composition of volcanic gases. In: Scarpa R, Tilling RI (eds) pp 221–256Google Scholar
  25. Groschke M, Hillebrandt AV, Prinz P, Quinzo LA, Wilke H-G (1988) Marine mesozoic paleogragraphy in northern Chile between 21°–26°S. In: Bahlburg H et al. (eds)Google Scholar
  26. Hazen RM, Schiffries CM (2013) Why deep carbon? Rev Mineral Geochem 75:1–6. doi:10.2138/rmg.2013.75.1 CrossRefGoogle Scholar
  27. Herrera C, Custodio E (2014) Origin of waters from small springs located at the northern coast of Chile, in the vicinity of Antofagasta. Andean Geol 41:314–341. doi:10.5027/andgeoV41n2-a03 Google Scholar
  28. Hilton DR, Ramírez CJ, Mora-Amador R, Fischer TP, Füri E, Barry PH, Shaw AM (2010) Monitoring of temporal and spatial variations in fumarole helium and carbon dioxide characteristics at Poás and Turrialba volcanoes, Costa Rica (2001–2009). Geochem J 44:431–440CrossRefGoogle Scholar
  29. Hoefs J (2015) Stable isotope geochemistry, 7th edn. Springer, Heidelberg, p 402CrossRefGoogle Scholar
  30. Holloway JR, Blank JG (1994) Application of experimental results to C-O-H species in natural melts. Rev Mineral Geochem 30:187–230Google Scholar
  31. Keleman PB, Manning CE (2015) Reevaluating carbon fluxes in subduction zones, what goes down, mostly comes up. PNAS 112:E3997–E4006. doi:10.1073/pnas.1507889112 CrossRefGoogle Scholar
  32. Liotta M, Rizzo A, Paonita A, Caracausi A, Martelli M (2012) Sulfur isotopic compositions of fumarolic and plume gases at Mount Etna (Italy) and inferences on their magmatic source. Geochem Geophys Geosys 13:Q05015. doi:10.1029/2012GC004118 CrossRefGoogle Scholar
  33. Matthews SJ, Marquillas RA, Kemp AJ, Grange FK, Gardeweg MC (1996) Active skarn formation beneath lascar volcano, northern Chile: a petrographic and geochemical study of xenoliths in eruption products. J Metamorph Geol 14:509–530CrossRefGoogle Scholar
  34. Mix AC, Tiedemann R, Blum P et al (2003) Proc ODP Init Repts 202. Ocean Drilling Project, College StationGoogle Scholar
  35. Morita M, Mori T, Kazahaya R, Tsuji H (2016) Diffuse carbon dioxide emissions from hidden subsurface structures at Asama volcano, Japan. Bull Volcanol 78:17. doi:10.1007/s00445-016-1008-5 CrossRefGoogle Scholar
  36. Moussallam M, Peters N, Masias P, Apaza F, Barnie T, Schipper CI, Curtis A, Tamburello G, Aiuppa A, Bani P, Giudice G, Pieri D, Davies AG, Oppenheimer C (2017a) Magmatic gas percolation through the old lava dome of El Misti volcano. Bull Volcanol 79:46. doi:10.1007/s00445-017-1129-5 CrossRefGoogle Scholar
  37. Moussallam Y, Bani P, Curtis A, Barnie T, Moussallam M, Peters N, Schipper CI, Aiuppa A, Giudice G, Amigo A, Velasquez G, Cardona C (2016) Sustaining persistent lava lakes: observations from high-resolution gas measurements at Villarica volcano, Chile. Earth Planet Sci Lett 454:237–247. doi:10.1016/j.epsl.2016.09.012 CrossRefGoogle Scholar
  38. Moussallam Y, Tamburello G, Peters N, Apaza F, Schipper CI, Curtis A, Aiuppa A, Masias P, Boichu M, Bauduin S, Barnie T, Bani P, Giudice G, Moussallam M (2017b) Volcanic gas emissions and degassing dynamics at Ubinas and Sabancaya volcanoes: implications for the volatile budget of the central volcanic zone. J Volcanol Geotherm Res. doi:10.1016/j.jvolgeores.2017.06.027
  39. Naranjo JA (1985) Sulphur flows at Lastarria volcano in the north Chilean Andes. Nature 313:778–780CrossRefGoogle Scholar
  40. Naranjo JA (1992) Chemistry and petrological evolution of the Lastarria volcanic complex in the north Chilean Andes. Geol Mag 129:723–740. doi:10.1017/S0016756800008451 CrossRefGoogle Scholar
  41. Oehlerich M, Baumer M, Lücke A, Mayr C (2013) Effects of organic matter on carbonate stable isotope ratios (d13C, d18O values)—implications for analyses of bulk sediments. Rapid Commun Mass Spectrom 27:707–712. doi:10.1002/rcm.6492 CrossRefGoogle Scholar
  42. Paonita A, Favara R, Nuccio PM, Sortino F (2002) Genesis of fumarolic emissions as inferred by isotope mass balances: CO2 and water at Vulcano Island, Italy. Geochim Cosmochim Acta 66:759–772CrossRefGoogle Scholar
  43. Plank T, Langmuir CH (1998) The chemical composition of subducting sediment and its consequences for the crust and mantle. Chem Geol 145:325–394CrossRefGoogle Scholar
  44. Pritchard ME, Henderson ST, Jay JA, Soler V, Krzesni DA, Button NE, Welch MD, Semple AG, Glass B, Sunagua M, Minaya E, Amigo A, Clavero J (2014) Reconnaissance earthquake studies at nine volcanic areas of the central Andes with coincident satellite thermal and InSAR observations. J Volcanol Geotherm Res 280:90–103. doi:10.1016/j.jvolgeores.2014.05.004 CrossRefGoogle Scholar
  45. Richet P, Bottinga Y, Javoy M (1977) A review of hydrogen, carbon, nitrogen, oxygen, sulphur, and chlorine stable isotope fractionation among gaseous molecules. Annu Rev Earth Planet Sci 5:65–110CrossRefGoogle Scholar
  46. Rizzo AL, Jost HJ, Caracausi A, Paonita A, Liotta M, Martelli M (2014) Real-time measurements of the concentration and isotope composition of atmospheric and volcanic CO2 at Mount Etna (Italy). Geophys Res Lett 41:2382–2389. doi:10.1002/2014GL059722 CrossRefGoogle Scholar
  47. Rizzo AL, Liuzzo M, Ancellin MA, Jost HJ (2015) Real-time measurements of δ13C, CO2 concentration, and CO2/SO2 in volcanic plume gases at Mount Etna, Italy, over 5 consecutive days. Chem Geol 411:182–191. doi:10.1016/j.chemgeo.2015.07.007 CrossRefGoogle Scholar
  48. Sano Y, Marty B (1995) Origin of carbon in fumarolic gas from island arcs. Chem Geol 119:265–274CrossRefGoogle Scholar
  49. Shinohara H (2005) A new technique to estimate volcanic gas composition: plume measurements with a portable multi-sensor system. J Volcanol Geotherm Res 143:319–333CrossRefGoogle Scholar
  50. Siebert L, Simkin T (2002) Volcanoes of the world: an illustrated catalog of Holocene volcanoes and their eruptions: Smithsonian Institution, Global Volcanism Program Digital Information Series GVP-3. InGoogle Scholar
  51. Snyder G, Poreda R, Hunt A, Fehn U (2001) Regional variation in volatile composition: isotopic evidence for carbonate recycling in the Central American volcanic arc. Geochem Geophys Geosys 2:2001GC000163. doi:10.1029/2001GC000163 CrossRefGoogle Scholar
  52. Stern CR (2004) Active Andean volcanism: its geologic and tectonic setting. Rev Geol Chile 31:161–206. doi:10.4067/S0716-02082004000200001 CrossRefGoogle Scholar
  53. Sverjensky DA, Stagno V, Huang F (2014) Important role for organic carbon in subduction-zone fluids in the deep carbon cycle. Nat Geosci 7:909–913. doi:10.1038/NGEO2291 CrossRefGoogle Scholar
  54. Symonds RB, Gerlach TM, Reed MH (2001) Magmatic gas scrubbing: implications for volcano monitoring. J Volcanol Geotherm Res 108:303–341. doi:10.1016/S0377-0273(00)00292-4 CrossRefGoogle Scholar
  55. Tamburello G (2015) Ratiocalc: software for processing data from multicomponent volcanic gas analyzers. Comput Geosci 82:63–67. doi:10.1016/j.cageo.2015.05.004 CrossRefGoogle Scholar
  56. Tamburello G, Hansteen TH, Bredemeyer S, Aiuppa A, Tassi F (2014) Gas emissions from five volcanoes in northern Chile and implications for the volatiles budget of the central volcanic zone. Geophys Res Lett 41:4961–4969. doi:10.1002/2014GL060653 CrossRefGoogle Scholar
  57. Taran YA, Pokrovsky BG, Esikov AD (1989) Deuterium and oxygen-18 in fumarolic steam and amphiboles from some Kamchatka volcanoes: ‘andesitic waters’. Dokl Akad Nauk USSR 304:440–443Google Scholar
  58. Tassara A, Götze H-J, Schmidt S, Hackney R (2006) Three-dimensional density model of the Nazca plate and the Andean continental margin. J Geophys Res 111:B09404. doi:10.1029/2005JB003976 CrossRefGoogle Scholar
  59. Tassi F, Aguilera F, Vaselli O, Medina E, Tedesco D, Delgado Hertas A, Poreda R, Kojima S (2009) The magmatic- and hydrothermal-dominated fumarolic system at the active crater of lascar volcano, northern Chile. Bull Volcanol 71:171–183. doi:10.1007/s00445-008-0216-z CrossRefGoogle Scholar
  60. Tassi F, Aguilera F, Darrah T, Vaselli O, Capaccioni B, Poreda R, Delgado Hertas A (2010) Fluid geochemistry of hydrothermal systems in the Arica-Parinacota, Tarapacá and Antofagasta regions (northern Chile). J Volcanol Geotherm Res 192:1–15. doi:10.1016/j.jvolgeores.2010.02.006 CrossRefGoogle Scholar
  61. Tassi F, Aguilera F, Vaselli O, Darrah T, Medina E (2011) Gas discharges from four remote volcanoes in northern Chile (Putana, Olca, Irruputuncu and Alitar): a geochemical survey. Ann Geophys 54:121–136. doi:10.4401/ag-5173 Google Scholar
  62. Tiedemann R, Sturm A, Steph S, Lund SP, Stoner JS (2007) Astronomically calibrated timescales from 6 to 2.5 Ma and benthic isotope stratigraphies, sites 1236, 1237, 1239, and 1241. In: Tiedemann R et al. (eds) pp 1–69Google Scholar
  63. Truesdell AH, Nathenson M (1977) The effects of subsurface boiling and dilution on the isotopic compositions of Yellowstone thermal waters. J Geophys Res 82:3694–3704CrossRefGoogle Scholar
  64. Varekamp JC, Kreulen R, Poorter RPE, Van Bergen MJ (1992) Carbon sources in arc volcanism, with implications for the carbon cycle. Terra Nova 4:363–373CrossRefGoogle Scholar
  65. Vaselli O, Tassi F, Montegrossi G, Capaccioni B (2006) Sampling and analysis of volcanic gases. Acta Vulcanol 18:65–76Google Scholar
  66. Wara MW, Ravelo AC (2006) Data report: Mg/Ca, Sr/Ca, Mn/Ca, and oxygen and carbon isotope records of Pliocene–Pleistocene foraminifers from ODP leg 202 site 1237. In: Tiedemann R et al. (eds) pp 1–19Google Scholar
  67. Zellmer GF, Edmonds M, Straub SM (2016) The role of volatiles in the genesis, evolution and eruption of arc magmas. Geol Soc Lond Spc Pub 410. doi:10.1144/SP410.13

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • C. Ian Schipper
    • 1
  • Yves Moussallam
    • 2
  • Aaron Curtis
    • 3
  • Nial Peters
    • 2
  • Talfan Barnie
    • 4
  • Philipson Bani
    • 5
  • H. J. Jost
    • 6
  • Doug Hamilton
    • 7
  • Alessandro Aiuppa
    • 8
    • 9
  • Giancarlo Tamburello
    • 10
  • Gaetano Giudice
    • 9
  1. 1.School of Geography, Environment and Earth SciencesVictoria University of WellingtonWellingtonNew Zealand
  2. 2.Department of GeographyUniversity of CambridgeCambridgeUK
  3. 3.Jet Propulsion Laboratory—California Institute of TechnologyPasadenaUSA
  4. 4.Nordic Volcanological CenterInstitute of Earth SciencesReykjavikIceland
  5. 5.Université Clermont Auvergne, CNRS, IRD, OPGC, Laboratoire Magmas et VolcansClermont-FerrandFrance
  6. 6.Thermo Fisher ScientificReinachSwitzerland
  7. 7.Thermo Fisher ScientificBremenGermany
  8. 8.Dipartimento DiSTeMUniversity of PalermoPalermoItaly
  9. 9.Istituto Nazionale di Geofisica e Vulcanologia, Sezione di PalermoPalermoItaly
  10. 10.Istituto Nazionale di Geofisica e Vulcanologia, Sezione di BolognaBolognaItaly

Personalised recommendations