Bulletin of Volcanology

, 79:1 | Cite as

The use of biotite trace element compositions for fingerprinting magma batches at Las Cañadas volcano, Tenerife

  • J. T. Sliwinski
  • B. S. Ellis
  • P. Dávila-Harris
  • J. A. Wolff
  • P. H. Olin
  • O. Bachmann
Research Article

Abstract

Accurate identification of individual volcanic events in the field is crucial for constraining eruption volumes and calculating recurrence intervals between eruptive episodes. Due to complexities of pyroclastic transport and deposition and intra-unit textural variability, such identification can be challenging. We present a novel method for fingerprinting ignimbrites via trace element chemistry (V, Co, Nb) in biotite by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). Using samples from the alkaline magmatic series of Tenerife, we are able to demonstrate (1) clustering of previously characterized units into distinct, homogeneous groups based on V, Co, and Nb concentrations in biotite, despite the presence of extreme variation and zonation in other trace elements (Ba, Sr, Rb) that indicate complex petrogenetic processes, and (2) biotite compositions are similar throughout a deposit and relatively independent of stratigraphic height or juvenile clast texture (crystal-rich vs crystal-poor). Our results show that trace elements in biotite can be used to fingerprint eruptions and correlate geographically separated volcanic deposits, including those preserved in offshore turbidite records.

Keywords

Stratigraphy Tenerife Alkaline magmatism Trace element chemistry Biotite 

Notes

Acknowledgments

We would like to thank Alina Fiedrich for assistance in the field and Lukas Martin for his help in microprobe analysis. Wolff and Olin’s Tenerife work was funded by NSF grant EAR0001013. Sliwinski, Ellis, and Bachmann were funded by Swiss NSF grant 200021_166281.

Supplementary material

445_2016_1088_MOESM1_ESM.xlsx (257 kb)
ESM 1 (XLSX 256 kb)
445_2016_1088_MOESM2_ESM.docx (105 kb)
ESM 2 (DOCX 104 kb)

References

  1. Ablay G, Carroll M, Palmer M, Martí J, Sparks R (1998) Basanite–phonolite lineages of the Teide–Pico Viejo volcanic complex, Tenerife, Canary Islands. J Petrol 39:905–936CrossRefGoogle Scholar
  2. Acosta-Vigil A, Buick I, Hermann J, Cesare B, Rubatto D, London D, Morgan GB (2010) Mechanisms of crustal anatexis: a geochemical study of partially melted metapelitic enclaves and host dacite, SE Spain. J Petrol 51:785–821CrossRefGoogle Scholar
  3. Albert H, Costa F, Martí J (2015) Timing of magmatic processes and unrest associated with mafic historical monogenetic eruptions in Tenerife Island. J Petrol egv058Google Scholar
  4. Ancochea E, Fuster J, Ibarrola E, Cendrero A, Coello J, Hernan F, Cantagrel J, Jamond C (1990) Volcanic evolution of the island of Tenerife (Canary Islands) in the light of new K-Ar data. J Volcanol Geotherm Res 44:231–249CrossRefGoogle Scholar
  5. Ancochea E, Huertas M, Cantagrel J, Coello J, Fúster J, Arnaud N, Ibarrola E (1999) Evolution of the Cañadas edifice and its implications for the origin of the Cañadas caldera (Tenerife, Canary Islands). J Volcanol Geotherm Res 88:177–199CrossRefGoogle Scholar
  6. Andújar J, Costa F, Martí J, Wolff JA, Carroll M (2008) Experimental constraints on pre-eruptive conditions of phonolitic magma from the caldera-forming el Abrigo eruption, Tenerife (Canary Islands). Chem Geol 257:173–191Google Scholar
  7. Araña V, Martí J, Aparicio A, García-Cacho L, García-García R (1994) Magma mixing in alkaline magmas: an example from Tenerife, Canary Islands. Lithos 32:1–19CrossRefGoogle Scholar
  8. Bachmann O, Deering CD, Lipman PW, Plummer C (2014) Building zoned ignimbrites by recycling silicic cumulates: insight from the 1,000 km3 Carpenter Ridge Tuff, CO. Contrib Mineral Petrol 167:1–13CrossRefGoogle Scholar
  9. Blanco JJA (1989) Estudio volcanoestratigráfico y volcanológico de los piroclastos sálicos de sur de Tenerife: Universidad de La LagunaGoogle Scholar
  10. Branney MJ, Kokelaar BP (2002) Pyroclastic density currents and the sedimentation of ignimbrites. Geological Society of LondonGoogle Scholar
  11. Brown RJ, Barry T, Branney M, Pringle M, Bryan S (2003) The quaternary pyroclastic succession of southeast Tenerife, Canary Islands: explosive eruptions, related caldera subsidence, and sector collapse. Geol Mag 140:265–288Google Scholar
  12. Brown RJ, Branney M (2004a) Event-stratigraphy of a caldera-forming ignimbrite eruption on Tenerife: the 273 ka Poris Formation. Bull Volcanol 66:392–416Google Scholar
  13. Brown RJ, Branney MJ (2004b) Bypassing and diachronous deposition from density currents: evidence from a giant regressive bed form in the Poris ignimbrite, Tenerife, Canary Islands. Geology 32:445–448Google Scholar
  14. Bryan S (2006) Petrology and geochemistry of the quaternary caldera-forming, phonolitic Granadilla eruption, Tenerife (Canary Islands). J Petrol 47:1557–1589CrossRefGoogle Scholar
  15. Bryan S, Martí J, Cas R (1998) Stratigraphy of the Bandas del Sur Formation: an extracaldera record of quaternary phonolitic explosive eruptions from the Las Cañadas edifice, Tenerife (Canary Islands). Geol Mag 135:605–636CrossRefGoogle Scholar
  16. Bryan S, Marti J, Leosson M (2002) Petrology and geochemistry of the bandas del Sur formation, Las Cañadas edifice, Tenerife (Canary Islands). J Petrol 43:1815–1856CrossRefGoogle Scholar
  17. Carracedo JC, Badiola ER, Guillou H, Paterne M, Scaillet S, Torrado FP, Paris R, Fra-Paleo U, Hansen A (2007) Eruptive and structural history of Teide Volcano and rift zones of Tenerife, Canary Islands. Geol Soc Am Bull 119:1027–1051Google Scholar
  18. Dávila-Harris P (2009) Explosive ocean-island volcanism: the 1.8–0.7 Ma explosive eruption history of Cañadas volcano recorded by the pyroclastic successions around Adeje and Abona, southern Tenerife, Canary Islands. University of LeicesterGoogle Scholar
  19. Dávila-Harris P, Ellis BS, Branney MJ, Carrasco-Núñez G (2013) Lithostratigraphic analysis and geochemistry of a vitric spatter-bearing ignimbrite: the Quaternary Adeje Formation, Cañadas volcano, Tenerife. Bull Volcanol 75:1–15Google Scholar
  20. De Silva S, Francis P (1989) Correlation of large ignimbrites—two case studies from the Central Andes of Northern Chile. J Volcanol Geotherm Res 37:133–149CrossRefGoogle Scholar
  21. Desborough GA, Pitman JK, Donnell JR (1973) Microprobe analysis of biotites-A method of correlating tuff beds in the Green River Formation, Colorado and Utah. Journal of Research of the US Geological Survey 1(1):39–44Google Scholar
  22. Donato P, Albert P, Crocitti M, De Rosa R, Menzies M (2016) Tephra layers along the southern Tyrrhenian coast of Italy: links to the X-5 & X-6 using volcanic glass geochemistry. J Volcanol Geotherm Res 317:30–41CrossRefGoogle Scholar
  23. Dorais MJ, Whitney JA, Stormer JC Jr (1991) Mineralogical constraints on the petrogenesis of trachytic inclusions, Carpenter ridge tuff, Central San Juan volcanic field, Colorado. Contrib Mineral Petrol 107:219–230CrossRefGoogle Scholar
  24. Dymek R (1983) Titanium, aluminum and interlayer cation substitutions in biotite from high-grade gneisses’ West Greenland. Am Mineral 6:880–399Google Scholar
  25. Edgar CJ, Wolff JA, Nichols H, Cas R, Martí J (2002) A complex quaternary ignimbrite-forming phonolitic eruption: the Poris member of the Diego Hernández Formation (Tenerife, Canary Islands). J Volcanol Geotherm Res 118:99–130Google Scholar
  26. Edgar CJ, Wolff JA, Olin PH, Nichols H, Pittari A, Cas R, Reiners P, Spell T, Martí J (2007) The late Quaternary Diego Hernandez Formation, Tenerife: volcanology of a complex cycle of voluminous explosive phonolitic eruptions. J Volcanol Geotherm Res 160:59–85Google Scholar
  27. Eichelberger JC, Chertkoff DG, Dreher ST, Nye CJ (2000) Magmas in collision: rethinking chemical zonation in silicic magmas. Geology 28:603–606CrossRefGoogle Scholar
  28. Ellis BS, Mark DF, Pritchard CJ, Wolff JA (2012) Temporal dissection of the Huckleberry Ridge Tuff using the 40 Ar/39 Ar dating technique. Quat Geochronol 9:34–41CrossRefGoogle Scholar
  29. Ewart A, Griffin W (1994) Application of proton-microprobe data to trace-element partitioning in volcanic rocks. Chem Geol 117:251–284CrossRefGoogle Scholar
  30. Forni F, Bachmann O, Mollo S, De Astis G, Gelman SE, Ellis BS (2016) The origin of a zoned ignimbrite: insights into the Campanian Ignimbrite magma chamber (Campi Flegrei, Italy). Earth Planet Sci Lett 449:259–271CrossRefGoogle Scholar
  31. Forni F, Ellis BS, Bachmann O, Lucchi F, Tranne CA, Agostini S, Dallai L (2015) Erupted cumulate fragments in rhyolites from Lipari (Aeolian Islands). Contrib Mineral Petrol 170:1–18CrossRefGoogle Scholar
  32. Francalanci L, Taylor S, McCulloch M, Woodhead J (1993) Geochemical and isotopic variations in the calc-alkaline rocks of Aeolian arc, southern Tyrrhenian Sea, Italy: constraints on magma genesis. Contrib Mineral Petrol 113:300–313CrossRefGoogle Scholar
  33. Guillong M, Meier D, Allan M, Heinrich C, Yardley B (2008) SILLS: a MATLAB-based program for the reduction of laser ablation ICP-MS data of homogeneous materials and inclusions. Mineralogical Association of Canada Short Course 40:328–333Google Scholar
  34. Harangi S, Mason PR, Lukács R (2005) Correlation and petrogenesis of silicic pyroclastic rocks in the Northern Pannonian Basin, Eastern-Central Europe: in situ trace element data of glass shards and mineral chemical constraints. J Volcanol Geotherm Res 143:237–257CrossRefGoogle Scholar
  35. Haynes JT, Melson WG, Kunk MJ (1995) Composition of biotite phenocrysts in Ordovician tephras casts doubt on the proposed trans-Atlantic correlation of the Millbrig K-bentonite (United States) and the Kinnekulle K-bentonite (Sweden). Geology 23(9):847Google Scholar
  36. Hazen R, Wones D (1972) Effect of cation substitutions on physical properties of trioctahedral micas. Am Mineral 57:103–129Google Scholar
  37. Hildreth W (1979) The Bishop Tuff: evidence for the origin of compositional zonation in silicic magma chambers. Geol Soc Am Spec Pap 180:43–75Google Scholar
  38. Hildreth W (1981) Gradients in silicic magma chambers: implications for lithospheric magmatism. J Geophys Res: Solid Earth 86:10153–10192CrossRefGoogle Scholar
  39. Hildreth W, Moorbath S (1988) Crustal contributions to arc magmatism in the Andes of central Chile. Contrib Mineral Petrol 98:455–489CrossRefGoogle Scholar
  40. Hoernle K (1998) Geochemistry of Jurassic oceanic crust beneath Gran Canaria (Canary Islands): implications for crustal recycling and assimilation. J Petrol 39:859–880CrossRefGoogle Scholar
  41. Hunt J, Talling P, Clare M, Jarvis I, Wynn R (2014) Long-term (17 Ma) turbidite record of the timing and frequency of large flank collapses of the Canary Islands. Geochem Geophys Geosyst 15:3322–3345CrossRefGoogle Scholar
  42. Huertas MJ, Arnaud NO, Ancochea E, Cantagrel JM, Fúster JM (2002) 40Ar/39Ar stratigraphy of pyroclastic units from the Cañadas Volcanic Edifice (Tenerife, Canary Islands) and their bearing on the structural evolution. J Volcanol Geotherm Res 115(3):351–365Google Scholar
  43. Le Friant A, Ishizuka O, Boudon G, Palmer M, Talling P, Villemant B, Adachi T, Aljahdali M, Breitkreuz C, Brunet M (2015) Submarine record of volcanic island construction and collapse in the lesser Antilles arc: first scientific drilling of submarine volcanic island landslides by IODP Expedition 340. Geochem Geophys Geosyst 16:420–442CrossRefGoogle Scholar
  44. Lipman PW (1967) Mineral and chemical variations within an ash-flow sheet from Aso caldera, southwestern Japan. Contrib Mineral Petrol 16:300–327CrossRefGoogle Scholar
  45. Luhr JF, Carmichael IS (1980) The colima volcanic complex, Mexico. Contrib Mineral Petrol 71:343–372CrossRefGoogle Scholar
  46. Mahood GA, Hildreth W (1986) Geology of the peralkaline volcano at Pantelleria, Strait of Sicily. Bull Volcanol 48:143–172CrossRefGoogle Scholar
  47. Mark DF, Petraglia M, Smith VC, Morgan LE, Barfod DN, Ellis BS, Pearce NJ, Pal J, Korisettar R (2014) A high-precision 40 Ar/39 Ar age for the young Toba tuff and dating of ultra-distal tephra: forcing of quaternary climate and implications for hominin occupation of India. Quat Geochronol 21:90–103CrossRefGoogle Scholar
  48. Martí J, Mitjavila J, Araña V (1994) Stratigraphy, structure and geochronology of the las Cañadas caldera (Tenerife, Canary Islands). Geol Mag 131:715–727CrossRefGoogle Scholar
  49. Martí J, Mitjavila J, Villa I (1990) Stratigraphy and K-Ar ages of the Diego Hernández wall and their significance on the Las Cañadas Caldera formation (Tenerife, Canary Islands). Terra Nov. 2:148–153Google Scholar
  50. Mason BG, Pyle DM, Oppenheimer C (2004) The size and frequency of the largest explosive eruptions on Earth. Bull Volcanol 66:735–748CrossRefGoogle Scholar
  51. McIntosh WC, Sutter JF, Chapin CE, Kedzie LL (1990) High-precision 40Ar/39Ar sanidine geochronology of ignimbrites in the Mogollon-Datil volcanic field, southwestern New Mexico. Bull Volcanol 52:584–601CrossRefGoogle Scholar
  52. Menard HW (1956) Archipelagic aprons. AAPG Bull 40:2195–2210Google Scholar
  53. Mitjavila J (1990) Aplicació de tècniques de geoquimica isotòpica i de geocronologia a l’estudi volcanologic de l’edifici de Diego Hernández i la seva relació amb la Caldera de Las Cañadas (Tenerife). PhD thesis, Univ. of Barcelona (microfilm no. 1312), SpainGoogle Scholar
  54. Nash W, Crecraft H (1985) Partition coefficients for trace elements in silicic magmas. Geochim Cosmochim Acta 49:2309–2322CrossRefGoogle Scholar
  55. Olin PH (2007) Magma dynamics of the phonolitic Diego Hernández Formation, Tenerife, Canary Islands. Washington State UniversityGoogle Scholar
  56. Olin PH, Wolff JA (2012) Partitioning of rare earth and high field strength elements between titanite and phonolitic liquid. Lithos 128:46–54CrossRefGoogle Scholar
  57. Ort MH, Porreca M, Geissman JW (2015) The use of palaeomagnetism and rock magnetism to understand volcanic processes: introduction. Geol Soc Lond, Spec Publ 396:1–11CrossRefGoogle Scholar
  58. Pearce NJ, Westgate JA, Perkins WT (1996) Developments in the analysis of volcanic glass shards by laser ablation ICP-MS: quantitative and single internal standard-multielement methods. Quat Int 34:213–227CrossRefGoogle Scholar
  59. Robertson A, Stillman C (1979) Late Mesozoic sedimentary rocks of Fuerteventura, Canary Islands: implications for West African continental margin evolution. J Geol Soc 136:47–60CrossRefGoogle Scholar
  60. Sarna-Wojcicki AM, Bowman H, Meyer CE, Russell P, Woodward M, McCoy G, Rowe Jr J, Baedecker P, Asaro F, Michael H (1984) Chemical analyses, correlations, and ages of upper Pliocene and Pleistocene ash layers of east-central and southern CaliforniaGoogle Scholar
  61. Schmincke HU, Sumita M (1998) Volcanic evolution of Gran Canaria Reconstructed from apron sediments: Synthesis of Vicap Project Drilling 27Google Scholar
  62. Schoene B, Guex J, Bartolini A, Schaltegger U, Blackburn TJ (2010) Correlating the end-Triassic mass extinction and flood basalt volcanism at the 100 ka level. Geology 38:387–390CrossRefGoogle Scholar
  63. Shane P (2000) Tephrochronology: a New Zealand case study. Earth Sci Rev 49:223–259CrossRefGoogle Scholar
  64. Shane P, Smith V, Nairn I (2003) Biotite composition as a tool for the identification of quaternary tephra beds. Quat Res 59:262–270CrossRefGoogle Scholar
  65. Sliwinski J (2014) Eruption of shallow crystal cumulates during Caldera-forming events on Tenerife, Canary Islands. ETHGoogle Scholar
  66. Sliwinski JT, Bachmann O, Ellis BS, Dávila-Harris P, Nelson BK, Dufek J (2015) Eruption of shallow crystal cumulates during explosive phonolitic eruptions on Tenerife, Canary Islands. J Petrol 56:2173–2194Google Scholar
  67. Smith VC, Isaia R, Pearce N (2011a) Tephrostratigraphy and glass compositions of post-15 kyr Campi Flegrei eruptions: implications for eruption history and chronostratigraphic markers. Quat Sci Rev 30:3638–3660Google Scholar
  68. Smith VC, Pearce NJ, Matthews NE, Westgate JA, Petraglia MD, Haslam M, Lane CS, Korisettar R, Pal J (2011b) Geochemical fingerprinting of the widespread Toba tephra using biotite compositions. Quat Int 246:97–104CrossRefGoogle Scholar
  69. Smith VC, Shane P, Smith I (2002) Tephrostratigraphy and geochemical fingerprinting of the Mangaone subgroup tephra beds, Okataina volcanic centre, New Zealand. N Z J Geol Geophys 45:207–219CrossRefGoogle Scholar
  70. Solana MC (2012) Development of unconfined historic lava flow fields in Tenerife: implications for the mitigation of risk from a future eruption. Bull Volcanol 74:2397–2413CrossRefGoogle Scholar
  71. Stepanov AS, Hermann J (2013) Fractionation of Nb and Ta by biotite and phengite: implications for the “missing Nb paradox”. Geology 41:303–306CrossRefGoogle Scholar
  72. Szymanowski D, Ellis BS, Bachmann O, Guillong M, Phillips WM (2015) Bridging basalts and rhyolites in the Yellowstone–Snake River Plain volcanic province: the elusive intermediate step. Earth Planet Sci Lett 415:80–89CrossRefGoogle Scholar
  73. Thirlwall M, Singer B, Marriner G (2000) 39Ar–40Ar ages and geochemistry of the basaltic shield stage of Tenerife, Canary Islands, Spain. J Volcanol Geotherm Res 103:247–297CrossRefGoogle Scholar
  74. Ukstins-Peate I, Baker JA, Kent AJ, Al-Kadasi M, Al-Subbary A, Ayalew D, Menzies M (2003) Correlation of Indian Ocean tephra to individual Oligocene silicic eruptions from Afro-Arabian flood volcanism. Earth Planet Sci Lett 211:311–327CrossRefGoogle Scholar
  75. Vidal CM, Komorowski JC, Métrich N, Pratomo I, Kartadinata N, Prambada O, Michel A, Carazzo G, Lavigne F, Rodysill J (2015) Dynamics of the major plinian eruption of Samalas in 1257 AD (Lombok, Indonesia). Bull Volcanol 77:1–24Google Scholar
  76. Villemant B (1988) Trace element evolution in the Phlegrean Fields (Central Italy): fractional crystallization and selective enrichment. Contrib Mineral Petrol 98:169–183CrossRefGoogle Scholar
  77. Walker G (1981) Plinian eruptions and their products. Bull Volcanol 44:223–240CrossRefGoogle Scholar
  78. Waters AC (1961) Stratigraphic and lithologic variations in the Columbia River basalt. Am J Sci 259:583–611CrossRefGoogle Scholar
  79. Watts A, Masson D (1995) A giant landslide on the north flank of Tenerife, Canary Islands. J Geophys Res: Solid Earth 100:24487–24498CrossRefGoogle Scholar
  80. Westgate J, Perkins W, Fuge R, Pearce N, Wintle A (1994) Trace-element analysis of volcanic glass shards by laser ablation inductively coupled plasma mass spectrometry: application to tephrochronological studies. Appl Geochem 9:323–335CrossRefGoogle Scholar
  81. Williams R, Branney MJ, Barry TL (2014) Temporal and spatial evolution of a waxing then waning catastrophic density current revealed by chemical mapping. Geology 42:107–110CrossRefGoogle Scholar
  82. Wolff JA (1985) Zonation, mixing and eruption of silica-undersaturated alkaline magma: a case study from Tenerife, Canary Islands. Geol Mag 122:623–640Google Scholar
  83. Wolff JA, Ellis BS, Ramos F, Starkel W, Boroughs S, Olin PH, Bachmann O (2015) Remelting of cumulates as a process for producing chemical zoning in silicic tuffs: A comparison of cool, wet and hot, dry rhyolitic magma systems. Lithos 275–286Google Scholar
  84. Wolff JA, Grandy J, Larson P (2000) Interaction of mantle-derived magma with island crust? Trace element and oxygen isotope data from the Diego Hernandez Formation, Las Cañadas, Tenerife. J Volcanol Geotherm Res 103:343–366Google Scholar
  85. Wolff JA, Storey M (1984) Zoning in highly alkaline magma bodies. Geol Mag 121:563–575Google Scholar
  86. Wörner G, Schmincke H (1984) Mineralogical and chemical zonation of the Laacher see tephra sequence (East Eifel, W. Germany). J Petrol 25:805–835CrossRefGoogle Scholar
  87. Wotzlaw JF, Hüsing SK, Hilgen FJ, Schaltegger U (2014) High-precision zircon U–Pb geochronology of astronomically dated volcanic ash beds from the Mediterranean Miocene. Earth Planet Sci Lett 407:19–34Google Scholar
  88. Yen FS, Goodwin JH (1976) Correlation of tuff layers in the Green River Formation, Utah using biotite compositions. J Sediment Res 46(2):345–354Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • J. T. Sliwinski
    • 1
  • B. S. Ellis
    • 1
  • P. Dávila-Harris
    • 2
  • J. A. Wolff
    • 3
  • P. H. Olin
    • 4
  • O. Bachmann
    • 1
  1. 1.Institute of Geochemistry and PetrologyETH ZürichZürichSwitzerland
  2. 2.Applied Geoscience DepartmentInstituto Potosino de Investigación Científica y TecnológicaSan Luis PotosíMexico
  3. 3.School of the EnvironmentWashington State UniversityPullmanUSA
  4. 4.CODES Center of Excellence and School of Physical SciencesUniversity of TasmaniaHobartAustralia

Personalised recommendations