Bulletin of Volcanology

, 79:58 | Cite as

Eruptive and shallow conduit dynamics during Vulcanian explosions: insights from the Episode IV block field of the 1912 eruption of Novarupta, Alaska

  • S. J. Isgett
  • B. F. Houghton
  • S. A. Fagents
  • S. Biass
  • A. Burgisser
  • L. Arbaret
Research Article

Abstract

The study of ~1300 juvenile and lithic blocks from a Vulcanian phase of the 1912 eruption of Novarupta provides new insight into the state of the magma as an eruption passes from sustained Plinian to dome growth. Blocks that were predominantly ballistically ejected were measured and sampled within an ~2–3-km radius from vent and supply a picture of a dynamic and complex shallow conduit prior to magma fragmentation in repeated small explosions. Extreme conduit heterogeneity is expressed in the diverse range of dacitic block types, including pumiceous, dense, banded, and variably welded breccia clasts, all with varied degrees of surface breadcrusting. We present new maps of block lithology and size, making Episode IV the most thoroughly mapped Vulcanian deposit to date. Sectorial regions rich in specific lithologies together with the block size data suggest multiple, small explosions. Modeling of block trajectories to reproduce the field data indicates that ejection velocities range from 50 to 124 m/s with a median of ~70 m/s. We propose that individual explosions originated from a heterogeneous shallow conduit characterized both by the juxtaposition of magma domains of contrasting texture and vesiculation state and by the intimate local mingling of different textures on short vertical and horizontal length scales at the contacts between these domains. In our model, each explosion disrupted the conduit to only shallow depths and tapped diverse, localized pockets within the conduit. This contrasts with existing models for repetitive Vulcanian explosions, and suggests that the dynamics of Episode IV were more complex than a simple progressive top-down evacuation of a horizontally stratified conduit.

Keywords

Novarupta Vulcanian explosions Ballistic blocks Shallow conduit architecture 

Supplementary material

445_2017_1138_MOESM1_ESM.pdf (1.9 mb)
ESM 1(PDF 1.90 mb)

References

  1. Adams NK, Houghton BF, Fagents SA, Hildreth W (2006a) The transition from explosive to effusive eruptive regime: the example of the 1912 Novarupta eruption. Alaska Geol Soc Am Bull 118:620–634CrossRefGoogle Scholar
  2. Adams NK, Houghton BF, Hildreth W (2006b) Abrupt transitions during sustained explosive eruptions: examples from the 1912 eruption of Novarupta. Alaska Bull Volcanol 69:189–206. doi:10.1007/s00445-006-0067-4 CrossRefGoogle Scholar
  3. Alatorre-Ibargüengoitia MA, Delgado-Granados H (2006) Experimental determination of drag coefficient for volcanic materials: calibration and application of a model to Popocatépetl volcano (Mexico) ballistic projectiles. Geophys Res Lett 32. doi:10.1029/2006GL026195
  4. Alatorre-Ibargüengoitia MA, Delgado-Granados H, Dingwell DB (2012) Hazard map for volcanic ballistic impacts at Popocatépetl volcano (Mexico). Bull Volcanol 74:2155–2169. doi:10.1007/s00445-012-0657-2 CrossRefGoogle Scholar
  5. Alatorre-Ibargüengoitia MA, Scheu B, Dingwell DB, Delgado-Granados H, Taddeucci J (2010) Energy consumption by magmatic fragmentation and pyroclast ejection during Vulcanian eruptions. Earth Planet Sci Lett 291:60–69. doi:10.1016/j.epsl.2009.12.051 CrossRefGoogle Scholar
  6. Bagheri G, Bonadonna C (2016) Aerodynamics of volcanic particles: characterization of size, shape, and settling velocity. In: Mackie S, Cashman K, Ricketts H, Rust A, Watson M (eds) Volcanic ash. Elsevier, Amsterdam, pp 39–52CrossRefGoogle Scholar
  7. Benage MC, Dufek J, Degruyter W, Geist D, Harpp K, Rader E (2014) Tying textures of breadcrust bombs to their transport regime and cooling history. J Volcanol Geotherm Res 274:92–107. doi:10.1016/j.jvolgeores.2014.02.005 CrossRefGoogle Scholar
  8. Biass S, Falcone JL, Bonadonna C, Di Traglia F, Pistolesi M, Rosi M, Lestuzzi P (2016) Great Balls of Fire: A probabilistic approach to quantify the hazard related to ballistics — A case study at La Fossa volcano, Vulcano Island, Italy. J Volcanol Geotherm Res 325:1–14. doi:10.1016/j.jvolgeores.2016.06.006
  9. Bertin D (2017) 3-D ballistic transport of ellipsoidal volcanic projectiles considering horizontal wind field and variable shape-dependent drag coefficients. J Geophys Res 122:1125–1151. doi:10.1002/2016JB013320 CrossRefGoogle Scholar
  10. Burgisser A, Arbaret L, Druitt TH, Giachetti T (2011) Pre-explosive conduit conditions of the 1997 Vulcanian explosions at Soufrière Hills Volcano, Montserrat: II. Overpressure and depth distributions. J Volcanol Geotherm Res 199:193–205. doi:10.1016/j.jvolgeores.2010.11.014 CrossRefGoogle Scholar
  11. Burgisser A, Poussineau S, Arbaret L, Druitt TH, Giachetti T, Bourdier J-L (2010) Pre-explosive conduit conditions of the 1997 Vulcanian explosions at Soufrière Hills Volcano Montserrat: I. Pressure and vesicularity distributions. J Volcanol Geotherm Res 194:27–41. doi:10.1016/j.jvolgeores.2010.04.008 CrossRefGoogle Scholar
  12. Cassidy M, Cole PD, Hicks KE, Varley NR, Peters N, Lerner AH (2015) Rapid and slow: varying magma ascent rates as a mechanism for Vulcanian explosions. Earth Planet Sci Lett 420:73–84. doi:10.1016/j.epsl.2015.03.025 CrossRefGoogle Scholar
  13. Christiansen RL, Peterson DW (1981) Chronology of the 1980 eruptive activity. In: Lipman PW, Mullineaux DR (Eds.), The 1980 eruptions of Mount St. Helens, Washington. U.S Geol Surv Prof Pap 1250:17–31Google Scholar
  14. Clarke AB (2013) Unsteady explosive activity: vulcanian eruptions. In: Fagents SA, Gregg TKP, Lopes RMC (Eds.). Modeling volcanic processes. Camb. Univ. Press, pp. 129–152Google Scholar
  15. Clarke AB, Neri A, Voight B, Macedonio G, Druitt TH (2002a) Computational modelling of the transient dynamics of the August 1997 Vulcanian explosions at Soufrière Hills Volcano, Montserrat: influence of initial conduit conditions on near-vent pyroclastic dispersal, in: Druitt, T.H., Kokelaar, B.P. (Eds.), The eruption of Soufrière Hills Volcano, Montserrat, from 1995 to 1999. Geol Soc Lond, pp. 319–348.Google Scholar
  16. Clarke AB, Ongaro TE, Belousov A (2015) Vulcanian eruptions. In: Sigurdsson H, Houghton BF, McNutt SR, Rymer H, Stix J (Eds.). The encyclopedia of volcanoes. Acad. Press, pp. 505–518Google Scholar
  17. Clarke AB, Stephens S, Teasdale R, Sparks RSJ, Diller K (2007) Petrologic constraints on the decompression history of magma prior to Vulcanian explosions at the Soufrière Hills volcano Montserrat. J Volcanol Geotherm Res 161:261–274. doi:10.1016/j.jvolgeores.2006.11.007 CrossRefGoogle Scholar
  18. Clarke AB, Voight B, Neri A, Macedonio G (2002b) Transient dynamics of vulcanian explosions and column collapse. Lett Nat 415:897–901. doi:10.1038/415897a CrossRefGoogle Scholar
  19. Coombs ML, Eichelberger JC, Rutherford MJ (2000) Magma storage and mixing conditions for the 1953–1974 eruptions of Southwest Trident volcano, Katmai National Park Alaska. Contrib Mineral Petrol 140:99–118CrossRefGoogle Scholar
  20. de’ Michieli, Vitturi M, Neri A, Esposti Ongaro T, Lo Savio S, Boschi E (2010) Lagrangian modeling of large volcanic particles: application to Vulcanian explosions. J Geophys Res 115. doi:10.1029/2009JB007111
  21. Diller K, Clarke AB, Voight B, Neri A (2006) Mechanisms of conduit plug formation: implications for vulcanian explosions. Geophys Res Lett 33. doi:10.1029/2006GL027391
  22. Druitt TH, Young SR, Baptie B, Bonadonna C, Calder ES, Clarke AB, Cole PD, Harford CL, Herd RA, Luckett R, Ryan G, Voight B (2002) Episodes of cyclic Vulcanian explosive activity with fountain collapse at Soufrière Hills Volcano, Montserrat. In: Druitt TH, Kokelaar BP (Eds.). The eruption of Soufrière Hills Volcano, Montserrat, from 1995 to 1999. Geol Soc Lond, pp. 281–306Google Scholar
  23. Fagents SA, Wilson L (1993) Explosive volcanic eruptions-VII the ranges of pyroclasts ejected in transient volcanic explosions. Geophys J Int 113:359–370. doi:10.1111/j.1365-246X.1993.tb00892.x CrossRefGoogle Scholar
  24. Fierstein J, Hildreth W (1992) The plinian eruptions of 1912 at Novarupta, Katmai National Park, Alaska. Bull Volcanol 54:646–684. doi:10.1007/BF00430778
  25. Fudali RF, Melson WG (1971) Ejecta velocities, magma chamber pressure and kinetic energy associated with the 1968 eruption of Arenal volcano. Bull Volcanol 35:383–401. doi:10.1007/BF02596963 CrossRefGoogle Scholar
  26. Giachetti T, Druitt TH, Burgisser A, Arbaret L, Galven C (2010) Bubble nucleation, growth and coalescence during the 1997 Vulcanian explosions of Soufrière Hills Volcano. Montserrat J Volcanol Geotherm Res 193:215–231. doi:10.1016/j.jvolgeores.2010.04.001 CrossRefGoogle Scholar
  27. Gonnermann HM, Manga M (2005) Flow banding in obsidian: a record of evolving textural heterogeneity during magma deformation. Earth Planet Sci Lett 236:135–147. doi:10.1016/j.epsl.2005.04.031 CrossRefGoogle Scholar
  28. Hildreth W (1987) New perspectives on the eruption of 1912 in the Valley of Ten Thousand Smokes, Katmai National Park Alaska. Bull Volcanol 49:680–693. doi:10.1007/BF01080359 CrossRefGoogle Scholar
  29. Hildreth W, Fierstein J (2000) Katmai volcanic cluster and the great eruption of 1912. Geol Soc Am Bull 112:1594–1620. doi:10.1130/0016-7606(2000)112<1594:KVCATG>2.0.CO;2
  30. Hildreth W, Fierstein J, (2012) The Novarupta-Katmai eruption of 1912: largest eruption of the twentieth century: centennial perspectives. U.S. Geol. Surv. Prof. Pap. 1791Google Scholar
  31. Hoblitt RP, Wolfe EW, Scott WE, Couchman MR, Pallister JS, Javier D (1996) The preclimatic eruptions of Mount Pinatubo, June 1991. In: Newhall CG, Punongbayan RS (eds) Fire and mud: eruptions and lahars of Mount Pinatubo. Philippines. Univ. Wash. Press, Seattle, WA, pp 457–511Google Scholar
  32. Houghton BF, Wilson CJN, Fierstein J, Hildreth W (2004) Complex proximal deposition during the Plinian eruptions of 1912 at Novarupta. Alaska Bull Volcanol 66:95–133. doi:10.1007/s00445-003-0297-7 CrossRefGoogle Scholar
  33. Kennedy BM, Spieler O, Scheu B, Kueppers U, Taddeucci J (2005) Conduit implosion during Vulcanian eruptions. Geology 33:581–584. doi:10.1130/G21488.1 CrossRefGoogle Scholar
  34. Mastin LG (2001) A simple calculator of ballistic trajectories for blocks ejected during volcanic eruptions. U.S. Geol. Surv. Open-File Rep. 01–45 16Google Scholar
  35. Melnik O, Sparks RSJ (2002) Dynamics of magma ascent and lava extrusion at Soufrière Hills Volcano. Montserrat Geol Soc Lond Mem 21:153–171. doi:10.1144/GSL.MEM.2002.021.01.07 CrossRefGoogle Scholar
  36. Melnik O, Sparks RSJ (1999) Nonlinear dynamics of lava dome extrusion. Nature 402:37–41. doi:10.1038/46950 CrossRefGoogle Scholar
  37. Minakami T (1942) On the distribution of volcanic ejecta. (Part 1) the distributions of volcanic bombs ejected by the recent explosion of Asama. Bull Earthq Res InstGoogle Scholar
  38. Nairn IA, Self S (1978) Explosive eruptions and pyroclastic avalanches from Ngauruhoe in February 1975. J Volcanol Geotherm Res 3:39–60CrossRefGoogle Scholar
  39. Nguyen CT, Gonnermann HM, Houghton BF (2014) Explosive to effusive transition during the largest volcanic eruption of the 20th century (Novarupta 1912, Alaska). Geology 42:703–706. doi:10.1130/G35593.1 CrossRefGoogle Scholar
  40. Perugini D, Ventura G, Petrelli M, Poli G (2004) Kinematic significance of morphological structures generated by mixing of magmas: a case study from Salina Island (southern Italy). Earth Planet Sci Lett 222:1051–1066. doi:10.1016/j.epsl.2004.03.038 CrossRefGoogle Scholar
  41. Polacci M, Papale P, Rosi M (2001) Textural heterogeneities in pumices from the climactic eruption of Mount Pinatubo, 15 June 1991, and implications for magma ascent dynamics. Bull Volcanol 63:83–97. doi:10.1007/s004450000123 CrossRefGoogle Scholar
  42. Robertson R, Cole P, Sparks RSJ, Harford C, Lejeune AM, McGuire WJ, Miller AD, Murphy MD, Norton G, Stevens NF, Young SR (1998) The explosive eruption of Soufrière Hills Volcano, Montserrat, West Indies, 17 September, 1996. Geophys Res Lett 25:3429–3432. doi:10.1029/98GL01442 CrossRefGoogle Scholar
  43. Sahetapy-Engel ST, Harris AJL, Marchetti E (2008) Thermal, seismic and infrasound observations of persistent explosive activity and conduit dynamics at Santiaguito lava dome Guatemala. J Volcanol Geotherm Res 173:1–14. doi:10.1016/j.jvolgeores.2007.11.026 CrossRefGoogle Scholar
  44. Scheu B, Kueppers U, Mueller S, Spieler O, Dingwell DB (2008) Experimental volcanology on eruptive products of Unzen volcano. J Volcanol Geotherm Res 175:110–119. doi:10.1016/j.jvolgeores.2008.03.023 CrossRefGoogle Scholar
  45. Scheu B, Spieler O, Dingwell DB (2006) Dynamics of explosive volcanism at Unzen volcano: an experimental contribution. Bull Volcanol 69:175–187. doi:10.1007/s00445-006-0066-5 CrossRefGoogle Scholar
  46. Seaman SJ, Dyar MD, Marinkovic N (2009) The effects of heterogeneity in magma water concentration on the development of flow banding and spherulites in rhyolitic lava. J Volcanol Geotherm Res 183:157–169. doi:10.1016/j.volgeores.2009.03.001 CrossRefGoogle Scholar
  47. Seaman SJ, Scherer EE, Standish JJ (1995) Multistage magma mingling and the origin of flow banding in the Aliso lava dome, Tumacacori Mountains, southern Arizona. J Geophys Res 100:8381–8398. doi:10.1029/94JB03260 CrossRefGoogle Scholar
  48. Self S, Keinle J, Huot J-P (1980) Ukinrek maars, Alaska, II. Deposit and formation of the 1977 craters. J Volcanol Geotherm Res 7:39–65CrossRefGoogle Scholar
  49. Self S, Wilson L, Nairn IA (1979) Vulcanian eruption mechanisms. Nature 277:440–443CrossRefGoogle Scholar
  50. Sparks RSJ, Bursik MI, Carey SN, Gilbert JE, Glaze L, Woods AW (1997) Volcanic Plumes. Wiley, New YorkGoogle Scholar
  51. Tuffen H, Dingwell D (2005) Fault textures in volcanic conduits: evidence for seismic trigger mechanisms during silicic eruptions. Bull Volcanol 67:370–387. doi:10.1007/s00445-004-0383-5 CrossRefGoogle Scholar
  52. Tuffen H, Dingwell DB, Pinkerton H (2003) Repeated fracture and healing of silicic magma generate flow banding and earthquakes? Geology 31:1089–1092. doi:10.1130/G19777.1 CrossRefGoogle Scholar
  53. Turcotte DL, Ockendon H, Ockendon JR, Cowley SJ (1990) A mathematical model of vulcanian eruptions. Geophys J Int 103:211–217. doi:10.1111/j.1365-246X.1990.tb01763.x CrossRefGoogle Scholar
  54. Waitt RB, Mastin LG, Miller TP (1995). Ballistic showers during Crater Peak eruptions of Mount Spurr Volcano, summer 1992. In: Keith TEC (Ed.). The 1992 eruptions of Crater Peak vent, Mount Spurr Volcano, Alaska. U.S Geol Surv Bull B-2139, pp. 89–106Google Scholar
  55. Wilson L (1972) Explosive volcanic eruptions-II. The atmospheric trajectories of pyroclasts. Geophys J Int 30:381–392. doi:10.1111/j.1365-246X.1972.tb05822.x CrossRefGoogle Scholar
  56. Woods AM (1995) A model of vulcanian explosions. Nucl Eng Des 155:345–357. doi:10.1016/0029-5493(94)00881-X CrossRefGoogle Scholar
  57. Wright HMN, Cashman KV, Rosi M, Cioni R (2007) Breadcrust bombs as indicators of Vulcanian eruption dynamics at Guagua Pichincha volcano Ecuador. Bull Volcanol 69:281–300. doi:10.1007/s00445-006-0073-6 CrossRefGoogle Scholar
  58. Wright HMN, Folkes CB, Cas RAF, Cashman KV (2011) Heterogeneous pumice populations in the 2.08-Ma Cerro Galán Ignimbrite: implications for magma recharge and ascent preceding a large-volume silicic eruption. Bull Volcanol 73:1513–1533. doi:10.1007/s00445-011-0525-5 CrossRefGoogle Scholar
  59. Yamagishi H, Feebrey C (1994) Ballistic ejecta from the 1988-1989 andesitic Vulcanian eruptions of Tokachidake volcano, Japan: morphological features and genesis. J Volcanol Geotherm Res 59:269–278CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • S. J. Isgett
    • 1
  • B. F. Houghton
    • 1
  • S. A. Fagents
    • 2
  • S. Biass
    • 1
  • A. Burgisser
    • 3
  • L. Arbaret
    • 4
  1. 1.Department of Geology and Geophysics, SOESTUniversity of Hawai‘i at MānoaHonoluluUSA
  2. 2.Hawai‘i Institute of Geophysics and PlanetologyUniversity of Hawai‘i at MānoaHonoluluUSA
  3. 3.Université Savoie Mont Blanc, CNRS, IRD, ISTerreLe Bourget-du-LacFrance
  4. 4.Université d’Orléans, CNRS, ISTerreOrléans Cedex 2France

Personalised recommendations