Bulletin of Volcanology

, 79:14

Grain shape of basaltic ash populations: implications for fragmentation

  • Johanne Schmith
  • Ármann Höskuldsson
  • Paul Martin Holm
Research Article

Abstract

Here, we introduce a new quantitative method to produce grain shape data of bulk samples of volcanic ash, and we correlate the bulk average grain shape with magma fragmentation mechanisms. The method is based on automatic shape analysis of 2D projection ash grains in the size range 125–63 μm. Loose bulk samples from the deposits of six different basaltic eruptions were analyzed, and 20,000 shape measurements for each were obtained within ~45 min using the Particle Insight™ dynamic shape analyzer (PIdsa). We used principal component analysis on a reference grain dataset to show that circularity, rectangularity, form factor, and elongation best discriminate between the grain shapes when combined. The grain population data show that the studied eruptive environments produce nearly the same range of grain shapes, although to different extents. Our new shape index (the regularity index (RI)) places an eruption on a spectrum between phreatomagmatic and dry magmatic fragmentation. Almost vesicle-free Surtseyan ash has an RI of 0.207 ± 0.002 (2σ), whereas vesiculated Hawaiian ash has an RI of 0.134 ± 0.001 (2σ). These two samples define the end-member RI, while two subglacial, one lacustrine, and another submarine ash sample show intermediate RIs of 0.168 ± 0.002 (2σ), 0.175 ± 0.002 (2σ), 0.187 ± 0.002 (2σ), and 0.191 ± 0.002 (2σ), respectively. The systematic change in RI between wet and dry eruptions suggests that the RI can be used to assess the relative roles of magmatic vs. phreatomagmatic fragmentation. We infer that both magmatic and phreatomagmatic fragmentation processes played a role in the subglacial eruptions.

Keywords

Explosive Basaltic Ash Tephra Grain Morphology Fragmentation Iceland 

Supplementary material

445_2016_1093_MOESM1_ESM.pdf (1.5 mb)
ESM 1(PDF 1.47 mb)
445_2016_1093_MOESM2_ESM.bmp (12.1 mb)
ESM 2(BMP 12370 kb)
445_2016_1093_MOESM3_ESM.bmp (1.7 mb)
ESM 3(BMP 1734 kb)

References

  1. Bagheri GH, Bonadonna C, Manzella I, Vonlanthen P (2015) On the characterization of size and shape of irregular particles. Powder Technol 270:141–153CrossRefGoogle Scholar
  2. Buttner R, Dellino P, La Volpe L, Lorenz V, Zimanowski B (2002) Thermohydraulic explosions in phreatomagmatic eruptions as evidenced by the comparison between pyroclasts and products from molten fuel coolant interaction experiments. J Geophys Res 107(B11):2277. doi:10.1029/2001JB000511 CrossRefGoogle Scholar
  3. Cioni R, D'Oriano C, Bertagnini A (2008) Fingerprinting ash deposits of small scale eruptions by their physical and textural features. J Volcanol Geotherm Res 177(1):277–287CrossRefGoogle Scholar
  4. Cioni R, Pistolesi M, Bertagnini A, Bonadonna C, Hoskuldsson A, Scateni B (2014) Insights into the dynamics and evolution of the 2010 Eyjafjallajokull summit eruption (Iceland) provided by volcanic ash textures. Earth Planet Sci Lett 394:111–123CrossRefGoogle Scholar
  5. Coltelli M, Miraglia L, Scollo S (2008) Characterization of shape and terminal velocity of tephra particles erupted during the 2002 eruption of Etna volcano, Italy. Bull Volcanol 70(9):1103–1112CrossRefGoogle Scholar
  6. Dellino P, LaVolpe L (1996) Image processing analysis in reconstructing fragmentation and transportation mechanisms of pyroclastic deposits. The case of Monte Pilato-Rocche Rosse eruptions, Lipari (Aeolian islands, Italy). J Volcanol Geotherm Res 71(1):13–29CrossRefGoogle Scholar
  7. Dellino P, Liotino G (2002) The fractal and multifractal dimension of volcanic ash particles contour: a test study on the utility and volcanological relevance. J Volcanol Geotherm Res 113(1–2):1–18CrossRefGoogle Scholar
  8. Dellino P, Mele D, Bonasia R, Braia G, La Volpe L, Sulpizio R (2005) The analysis of the influence of pumice shape on its terminal velocity. Geophys Res Lett 32(21):L21306. doi:10.1029/2005GL023954 CrossRefGoogle Scholar
  9. Dellino P, Gudmundsson MT, Larsen G, Mele D, Stevenson JA, Thordarson T, Zimanowski B (2012) Ash from the Eyjafjallajokull eruption (Iceland): fragmentation processes and aerodynamic behavior. J Geophys Res-Sol Ea 117:B00C04. doi:10.1029/2011JB008726 CrossRefGoogle Scholar
  10. D'Oriano C, Bertagnini A, Cioni R, Pompilio M (2014) Identifying recycled ash in basaltic eruptions. Scientific Reports 4:5851. doi:10.1038/srep05851 CrossRefGoogle Scholar
  11. Dürig T, Mele D, Dellino P, Zimanowski B (2012) Comparative analyses of glass fragments from brittle fracture experiments and volcanic ash particles. Bull Volcanol 74(3):691–704CrossRefGoogle Scholar
  12. Eiriksson JS, Sigurgeirsson MA, Hoelstad T (1994) Image analysis and morphometry of hydromagmatic and magmatic tephra grains, Reykjanes volcanic system, Iceland. Jökull 44:41–55Google Scholar
  13. Ersoy O, Gourgaud A, Aydar E, Chinga G, Thouret J-C (2007) Quantitative scanning-electron microscope analysis of volcanic ash surfaces: application to the 1982–1983 Galunggung eruption (Indonesia). Geol Soc Am Bull 119(5–6):743–752CrossRefGoogle Scholar
  14. Genareau K, Mulukutla GK, Proussevitch AA, Durant AJ, Rose WI, Sahagian DL (2013) The size range of bubbles that produce ash during explosive volcanic eruptions. J Appl Volcanol 2(1):1–18CrossRefGoogle Scholar
  15. Gjerløw E, Höskuldsson A, Pedersen R-B (2015) The 1732 Surtseyan eruption of Eggoya, Jan Mayen, North Atlantic: deposits, distribution, chemistry and chronology. Bull Volcanol 77(2):14. doi:10.1007/s00445-014-0895-6 CrossRefGoogle Scholar
  16. Graettinger AH, Skilling I, McGarvie D, Hoskuldsson A (2013) Subaqueous basaltic magmatic explosions trigger phreatomagmatism: a case study from Askja, Iceland. J Volcanol Geotherm Res 264:17–35CrossRefGoogle Scholar
  17. Heiken G (1972) Morphology and petrography of volcanic ashes. Geol Soc Am Bull 83(7):1961–1988CrossRefGoogle Scholar
  18. Heiken G (1974) An Atlas of volcanic ash. Smithsonian. Contrib Earth Sci 12:1–101CrossRefGoogle Scholar
  19. Honnorez JK, Kirst P (1975) Submarine basaltic volcanism: morphometric parameters for discriminating hyaloclastites from hyalotuffs. Bull Volcanol 39:441–465CrossRefGoogle Scholar
  20. Hreinsdottir S, Sigmundsson F, Roberts MJ, Bjornsson H, Grapenthin R, Arason P, Arnadottir T, Holmjarn J, Geirsson H, Bennett RA, Gudmundsson MT, Oddsson B, Ofeigsson BG, Villemin T, Jonsson T, Sturkell E, Hoskuldsson A, Larsen G, Thordarson T, Oladottir BA (2014) Volcanic plume height correlated with magma-pressure change at Grimsvotn Volcano, Iceland. Nat Geosci 7(3):214–218CrossRefGoogle Scholar
  21. Jakobsson SP, Jonsson J, Shido F (1978) Petrology of the Western Reykjanes Peninsula, Iceland. J Petrol 19(4):669–705CrossRefGoogle Scholar
  22. Johnson VE (2013) Revised standards for statistical evidence. Proc Natl Acad Sci U S A 110(48):19313–19317CrossRefGoogle Scholar
  23. Jordan SC, Dürig T, Cas RAF, Zimanowski B (2014) Processes controlling the shape of ash particles: results of statistical IPA. J Volcanol Geotherm Res 288:19–27CrossRefGoogle Scholar
  24. Jutzeler M, White JDL, Proussevitch AA, Gordee SM (2016) Vesiculation and fragmentation history in a submarine scoria cone-forming eruption, an example from Nishiizu (Izu Peninsula, Japan). Bull Volcanol 78(2)Google Scholar
  25. Leibrandt S, Le Pennec JL (2015) Towards fast and routine analysis of volcanic ash morphometry for eruption surveillance applications. J Volcanol Geotherm Res 297:11–27CrossRefGoogle Scholar
  26. Liu EJ, Cashman KV, Rust AC (2015a) Optimizing shape analysis to quantify volcanic ash morphology. Geo Res J 8:14–30Google Scholar
  27. Liu EJ, Cashman KV, Rust AC, Gislason SR (2015b) The role of bubbles in generating fine ash during hydromagmatic eruptions. Geology 43(3):239–242CrossRefGoogle Scholar
  28. Mangan MT, Cashman KV (1996) The structure of basaltic scoria and reticulite and inferences for vesiculation, foam formation, and fragmentation in lava fountains. J Volcanol Geotherm Res 73(1–2):1–18CrossRefGoogle Scholar
  29. Maria A, Carey S (2002) Using fractal analysis to quantitatively characterize the shapes of volcanic particles. J Geophys Res-Sol Ea 107(B11):ECV 7-1–ECV 7-17CrossRefGoogle Scholar
  30. Maria A, Carey S (2007) Quantitative discrimination of magma fragmentation and pyroclastic transport processes using the fractal spectrum technique. J Volcanol Geotherm Res 161(3):234–246CrossRefGoogle Scholar
  31. Mastin LG, Guffanti M, Servranckx R, Webley P, Barsotti S, Dean K, Durant A, Ewert JW, Neri A, Rose WI, Schneider D, Siebert L, Stunder B, Swanson G, Tupper A, Volentik A, Waythomas CF (2009) A multidisciplinary effort to assign realistic source parameters to models of volcanic ash-cloud transport and dispersion during eruptions. J Volcanol Geotherm Res 186:10–21CrossRefGoogle Scholar
  32. Mattsson HB, Hoskuldsson A (2011) Contemporaneous phreatomagmatic and effusive activity along the Hverfjall eruptive fissure, North Iceland: eruption chronology and resulting deposits. J Volcanol Geotherm Res 201(1–4):241–252CrossRefGoogle Scholar
  33. Miwa T, Shimano T, Nishimura T (2015) Characterization of the luminance and shape of ash particles at Sakurajima volcano, Japan, using CCD camera images. Bull Volcanol 77(5):1–24Google Scholar
  34. Murtagh RM, White JDL (2013) Pyroclast characteristics of a subaqueous to emergent Surtseyan eruption, Black Point Volcano, California. J Volcanol Geotherm Res 267:75–91CrossRefGoogle Scholar
  35. Nemeth K, Cronin SJ (2011) Drivers of explosivity and elevated hazard in basaltic fissure eruptions: the 1913 eruption of Ambrym Volcano, Vanuatu (SW-Pacific). J Volcanol Geotherm Res 201(1–4):194–209CrossRefGoogle Scholar
  36. Oladottir BA, Sigmarsson O, Larsen G, Thordarson T (2008) Katla volcano, Iceland: magma composition, dynamics and eruption frequency as recorded by Holocene tephra layers. Bull Volcanol 70(4):475–493CrossRefGoogle Scholar
  37. Oladottir BA, Sigmarsson O, Larsen G, Devidal JL (2011) Provenance of basaltic tephra from Vatnajokull subglacial volcanoes, Iceland, as determined by major- and trace-element analyses. The Holocene 21(7):1037–1048CrossRefGoogle Scholar
  38. Owen J, Tuffen H, McGarvie DW (2013) Explosive subglacial rhyolitic eruptions in Iceland are fuelled by high magmatic H2O and closed-system degassing. Geology 41(2):251–254CrossRefGoogle Scholar
  39. Parfitt EA, Wilson L (1995) Explosive volcanic eruptions (IX) the transition between Hawaiian-style lava fountaining and Strombolian explosive activity. Geophys J Int 121(1):226–232CrossRefGoogle Scholar
  40. Perugini D, Kueppers U (2012) Fractal analysis of experimentally generated pyroclasts: a tool for volcanic hazard assessment. Acta. Geophysica 60(3):682–698Google Scholar
  41. Proussevitch AA, Mulukutla GK, Sahagian DL (2011) A new 3D method of measuring bubble size distributions from vesicle fragments preserved on surfaces of volcanic ash particles. Geosphere 7(1):62–69CrossRefGoogle Scholar
  42. Riley CM, Rose WI, Bluth GJS (2003) Quantitative shape measurements of distal volcanic ash. J Geophys Res-Sol Ea 108(B10):2504. doi:10.1029/2001JB000818 CrossRefGoogle Scholar
  43. Schipper CI, White JDL (2016) Magma-slurry interaction in Surtseyan eruptions. Geology 44(3):195–198CrossRefGoogle Scholar
  44. Schipper CI, White JDL, Houghton BF (2010) Syn- and post-fragmentation textures in submarine pyroclasts from Loihi Seamount, Hawaii. J Volcanol Geotherm Res 191(1–2):93–106CrossRefGoogle Scholar
  45. Schipper CI, White JDL, Houghton BF (2011a) Textural, geochemical, and volatile evidence for a Strombolian-like eruption sequence at Lō’ihi Seamount, Hawaii. J Volcanol Geotherm Res 207(1–2):16–32CrossRefGoogle Scholar
  46. Schipper CI, White JDL, Zimanowski B, Büttner R, Sonder I, Schmid A (2011b) Experimental interaction of magma and “dirty” coolants. Earth Planet Sci Lett 203:323–336CrossRefGoogle Scholar
  47. Sheridan MF, Marshall JR (1983) Interpretation of pyroclast surface-features using SEM images. J Volcanol Geotherm Res 16(1–2):153–159CrossRefGoogle Scholar
  48. Sigmarsson O, Vlastelic I, Andreasen R, Bindeman I, Devidal JL, Moune S, Keiding JK, Larsen G, Hoskuldsson A, Thordarson T (2011) Remobilization of silicic intrusion by mafic magmas during the 2010 Eyjafjallajokull eruption. J Geophys Res-Sol Ea 2(2):271–281Google Scholar
  49. Sigmarsson O, Haddadi B, Carn S, Moune S, Gudnason J, Yang K, Clarisse L (2013) The sulfur budget of the 2011 Grimsvotn eruption, Iceland. Geophys Res Lett 40(23):6095–6100CrossRefGoogle Scholar
  50. Stovall WK, Houghton BF, Gonnermann H, Fagents SA, Swanson DA (2011) Eruption dynamics of Hawaiian-style fountains: the case study of episode 1 of the Kilauea Iki 1959 eruption. Bull Volcanol 73(5):511–529CrossRefGoogle Scholar
  51. Wohletz KH (1983) Mechanisms of hydrovolcanic pyroclast formation—grain-size, scanning electron-microscopy, and experimental studies. J Volcanol Geotherm Res 17(1–4):31–63CrossRefGoogle Scholar
  52. Zimanowski B, Buttner R, Lorenz V, Hafele HG (1997) Fragmentation of basaltic melt in the course of explosive volcanism. J Geophys Res-Sol Ea 102(B1):803–814CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Johanne Schmith
    • 1
    • 2
  • Ármann Höskuldsson
    • 1
  • Paul Martin Holm
    • 2
  1. 1.Nordic Volcanological Center, Earth Science InstituteUniversity of IcelandReykjavikIceland
  2. 2.Department of Geosciences and Natural Resource ManagementUniversity of CopenhagenCopenhagenDenmark

Personalised recommendations