Advertisement

Northern Hemisphere temperature anomalies during the 1450s period of ambiguous volcanic forcing

  • Jan Esper
  • Ulf Büntgen
  • Claudia Hartl-Meier
  • Clive Oppenheimer
  • Lea Schneider
Research Article

Abstract

Ice core-based estimates of past volcanic eruptions are the main forcing of the last millennium climate model simulations. Understanding the timing and magnitude of eruptions is thus critical for assessing the dynamics of the Earth’s climate system. Uncertainty associated with a major event in the 1450s, originally attributed to the South Pacific Kuwae eruption in 1452 and recently shifted to 1458, fundamentally alters model simulations, their comparison with proxy-based climate reconstructions, and any subsequent historical interpretation. Here, we compile a Northern Hemisphere tree-ring network of 25 maximum latewood density chronologies extending back over the past 650+ years to analyze the 1450s temperature deviations. Statistically robust warm season temperature reconstructions from 20 of these records reveal a spatially coherent and exceptional cooling in 1453. Summer cooling ranged from −0.4 °C in the Swiss Alps to −6.9 °C in the Polar Urals (Russia) and was generally stronger across the Eurasian high latitudes and northwestern North America. Year 1453 also marks the onset of a 15-year cold period during which network mean temperatures ranged from −2.5 °C in 1453 to −0.5 °C in 1468. In contrast, the years 1459 (−1.0 °C) and 1460 (−0.4 °C) were not exceptionally cold in the contemporary context. These findings suggest either that the original dating pointing to a major eruption in 1452 (and large-scale cooling in 1453) was correct or that the eruption left no substantial climatic fingerprint in Northern Hemisphere temperature proxies. The latter appears less likely as sulfate aerosol deposits associated with the 1450s event are found in ice cores of both hemispheres.

Keywords

Tree rings Maximum latewood density Ice cores Volcanic eruption Paleoclimate Kuwae 

Notes

Acknowledgements

Supported by the German Science Foundation, Grant No. 161/9-1 “Development of density chronologies for eastern and southern Europe.”

Supplementary material

445_2017_1125_MOESM1_ESM.docx (4.3 mb)
ESM 1 (DOCX 4365 kb)

References

  1. Anchukaitis KJ, Breitenmoser P, Briffa KR et al (2012) Tree rings and volcanic cooling. Nat Geo 5:836–837CrossRefGoogle Scholar
  2. Anchukaitis KJ, Wilson R, Briffa KR et al (2017) Last millennium Northern Hemisphere summer temperatures from tree rings: part II, spatially resolved reconstructions. Quat Sci Rev 163:1–22Google Scholar
  3. Bauch M (2015) Vulkanisches Zwielicht. Ein Vorschlag zur Datierung des Kuwae-Ausbruchs auf 1464. In: Mittelalter. Interdisziplinäre Forschung und Rezeptionsgeschichte, 10. April 2015, http://mittelalter.hypotheses.org/5697 (ISSN 2197–6120)
  4. Briffa KR, Jones PD, Bartholin TS, Eckstein D, Schweingruber FH, Karlen W, Zetterberg P, Eronen M (1992) Fennoscandian summers from AD 500: temperature changes on short and long timescales. Clim Dyn 7:111–119CrossRefGoogle Scholar
  5. Briffa KR, Jones PD, Schweingruber FH, Osborn TJ (1998) Influence of volcanic eruptions on Northern Hemisphere summer temperature over the past 600 years. Nature 393:450–455CrossRefGoogle Scholar
  6. Büntgen U, Kyncl T, Ginzler C, Jacks DS, Esper J, Tegel W, Heussner KU, Kyncl J (2013) Filling the Eastern European gap in millennium-long temperature reconstructions. Proceed Nat Acad Sci 5:1773–1778CrossRefGoogle Scholar
  7. Büntgen U, Myglan VS, Ljungqvist FC et al (2016) Cooling and societal change during the Late Antique Little Ice Age from 536 to around 660 AD. Nature Geo 9:231–236CrossRefGoogle Scholar
  8. Cook ER, Kairiukstis LA (eds) (1990) Methods of dendrochronology: applications in environmental science. Kluwer, DordrechtGoogle Scholar
  9. Cook ER, Peters K (1997) Calculating unbiased tree-ring indices for the study of climatic and environmental change. The Holocene 7:361–370CrossRefGoogle Scholar
  10. D’Arrigo R, Wilson R, Jacoby G (2006) On the long-term context for late twentieth century warming. J Geophys Res Atmos 111. doi: 10.1029/2005JD006352 Google Scholar
  11. Delmas RJ, Kirchner S, Palais JM, Petit JR (1992) 1000 years of explosive volcanism recorded at the South Pole. Tellus B 44:335–350CrossRefGoogle Scholar
  12. DeMenocal PB (2001) Cultural responses to climate change during the late Holocene. Science 292:667–673CrossRefGoogle Scholar
  13. Esper J, Cook ER, Schweingruber FH (2002) Low-frequency signals in long tree-ring chronologies and the reconstruction of past temperature variability. Science 295:2250–2253CrossRefGoogle Scholar
  14. Esper J, Frank DC, Wilson RJS, Briffa KR (2005) Effect of scaling and regression on reconstructed temperature amplitude for the past millennium Geophys Res Lett:32. doi: 10.1029/2004GL021236 Google Scholar
  15. Esper J, Büntgen U, Frank DC, Nievergelt D, Liebhold A (2007) 1200 years of regular outbreaks in alpine insects. Proceed Royal Soc B 274:671–679CrossRefGoogle Scholar
  16. Esper J, Frank DC, Büntgen U, Verstege A, Hantemirov RM, Kirdyanov AV (2010) Trends and uncertainties in Siberian indicators of 20th century warming. Glob Change Biol 16:386–398CrossRefGoogle Scholar
  17. Esper J, Frank DC, Timonen M et al (2012) Orbital forcing of tree-ring data. Nat Clim Chang 2:862–866CrossRefGoogle Scholar
  18. Esper J, Schneider L, Krusic PJ, Luterbacher J, Büntgen U, Timonen M, Sirocko F, Zorita E (2013) European summer temperature response to annually dated volcanic eruptions over the past nine centuries Bull Volcanol:75. doi: 10.1007/s00445-013-0736-z Google Scholar
  19. Esper J, Schneider L, Smerdon J, Schöne B, Büntgen U (2015) Signals and memory in tree-ring width and density data. Dendrochronologia 35:62–70CrossRefGoogle Scholar
  20. Esper J, Krusic PJ, Ljungqvist FC et al (2016) Review of tree-ring based temperature reconstructions of the past millennium. Quat Sci Rev 145:134–151CrossRefGoogle Scholar
  21. Frank D, Esper J (2005) Characterization and climate response patterns of a high-elevation, multi-species tree-ring network in the European Alps. Dendrochronologia 22:107–121CrossRefGoogle Scholar
  22. Gao C, Robock A, Self S et al (2006) The 1452 or 1453 A.D. Kuwae eruption signal derived from multiple ice core records: greatest volcanic sulfate event of the past 700 years. J Geophys Res 111. doi: 10.1029/2005JD006710
  23. Gao C, Robock A, Ammann C (2008) Volcanic forcing of climate over the past 1500 years: an improved ice core-based index for climate models. J Geophys Res 113. doi: 10.1029/2008JD010239
  24. Hammer CU, Clausen HB, Dansgaard W (1980) Greenland ice sheet evidence of post-glacial volcanism and its climatic impact. Nature 288:230–235CrossRefGoogle Scholar
  25. Jacobeit J, Wanner H, Luterbacher J, Beck C, Phillipp A, Sturm K (2003) Atmospheric circulation variability in the North-Atlantic-European area since the mid-seventeenth century. Clim Dyn 20:341–352Google Scholar
  26. LaMarche VC, Hirschboeck KK (1984) Frost rings in trees as records of major volcanic eruptions. Nature 307:121–126CrossRefGoogle Scholar
  27. Langway CC Jr, Osada K, Clausen HB, Hammer CU, Shoji H (1995) A 10-century comparison of prominent bipolar volcanic events in ice cores. J Geophys Res 100:16241–16247CrossRefGoogle Scholar
  28. Landrum L, Otto-Bliesner BL, Wahl ER, Conley A, Lawrence PJ, Rosenbloom N, Teng H (2013) Last millennium climate and its variability in CCSM4. J Clim 26:1085–1111CrossRefGoogle Scholar
  29. Legrand M, Wagenbach D (1999) Impact of Cerro Hudson and Pinatubo volcanic eruptions on the Antarctic air and snow chemistry. J Geophys Res 104:1581–1596CrossRefGoogle Scholar
  30. Mantua NJ, Hare SR, Zhang Y, Wallace JM, Francis RC (1997) A Pacific interdecadal climate oscillation with impacts on salmon production. Bull Americ Meteorol Soc 78:1069–1079Google Scholar
  31. Matalas NC (1962) Statistical properties of tree ring data. Hydrol Sci J 7:39–47Google Scholar
  32. McCarroll D, Loader NJ, Jalkanen R et al (2013) A 1200-year multiproxy record of tree growth and summer temperature at the northern pine forest limit of Europe. The Holocene 23:471–484CrossRefGoogle Scholar
  33. Monzier M, Claude R, Eissen JP (1994) Kuwae (≈1425AD): the forgotten caldera. J Volcanol Geotherm Res 59:207–218CrossRefGoogle Scholar
  34. Németh K, Cronin SJ, White JD (2007) Kuwae caldera and climate confusion. Open Geol J 1:7–11CrossRefGoogle Scholar
  35. Pallardy SG (2015) Physiology of woody plants. Academic Press, San DiegoGoogle Scholar
  36. Pang KD (1993) Climatic impact of the mid-fifteenth century Kuwae caldera formation, as reconstructed from historical and proxy data. Amer Geophys Union, Fall Meeting, p 106Google Scholar
  37. van Oldenborgh, GJ, Burgers G (2005) Searching for decadal variations in ENSO precipitation teleconnections. Geophys Res Lett 32. doi: 10.1029/2005GL023110
  38. Plummer CT, Curran MAJ, Ommen TDV, Rasmussen SO, Moy AD, Vance TR, Clausen B, Vinther BM, Mayewski PA (2012) An independently dated 2000-yr volcanic record from Law Dome, East Antarctica, including a new perspective on the dating of the 1450s CE eruption of Kuwae, Vanuatu. Clim Past 8:1929–1940CrossRefGoogle Scholar
  39. Claude R, Monzier M, Eissen JP (1994) Formation of the mid-fifteenth century Kuwae caldera (Vanuatu) by an initial hydroclastic and subsequent ignimbritic eruption. Bull Volcanol 56:170–183CrossRefGoogle Scholar
  40. Salzer MW, Hughes MK (2007) Bristlecone pine tree rings and volcanic eruptions over the last 5000 yr. Quat Res 67:57–68CrossRefGoogle Scholar
  41. Schmidt GA, Jungclaus JH, Ammann CM et al (2011) Climate forcing reconstructions for use in PMIP simulations of the last millennium (v1.0). Geosci Model Developm 4:33–45CrossRefGoogle Scholar
  42. Schneider L, Smerdon J, Büntgen U, Wilson R, Myglan VS, Kirdyanov A, Esper J (2015) Revising midlatitude summer temperatures back to AD 600 based on a wood density network. Geophys Res Lett 42. doi: 10.1002/2015GL063956
  43. Schulman E (1956) Dendroclimatic changes in semiarid America. University of Arizona Press, TucsonGoogle Scholar
  44. Schweingruber FH, Fritts HC, Bräker OU, Drew LG, Schaer E (1978) The X-ray technique as applied to dendroclimatology. Tree-Ring Bull 38:61–91Google Scholar
  45. Sigl M, McConnell JR, Layman L et al (2013) A new bipolar ice core record of volcanism from WAIS Divide and NEEM and implications for climate forcing of the last 2000 years. J Geophys Res Atmos 118:1151–1169CrossRefGoogle Scholar
  46. Sigl M, McConnell JR, Toohey M et al (2014) Insights from Antarctica on volcanic forcing during the Common Era. Nat Clim Chang 4:693–697CrossRefGoogle Scholar
  47. Sigl M, Winstrup M, McConnell JR et al (2015) Timing and climate forcing of volcanic eruptions for the past 2,500 years. Nature 523:543–549CrossRefGoogle Scholar
  48. Stoffel M, Khodri M, Corona C et al (2015) Estimates of volcanic-induced cooling in the Northern Hemisphere over the past 1,500 years. Nat Geosci 8:784–788CrossRefGoogle Scholar
  49. Wilson RJS, Anchukaitis K, Briffa K et al (2016) Last millennium Northern Hemisphere summer temperatures from tree rings. Part I: the long term context. Quat Sci Rev 134:1–18CrossRefGoogle Scholar
  50. Witter JB, Self S (2007) The Kuwae (Vanuatu) eruption of AD 1452: potential magnitude and volatile release. Bull Volcanol 69:301–318CrossRefGoogle Scholar
  51. Xing P, Chen X, Luo Y, Nie S, Zhao Z, Huang J, Wang S (2016) The extratropical Northern Hemisphere temperature reconstruction during the last millennium based on a novel method. PloS One 11. doi: 10.1371/journal.pone.0146776
  52. Zielinski GA (1995) Stratospheric loading and optical depth estimates of explosive volcanism over the last 2100 years derived from the Greenland ice sheet project 2 ice core. J Geophys Res 100:20937–20955CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Jan Esper
    • 1
  • Ulf Büntgen
    • 2
  • Claudia Hartl-Meier
    • 1
  • Clive Oppenheimer
    • 2
  • Lea Schneider
    • 3
  1. 1.Department of GeographyJohannes Gutenberg UniversityMainzGermany
  2. 2.Department of GeographyUniversity of CambridgeCambridgeUK
  3. 3.Department of GeographyJustus Liebig UniversityGießenGermany

Personalised recommendations