The rheological evolution of the 2014/2015 eruption at Holuhraun, central Iceland

  • Stephan Kolzenburg
  • D. Giordano
  • T. Thordarson
  • A. Höskuldsson
  • D. B. Dingwell
Research Article


In the period from August 29, 2014, to February 27, 2015, the largest basaltic eruption of the last 200 years in Iceland occurred within the tectonic fissure swarm between the Bárðarbunga-Veiðivötn and the Askja volcanic systems. The eruption took place in the Holuhraun lava field, 45 km northeast of the Bárðarbunga volcano and 20 km south of the Askja volcano. It emplaced over 1.2 km3 dense rock equivalent (DRE) of lava in an area of very low topographic relief. In light of the minimal topographic forcing, lava flow emplacement can be viewed as having been effectively controlled by the lava’s temperature-dependent rheology. Here we combine field and remote sensing data collected during the week of the 17th to 22nd of November 2014 to constrain the lava’s flow path, its velocity, deformation rate and thermal evolution during emplacement. We combine these with measurements of the pure liquid viscosity and the sub-liquidus rheological evolution of the lava during crystallization. Sub-liquidus experiments were performed at a range of constant cooling and shear rates, to mimic the conditions experienced by the lava during emplacement. These data can also be used to infer flow conditions of partly degassed magma within dike-swarms during transport towards the surface. The data show that the effective viscosity of the lava drastically increases until reaching a specific sub-liquidus temperature, the “rheological cutoff temperature” (T cutoff). This departure to high viscosity is a consequence of the onset of crystallization and is found to be primarily controlled by the imposed cooling rate. Our data indicate that shear rate exerts a second-order effect on this rheological departure and T cutoff. We discuss the experimental dataset in the context of the reconstructions of the natural emplacement conditions and describe the implications for the 2014–2015 lava flow field at Holuhraun as well as lava flow modelling in general.


Crystallization Rheology Bárðarbunga Holuhraun Iceland Lava flow 



We thank the editors Katharine Cashman and James White as well as two anonymous reviewers for constructive comments that helped improve the manuscript. We would also like to thank the field team at the Institute of Earth Sciences at the University of Iceland for providing invaluable support during the field campaign. Special thanks go to Sveinbjorn Steinthorsson and William Moreland for technical and logistical assistance in the field as well as to Sara Barsotti at the Icelandic Met Office for an interesting discussion on the topic. We would further like to thank Corrado Cimarelli, Werner Ertl-Ingrisch and Kai Uwe Hess for support in the laboratory and interesting discussions during the experimental campaign. We thank Diego Coppola and Marco Laiolo for their help with interpreting MIROVA data to understand the lava flow field dynamics. Stephan Kolzenburg and Daniele Giordano acknowledge the financial support for this research from an infrastructure development grant awarded through the Fondazione CRT (Giordano 2014) and further funding by the Compagnia di San Paulo, an ERASMUS Traineeship and a University of Torino local research project (Giordano 2012), for providing funding for this research. The presented research was partially funded by an ERC Advanced Investigator Grant (EVOKES – No. 247076) held by Prof. Donald Bruce Dingwell.

Supplementary material

445_2017_1128_MOESM1_ESM.docx (68 kb)
ESM 1 (DOCX 68 kb)


  1. Arzilli F, Carroll MR (2013) Crystallization kinetics of alkali feldspars in cooling and decompression-induced crystallization experiments in trachytic melt. Contrib Mineral Petrol 166(4):1011–1027CrossRefGoogle Scholar
  2. Azadani AN (2007) Flow enhanced protein crystallization at the air/water interface. ProQuestGoogle Scholar
  3. Barberi F, Brondi F, Carapezza ML, Cavarra L, Murgia C (2003) Earthen barriers to control lava flows in the 2001 eruption of Mt. Etna. J Volcanol Geotherm Res 123(1–2):231–243CrossRefGoogle Scholar
  4. Behncke B, Neri M, Nagay A (2005) Lava flow hazard at Mount Etna (Italy): new data from a GIS-based study. Spec Papers Geol Soc Am 396:189Google Scholar
  5. Calvari S, Pinkerton H (1998) Formation of lava tubes and extensive flow field during the 1991–1993 eruption of Mount Etna. J Geophys Res: Solid Earth (1978–2012) 103(B11):27291–27301CrossRefGoogle Scholar
  6. Campagnola S, Vona A, Romano C, Giordano G (2016) Crystallization kinetics and rheology of leucite-bearing tephriphonolite magmas from the Colli Albani volcano (Italy). Chem Geol 424:12–29CrossRefGoogle Scholar
  7. Cashman K (1993) Relationship between plagioclase crystallization and cooling rate in basaltic melts. Contrib Mineral Petrol 113(1):126–142CrossRefGoogle Scholar
  8. Cashman KV, Mangan MT (2014) A century of studying effusive eruptions in Hawai ‘i. Characteristics of Hawaiian Volcanoes 357Google Scholar
  9. Cashman KV, Thornber C, Kauahikaua JP (1999) Cooling and crystallization of lava in open channels, and the transition of Pāhoehoe lava to ‘A’ā. Bull Volcanol 61(5):306–323CrossRefGoogle Scholar
  10. Cashman K, Soule S, Mackey B, Deligne N, Deardorff N, Dietterich H (2013) How lava flows: new insights from applications of lidar technologies to lava flow studies. Geosphere 9(6):1664–1680CrossRefGoogle Scholar
  11. Castruccio A, Rust A, Sparks R (2014) Assessing lava flow evolution from post-eruption field data using Herschel–Bulkley rheology. J Volcanol Geotherm Res 275:71–84CrossRefGoogle Scholar
  12. Chevrel MO, Platz T, Hauber E, Baratoux D, Lavallée Y, Dingwell DB (2013) Lava flow rheology: a comparison of morphological and petrological methods. Earth Planet Sci Lett 384:109–120CrossRefGoogle Scholar
  13. Chevrel MO, Cimarelli C, deBiasi L, Hanson JB, Lavallée Y, Arzilli F, Dingwell DB (2015) Viscosity measurements of crystallizing andesite from Tungurahua volcano (Ecuador). Geochemistry, Geophysics, GeosystemsGoogle Scholar
  14. Coish R, Taylor LA (1979) The effects of cooling rate on texture and pyroxene chemistry in DSDP Leg 34 basalt: a microprobe study. Earth Planet Sci Lett 42(3):389–398CrossRefGoogle Scholar
  15. Coppola D, Laiolo M, Piscopo D, Cigolini C (2013) Rheological control on the radiant density of active lava flows and domes. J Volcanol Geotherm Res 249:39–48CrossRefGoogle Scholar
  16. Coppola D, Laiolo M, Cigolini C, Delle Donne D, Ripepe M (2015) Enhanced volcanic hot-spot detection using MODIS IR data: results from the MIROVA system. Geological Society, London, Special Publications 426:SP426. 425Google Scholar
  17. Coppola D, Ripepe M, Laiolo M, Cigolini C (2017) Modelling satellite-derived magma discharge to explain caldera collapse. Geology:G38866. 38861Google Scholar
  18. Costa A, Macedonio G (2005) Computational modeling of lava flows: a review. Geol Soc Am Spec Pap 396:209–218Google Scholar
  19. Del Negro C, Fortuna L, Herault A, Vicari A (2008) Simulations of the 2004 lava flow at Etna volcano using the magflow cellular automata model. Bull Volcanol 70(7):805–812CrossRefGoogle Scholar
  20. Dragoni M (1989) A dynamical model of lava flows cooling by radiation. Bull Volcanol 51(2):88–95CrossRefGoogle Scholar
  21. Dragoni M, Bonafede M, Boschi E (1986) Downslope flow models of a Bingham liquid: implications for lava flows. J Volcanol Geotherm Res 30(3–4):305–325CrossRefGoogle Scholar
  22. Dragoni M, Piombo A, Tallarico A (1995) A model for the formation of lava tubes by roofing over a channel. J Geophys Res Solid Earth 100(B5):8435–8447CrossRefGoogle Scholar
  23. Emerson OH (1926) The formation of aa and pahoehoe. Am J Sci 68:109–114CrossRefGoogle Scholar
  24. Farquharson J, James M, Tuffen H (2015) Examining rhyolite lava flow dynamics through photo-based 3D reconstructions of the 2011–2012 lava flowfield at Cordón-Caulle, Chile. J Volcanol Geotherm Res 304:336–348CrossRefGoogle Scholar
  25. Favalli M, Chirico G, Papale P, Pareschi M, Coltelli M, Lucaya N, Boschi E (2006) Computer simulations of lava flow paths in the town of Goma, Nyiragongo volcano, Democratic Republic of Congo. J Geophys Res: Solid Earth (1978–2012) 111(B6)Google Scholar
  26. Favalli M, Fornaciai A, Mazzarini F, Harris A, Neri M, Behncke B, Pareschi MT, Tarquini S, Boschi E (2010) Evolution of an active lava flow field using a multitemporal LIDAR acquisition. J Geophys Res: Solid Earth (1978–2012) 115(B11)Google Scholar
  27. Favalli M, Tarquini S, Papale P, Fornaciai A, Boschi E (2012) Lava flow hazard and risk at Mt. Cameroon volcano. Bull Volcanol 74(2):423–439CrossRefGoogle Scholar
  28. Flynn LP, Mouginis-Mark PJ (1992) Cooling rate of an active Hawaiian lava flow from nighttime spectroradiometer measurements. Geophys Res Lett 19(17):1783–1786CrossRefGoogle Scholar
  29. Gamble RP, Taylor LA (1980) Crystal/liquid partitioning in augite: effects of cooling rate. Earth Planet Sci Lett 47(1):21–33CrossRefGoogle Scholar
  30. Gibb FG (1974) Supercooling and the crystallization of plagioclase from a basaltic magma. Mineral Mag 39(306):641–653CrossRefGoogle Scholar
  31. Giordano D, Polacci M, Longo A, Papale P, Dingwell D, Boschi E, Kasereka M (2007) Thermo-rheological magma control on the impact of highly fluid lava flows at Mt. Nyiragongo. Geophys Res Lett 34(6)Google Scholar
  32. Giordano D, Russell JK, Dingwell DB (2008) Viscosity of magmatic liquids: a model. Earth Planet Sci Lett 271(1–4):123–134CrossRefGoogle Scholar
  33. Giordano D, Polacci M, Papale P, Caricchi L (2010) Rheological control on the dynamics of explosive activity in the 2000 summit eruption of Mt. Etna. Solid EarthGoogle Scholar
  34. Gíslason S, Stefánsdóttir G, Pfeffer M, Barsotti S, Jóhannsson T, Galeczka I, Bali E, Sigmarsson O, Stefánsson A, Keller N (2015) Environmental pressure from the 2014–15 eruption of Bárðarbunga volcano, Iceland. Geochem Perspect Lett 1:84–93CrossRefGoogle Scholar
  35. Greeley R, Hyde JH (1972) Lava tubes of the cave basalt, Mount St. Helens, Washington. Geol Soc Am Bull 83(8):2397–2418CrossRefGoogle Scholar
  36. Gregg TKP, Fink JH, Griffiths RW (1998) Formation of multiple fold generations on lava flow surfaces: influence of strain rate, cooling rate, and lava composition. J Volcanol Geotherm Res 80(3–4):281–292CrossRefGoogle Scholar
  37. Griffiths R (2000) The dynamics of lava flows. Annu Rev Fluid Mech 32(1):477–518CrossRefGoogle Scholar
  38. Griffiths RW, Kerr RC, Cashman KV (2003) Patterns of solidification in channel flows with surface cooling. J Fluid Mech 496:33–62CrossRefGoogle Scholar
  39. Gualda GA, Ghiorso MS (2015) MELTS_Excel: a Microsoft Excel-based MELTS interface for research and teaching of magma properties and evolution. Geochem Geophys Geosyst 16(1):315–324CrossRefGoogle Scholar
  40. Guðfinnsson GH, Jakobsson S (2014) On the petrology of the Holuhraun lava. In,
  41. Hallworth M, Huppert H, Sparks R (1987) A laboratory simulation of basaltic lava flows. Mod Geol 11:93–107Google Scholar
  42. Hammer JE (2006) Influence of fO 2 and cooling rate on the kinetics and energetics of Fe-rich basalt crystallization. Earth Planet Sci Lett 248(3):618–637CrossRefGoogle Scholar
  43. Harris AJ, Rowland S (2001) FLOWGO: a kinematic thermo-rheological model for lava flowing in a channel. Bull Volcanol 63(1):20–44CrossRefGoogle Scholar
  44. Harris A, Rowland S (2009) Effusion rate controls on lava flow length and the role of heat loss: a review. Studies in volcanology: the legacy of George Walker. Special Publications of IAVCEI 2:33–51Google Scholar
  45. Harris A, Bailey J, Calvari S, Dehn J (2005) Heat loss measured at a lava channel and its implications for down-channel cooling and rheology. Geol Soc Am Spec Pap 396:125–146Google Scholar
  46. Harris AJ, Rhéty M, Gurioli L, Villeneuve N, Paris R (2015) Simulating the thermorheological evolution of channel-contained lava: FLOWGO and its implementation in EXCEL. Geological Society, London, Special Publications 426:SP426. 429Google Scholar
  47. Hartley ME, Thordarson T (2013) The 1874–1876 volcano-tectonic episode at Askja, North Iceland: lateral flow revisited. Geochem Geophys Geosyst 14(7):2286–2309CrossRefGoogle Scholar
  48. Hérault A, Bilotta G, Vicari A, Rustico E, Del Negro C (2011) Numerical simulation of lava flow using a GPU SPH model. Ann Geophys 54(5)Google Scholar
  49. Hon K, Kauahikaua J, Denlinger R, Mackay K (1994) Emplacement and inflation of pahoehoe sheet flows: observations and measurements of active lava flows on Kilauea Volcano, Hawaii. Geol Soc Am Bull 106(3):351–370CrossRefGoogle Scholar
  50. Hon K, Gansecki C, Kauahikaua J (2003) The transition from ‘A’a to Pahoehoe crust on flows emplaced during the Pu’u′6′6-Kupaianaha eruption. US Geol Surv Prof Pap 1676:89Google Scholar
  51. Hulme G (1974) The interpretation of lava flow morphology. Geophys J Int 39(2):361–383CrossRefGoogle Scholar
  52. Huppert HE, Sparks RSJ, Turner JS, Arndt NT (1984) Emplacement and cooling of komatiite lavas. Nature 309(5963):19–22CrossRefGoogle Scholar
  53. Icelandic-Meteorological-Office (2015) Bárðarbunga 2014 - August events. In: Icelandic Meteorological Office, Daily web information in August 2014Google Scholar
  54. Ishibashi H (2009) Non-Newtonian behavior of plagioclase-bearing basaltic magma: subliquidus viscosity measurement of the 1707 basalt of Fuji volcano, Japan. J Volcanol Geotherm Res 181(1–2):78–88CrossRefGoogle Scholar
  55. Ishibashi H, Sato H (2007) Viscosity measurements of subliquidus magmas: alkali olivine basalt from the Higashi-Matsuura district, southwest Japan. J Volcanol Geotherm Res 160(3–4):223–238CrossRefGoogle Scholar
  56. Ishihara K, Iguchi M, Kamo K (1990) Numerical simulation of lava flows on some volcanoes in Japan. In: Lava flows and domes. Springer, pp 174–207Google Scholar
  57. James M, Robson S (2014) Sequential digital elevation models of active lava flows from ground-based stereo time-lapse imagery. ISPRS J Photogramm Remote Sens 97:160–170CrossRefGoogle Scholar
  58. Kauahikaua J, Cashman KV, Mattox TN, Heliker CC, Hon KA, Mangan MT, Thornber CR (1998) Observations on basaltic lava streams in tubes from Kilauea Volcano, island of Hawai’i. J Geophys Res: Solid Earth (1978–2012) 103(B11):27303–27323CrossRefGoogle Scholar
  59. Kauahikaua J, Sherrod DR, Cashman KV, Heliker C, Hon K, Mattox TN, Johnson JA (2003) Hawaiian lava-flow dynamics during the Pu’u'ō'Ō-KŪpaianaha eruption: a tale of two decades. US Geol Surv Prof Pap 1676:63–87Google Scholar
  60. Keszthelyi L (1995) Measurements of the cooling at the base of pahoehoe flows. Geophys Res Lett 22(16):2195–2198CrossRefGoogle Scholar
  61. Keszthelyi L, McEwen A, Thordarson T (2000) Terrestrial analogs and thermal models for Martian flood. J Geophys Res 105(E6):15,027–015,049CrossRefGoogle Scholar
  62. Kolzenburg S, Favalli M, Fornaciai A, Isola I, Harris AJL, Nannipieri L, Giordano D (2016a) Rapid updating and improvement of airborne LIDAR DEMs through ground-based SfM 3-D modeling of volcanic features. IEEE Trans Geosci Remote Sens PP(99):1–13Google Scholar
  63. Kolzenburg S, Giordano D, Cimarelli C, Dingwell DB (2016b) In situ thermal characterization of cooling/crystallizing lavas during rheology measurements and implications for lava flow emplacement. Geochim Cosmochim ActaGoogle Scholar
  64. Kouchi A, Tsuchiyama A, Sunagawa I (1986) Effect of stirring on crystallization kinetics of basalt: texture and element partitioning. Contrib Mineral Petrol 93(4):429–438CrossRefGoogle Scholar
  65. Lange RA, Cashman KV, Navrotsky A (1994) Direct measurements of latent heat during crystallization and melting of a ugandite and an olivine basalt. Contrib Mineral Petrol 118(2):169–181CrossRefGoogle Scholar
  66. Lavallée Y, Kendrick J, Wall R, von Aulock F, Kennedy B, Sigmundsson F (2015) Experimental constraints on the rheology and mechanical properties of lava erupted in the Holuhraun area during the 2014 rifting event at Bárðarbunga, Iceland. In: EGU General Assembly Conference Abstracts. p 11544Google Scholar
  67. Lipman P, Banks N (1987) AA flow dynamics, Mauna Loa 1984. US Geol Surv Prof Pap 1350:1527–1567Google Scholar
  68. Lofgren G (1980) Experimental studies on the dynamic crystallization of silicate melts. Physics of Magmatic Processes 487Google Scholar
  69. Macdonald GA (1953) Pahoehoe, aa, and block lava. Am J Sci 251(3):169–191CrossRefGoogle Scholar
  70. Mader HM, Llewellin EW, Mueller SP (2013) The rheology of two-phase magmas: a review and analysis. J Volcanol Geotherm Res 257:135–158CrossRefGoogle Scholar
  71. Miyamoto H, Sasaki S (1997) Simulating lava flows by an improved cellular automata method. Comput Geosci 23(3):283–292CrossRefGoogle Scholar
  72. Pedersen GBM, Höskuldsson A, Dürig T, Thordarson T, Jónsdóttir I, Riishuus MS, Óskarsson BV, Dumont S, Magnusson E, Gudmundsson MT, Sigmundsson F, Drouin VJPB, Gallagher C, Askew R, Guðnason J, Moreland WM, Nikkola P, Reynolds HI, Schmith J (2017) Lava field evolution and emplacement dynamics of the 2014–2015 basaltic fissure eruption at Holuhraun, Iceland. J Volcanol Geotherm ResGoogle Scholar
  73. Peterson DW, Holcomb RT, Tilling RI, Christiansen RL (1994) Development of lava tubes in the light of observations at Mauna Ulu, Kilauea Volcano, Hawaii. Bull Volcanol 56(5):343–360CrossRefGoogle Scholar
  74. Petrelli M, El Omari K, Le Guer Y, Perugini D (2016) Effects of chaotic advection on the timescales of cooling and crystallization of magma bodies at mid crustal levels. Geochem Geophys GeosystGoogle Scholar
  75. Pinkerton H (1987) Factors affecting the morphology of lava flows. Endeavour 11(2):73–79CrossRefGoogle Scholar
  76. Pinkerton H, Norton G (1995) Rheological properties of basaltic lavas at sub-liquidus temperatures: laboratory and field measurements on lavas from Mount Etna. J Volcanol Geotherm Res 68(4):307–323CrossRefGoogle Scholar
  77. Pinkerton H, Sparks RSJ (1978) Field measurements of the rheology of lava. Nature 276(5686):383–385CrossRefGoogle Scholar
  78. Piombo A, Dragoni M (2009) Evaluation of flow rate for a one-dimensional lava flow with power-law rheology. Geophys Res Lett 36(22)Google Scholar
  79. Riker JM, Cashman KV, Kauahikaua JP, Montierth CM (2009) The length of channelized lava flows: insight from the 1859 eruption of Mauna Loa Volcano, Hawai ‘i. J Volcanol Geotherm Res 183(3):139–156CrossRefGoogle Scholar
  80. Sato H (2005) Viscosity measurement of subliquidus magmas: 1707 basalt of Fuji volcano. J Mineral Petrol Sci 100(4):133–142CrossRefGoogle Scholar
  81. Sehlke A, Whittington AG (2015) Rheology of lava flows on Mercury: an analog experimental study. J Geophys Res: Planets 120(11):1924–1955CrossRefGoogle Scholar
  82. Shao Z, Singer JP, Liu Y, Liu Z, Li H, Gopinadhan M, O’Hern CS, Schroers J, Osuji CO (2015) Shear-accelerated crystallization in a supercooled atomic liquid. Phys Rev E 91(2):020301CrossRefGoogle Scholar
  83. Shaw H, Wright T, Peck D, Okamura R (1968) The viscosity of basaltic magma; an analysis of field measurements in Makaopuhi lava lake, Hawaii. Am J Sci 266(4):225–264CrossRefGoogle Scholar
  84. Sigurdsson H (1999) Encyclopedia of volcanoes. Academic, San DiegoGoogle Scholar
  85. Sigurdsson H, Houghton B, McNutt S, Rymer H, Stix J (2015) The encyclopedia of volcanoes. Elsevier, OxfordGoogle Scholar
  86. Soldati A, Sehlke A, Chigna G, Whittington A (2016) Field and experimental constraints on the rheology of arc basaltic lavas: the January 2014 eruption of Pacaya (Guatemala). Bull Volcanol 78(6):1–19CrossRefGoogle Scholar
  87. Soule S, Cashman K, Kauahikaua J (2004) Examining flow emplacement through the surface morphology of three rapidly emplaced, solidified lava flows, Kīlauea Volcano, Hawai’i. Bull Volcanol 66(1):1–14CrossRefGoogle Scholar
  88. Sparks R, Pinkerton H, Hulme G (1976) Classification and formation of lava levees on Mount Etna, Sicily. Geology 4(5):269–271CrossRefGoogle Scholar
  89. Tammann G, Hesse W (1926) Die Abhängigkeit der Viscosität von der Temperatur bie unterkühlten Flüssigkeiten. Z Anorg Allg Chem 156(1):245–257CrossRefGoogle Scholar
  90. Thordarson T (2015) Emplacement and growth of the August 2014 to February 2015 Nornahraun lava flow field North Iceland. In: 2015 AGU Fall Meeting. AguGoogle Scholar
  91. Thordarson T, Höskuldsson Á (2008) Postglacial volcanism in Iceland. Jökull 58:197–228Google Scholar
  92. Vona A, Romano C (2013) The effects of undercooling and deformation rates on the crystallization kinetics of Stromboli and Etna basalts. Contrib Mineral Petrol 166(2):491–509CrossRefGoogle Scholar
  93. Vona A, Romano C, Dingwell DB, Giordano D (2011) The rheology of crystal-bearing basaltic magmas from Stromboli and Etna. Geochim Cosmochim Acta 75(11):3214–3236CrossRefGoogle Scholar
  94. Vona A, Romano C, Giordano D, Russell JK (2013) The multiphase rheology of magmas from Monte Nuovo (Campi Flegrei, Italy). Chem Geol 346:213–227CrossRefGoogle Scholar
  95. Walker D, Kirkpatrick R, Longhi J, Hays J (1976) Crystallization history of lunar picritic basalt sample 12002: phase-equilibria and cooling-rate studies. Geol Soc Am Bull 87(5):646–656CrossRefGoogle Scholar
  96. Witter JB, Harris AJ (2007) Field measurements of heat loss from skylights and lava tube systems. J Geophys Res: Solid Earth (1978–2012) 112(B1)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Dipartimento di Scienze della TerraUniversità degli Studi di TorinoTurinItaly
  2. 2.Department für Geo und Umweltwissenschaften, Sektion Mineralogie, Petrologie & GeochemieLudwig-Maximilians-UniversitätMunichGermany
  3. 3.Faculty of Earth SciencesUniversity of IcelandReykjavíkIceland
  4. 4.Nordic Volcanological Centre, Institute of Earth SciencesUniversity of IcelandReykjavikIceland

Personalised recommendations