Bulletin of Volcanology

, 79:4 | Cite as

Eruption and emplacement dynamics of a thick trachytic lava flow of the Sancy volcano (France)

  • Benjamin Latutrie
  • Andrew Harris
  • Etienne Médard
  • Lucia Gurioli
Research Article

Abstract

A 70-m-thick, 2200-m-long (51 × 106 m3) trachytic lava flow unit underlies the Puy de Cliergue (Mt. Dore, France). Excellent exposure along a 400-m-long and 60- to 85-m-high section allows the flow interior to be accessed on two sides of a glacial valley that cuts through the unit. We completed an integrated morphological, structural, textural, and chemical analysis of the unit to gain insights into eruption and flow processes during emplacement of this thick silicic lava flow, so as to elucidate the chamber and flow dynamic processed that operate during the emplacement of such systems. The unit is characterized by an inverse chemical stratification, where there is primitive lava beneath the evolved lava. The interior is plug dominated with a thin basal shear zone overlying a thick basal breccia, with ramping affecting the entire flow thickness. To understand these characteristics, we propose an eruption model that first involves processes operating in the magma chamber whereby a primitive melt is injected into an evolved magma to create a mixed zone at the chamber base. The eruption triggered by this event first emplaced a trachytic dome, into which banded lava from the chamber base was injected. Subsequent endogenous dome growth led to flow down the shallow slope to the east on which the highly viscous (1012 Pa s) coulée was emplaced. The flow likely moved extremely slowly, being emplaced over a period of 4–10 years in a glacial manner, where a thick (>60-m) plug slid over a thin (5-m-thick) basal shear zone. Excellent exposure means that the Puy de Cliergue complex can be viewed as a case type location for understanding and defining the eruption and emplacement of thick, high-viscosity, silicic lava flow systems.

Keywords

Silicic lava flow Facies Rheology Viscous Glacial emplacement model 

Notes

Acknowledgements

We thank Pierre Boivin and EAVUC for sharing their database of whole rock analyses from the Mont Dore massif. This research was financed by the French Government Laboratory of Excellence (initiative no. ANR-10-LABX-0006), the Région Auvergne, and the European Regional Development Fund. Work was also supported by the Laboratory of Excellence ClerVolc (contribution number 227).

References

  1. Anderson SW, Fink JH (1992) Crease structures: indicators of emplacement rates and surface stress regimes of lava flows. Geol Soc Am Bulletin 104:615–625CrossRefGoogle Scholar
  2. Anderson SW, Fink JH, Rose WI (1995) Mount St. Helens and Santiaguito lava domes: the effect of short-term eruption rate on surface texture and degassing processes. J Volcanol Geother Res 69:105–l16CrossRefGoogle Scholar
  3. Anderson SW, Stofan ER, Plaut JJ, Crown DA (1998) Block size distributions on silicic lava flow surfaces: implications for emplacement conditions. Geol Soc Am Bulletin 110(10):1258–1267CrossRefGoogle Scholar
  4. Avard G, Whittington A (2012) Rheology of arc dacite lavas: experimental determination at low strain rates. Bull Volcanol 74(5):1039–1056CrossRefGoogle Scholar
  5. Barker SJ, Rotella MD, Wilson CJN, Wright IC, Wysoczanski RJ (2012) Contrasting pyroclast density spectra from subaerial and submarine silicic eruptions in the Kermadec arc: implications for eruption processes and dredge sampling. Bull Volcanol 74:1425–1443. doi: 10.1007/s00445-012-0604-2 CrossRefGoogle Scholar
  6. Barnes HA (1999) The yield stress—a review or ‘panta roi’—everything flows? J Non-Newton Mech 81:133–178CrossRefGoogle Scholar
  7. Baubron JC, Cantagrel JM (1980) Les deux volcans des Monts-Dore (Massif Central français). Comptes Rendus de l’Académie des Sciences Paris 290:1409–1412Google Scholar
  8. Benn D, Evans DJ (2010) Glaciers and glaciation. Routledge (Abingdon): 802 p.Google Scholar
  9. Blake S (1990) Viscoplastic models of lava domes. In: Fink JH (ed) Lava flows and domes. Springer, Berlin, pp. 88–126CrossRefGoogle Scholar
  10. Boulton G (1996) Theory of glacial erosion, transport and deposition as a consequence of subglacial sediment deformation. J Glaciol 42(140):43–62Google Scholar
  11. Brousse R, Tempier P, Veyret-Mekdjian Y (1989) Notice explicative de la carte géologique de la France au 1/50 000, feuille Bourg-Lastic. In: éditions du BRGM, OrléansGoogle Scholar
  12. Cantagrel J, Baubron J (1983) Chronologie des éruptions dans le massif volcanique des Monts Dore (méthode potassium-argon), implications volcanologiques. Géol Fr 2(1–2):123–142Google Scholar
  13. Cantagrel JM, Pastre JF (2001) Téphrostratigraphie du Mont Dore/the Mont Dore tephrostratigraphy (Massif Central, France). Quaternaire 12(4):249–267CrossRefGoogle Scholar
  14. Cas RAF, Wright JV (1987) Volcanic successions, modern and ancient: a geological approach to processes, products, and successions. Allen & Unwin, LondonCrossRefGoogle Scholar
  15. Castro JM, Gardner JE (2008) Did magma ascent rate control the explosive-effusive transition at the Inyo volcanic chain, California? Geology 36:279–282. doi: 10.1130/G24453A.1 CrossRefGoogle Scholar
  16. Castro J, Cashman K, Joslin N, Olmsted B (2002) Structural origin of large gas cavities in the Big Obsidian Flow, Newberry Volcano. J Volacanol Geotherm Res 114:313–330CrossRefGoogle Scholar
  17. Castruccio A, Rust AC, Sparks RSJ (2013) Evolution of crust- and core-dominated lava flows using scaling analysis. Bull Volcanol 75:681CrossRefGoogle Scholar
  18. Chevrel MO, Platz T, Hauber E, Baratoux D, Lavalée Y, Dingwell DB (2013) Lava flow rheology: a comparison of morphological and petrological methods. Earth Planet Sci Lett 384:109–120CrossRefGoogle Scholar
  19. Chevrel MO, Guilbaud MN, Siebe C (2016) The ∼AD 1250 effusive eruption of El Metate shield volcano (Michoacán, Mexico): magma source, crustal storage, eruptive dynamics, and lava rheology. Bull Volcanol 78:32. doi: 10.1007/s00445-016-1020-9 CrossRefGoogle Scholar
  20. Cioni R, Funedda A (2005) Structural geology of crystal-rich, silicic lava flows: a case study from San Pietro Island (Sardinia, Italy). Special papers-GSA 396:1Google Scholar
  21. Costa A, Wadge G, Melnik O (2012) Cyclic extrusion of a lava dome based on a stick-slip mechanism. Earth Planet Sci Lett 337–338:39–46CrossRefGoogle Scholar
  22. Dadd KA (1992) Structures within large volume rhyolite lava flows of the Devonian Comerong Volcanics, southeastern Australia, and the Pleistocene Ngongotaha lava dome, New Zealand. J Volcanol Geotherm Res 54:33–51CrossRefGoogle Scholar
  23. De Angelis SH, Larsen J, Coombs M, Dunn A, Hayden L (2015) Amphibole reaction rims as a record of pre-eruptive magmatic heating: an experimental approach. Earth Planet Sci Lett 426:235–245CrossRefGoogle Scholar
  24. de Silva SL, Self S, Francis P, Drake R, Carlos RR (1994) Effusive silicic volcanism in the Central Andes: the Chao dacite and other young lavas of the Altiplano-Puna volcanic complex. J Geophys Res 99(B9):17805–17825CrossRefGoogle Scholar
  25. Denlinger RP, Hoblitt R (1999) Cyclic eruptive behavior of silicic volcanoes. Geology 27(5):459–462Google Scholar
  26. Didier J, Renouf JT (1973) Granites and their enclaves: the bearing of enclaves on the origin of granites. Elsevier, AmsterdamGoogle Scholar
  27. Dixon JE, Clague DA, Wallace P, Poreda R (1997) Volatiles in alkalic basalts form the North Arch volcanic field, Hawaii: extensive degassing of deep submarine-erupted alkalic series lavas. J Petrol 38(7):911–939CrossRefGoogle Scholar
  28. Dutton CE (1883) Hawaiian volcanoes, 2005 edn. University of Hawaii Press, Honolulu 235 pGoogle Scholar
  29. Eichelberger JC (1980) Vesiculation of mafic magma during replenishment of silicic magma reservoirs, Nature 288:446–450 doi: 10.1038/288446a0
  30. Eichelberger JC, Westrich HR (1981) Magmatic volatiles in explosive rhyolitic eruptions, Geophys. Res. Lett. 8(7):757–760. doi:  10.1029/GL008i007p00757
  31. Ercan T, Turkecan A, Karabiyikoglu M (1994) Neogene and Quaternary volcanics of Cappadocia. IAVCEI field excursion guide, IAVCEI general assembly, Ankara, pp. 12–16Google Scholar
  32. Falloon TJ, Danyushevsky LV (2000) Melting of refractory mantle at 1.5, 2 and 2.5 GPa under anhydrous and H2O-undersaturated conditions: implications for the petrogenesis of high-Ca boninites and the influence of subduction components on mantle melting. J Petrol 41:257–283CrossRefGoogle Scholar
  33. Farquharson JL, James MR, Tuffen H (2015) Examining rhyolite lava flow dynamics through photo-based 3D reconstructions of the 2011–2012 lava flow field at Cordón-Caulle, Chile. J Volcanol Geother Res 304:336–348CrossRefGoogle Scholar
  34. Finch RH (1933) Block lava. J Geology 41(7):769–770CrossRefGoogle Scholar
  35. Fink J (1980b) Surface folding and viscosity of rhyolite flows. Geology 8:250–254CrossRefGoogle Scholar
  36. Fink J (1983) Structure and emplacement of a rhyolitic obsidian flow: Little Glass Mountain, Medicine Lake Highland, Northern California. Geol Soc Am Bulletin 94:362–380CrossRefGoogle Scholar
  37. Fink JH, Griffiths RW (1998) Morphology, eruption rates and rheology of lava domes: insights from laboratory models. J Geophys Res 103(B1):527–554CrossRefGoogle Scholar
  38. Forbes JD (1846) Illustrations of the viscous theory of glacier motion. Part I. Containing experiments on the flow of plastic bodies, and observations on the phenomena of lava streams. Philos Trans R Soc Lond 136:143–155CrossRefGoogle Scholar
  39. Ford C, Russell D, Craven J, Fisk M (1983) Olivine-liquid equilibria: temperature, pressure and composition dependence of the crystal/liquid cation partition coefficients for Mg, Fe2+, Ca and Mn. J Petrol 24(3):256–266CrossRefGoogle Scholar
  40. Ghiorso MS, Evans BW (2008) Thermodynamics of rhombohedral oxide solid solutions and a revision of the Fe-Ti two-oxide geothermometer and oxygen-barometer. Am J Science 308(9):957–1039CrossRefGoogle Scholar
  41. Giordano D, Russell JK, Dingwell DB (2008) Viscosity of magmatic liquids: a model. Earth Planet Sci Lett 271(1):123–134CrossRefGoogle Scholar
  42. Goodsell B, Hambrey MJ, Glasser NF (2002) Formation of band ogives and associated structures at Bas Glacier d’Arolla, Valais, Switzerland. J Glaciol 48(161):287–300CrossRefGoogle Scholar
  43. Gourgaud A, Maury RC (1984) Magma mixing in alkaline series: an example from Sancy volcano (Mont-Dore, Massif Central, France). Bull Volcanol 47(4):827–847CrossRefGoogle Scholar
  44. Gregg TKP, Fink JH, Griffiths RW (1998) Formation of multiple fold generations on lava flow surfaces: influence of strain rate, cooling rate, and lava composition. J Volcanol Geotherm Res 80:281–292CrossRefGoogle Scholar
  45. Harris AJL, Flynn LP, Matías O, Rose WI (2002) The thermal stealth flows of Santiaguito: implications for the cooling and emplacement of dacitic block lava flows. Geol Soc Am Bull 114(5):533–546CrossRefGoogle Scholar
  46. Harris AJL, Flynn LP, Rose WI (2003) Temporal trends in lava dome extrusion at Santiaguito 1922-2000. Bull Volcanol 65:77–89Google Scholar
  47. Harris AJL, Flynn LP, Matias O, Rose WI, Cornejo J (2004) The evolution of an active silicic lava flow field: an ETM+ perspective. J Volcanol Geother Res 135(1–2):147–168CrossRefGoogle Scholar
  48. Hess K, Dingwell DB (1996) Viscosities of hydrous leucogranitic melts: a non-Arrhenian model. Am Mineral 81:1297–1300Google Scholar
  49. Holland T, Blundy J (1994) Non-ideal interactions in calcic amphiboles and their bearing on amphibole-plagioclase thermometry. Contr Mineral Petrol 116(4):433–447CrossRefGoogle Scholar
  50. Houghton BF, Wilson CJN (1989) A vesicularity index for pyroclastic deposits. Bull Volcanol 51(6):451–462CrossRefGoogle Scholar
  51. Hulme G (1974) The interpretation of lava flow morphology. Geophys J Royal Astron Soc 39:361–383CrossRefGoogle Scholar
  52. Kreiger IM, Dougherty TJ (1959) A mechanism for non-Newtonian flow in suspensions of rigid spheres. J Rheol 3:137Google Scholar
  53. Latutrie B (2012) L’unité épaisse du Puy de Cliergue est elle effusive ou pyroclastiques (caractérisation chimique et texturale)? Mémoire de Master 1. Laboratoire Magmas et Volcans, Clermont Ferrand 20 pGoogle Scholar
  54. Latutrie B (2013) Characterization of a thick trachytic flow unit of the Puy de Cliergue through lithofacies and textural analyses of the deposits. Mémoire de Master 2. Laboratoire Magmas et Volcans, Clermont Ferrand 50 pGoogle Scholar
  55. Lavina P (1985) Le volcan du Sancy « Massif Adventif » (Massif des Monts Dore, Massif Central français): Etudes volcanologiques et structurales. PhD thesis, Université de Clermont-Ferrand II, Clermont Ferrand, 211 pGoogle Scholar
  56. Leduc L, Gurioli L, Harris AJL, Colò L, Rose-Koga E (2015) Dynamics of a gas-dominated strombolian explosion. Bull Volcanol 77:8. doi: 10.1007/s00445-014-0888-5 CrossRefGoogle Scholar
  57. Lensky NG, Sparks RSJ, Navon O, Lyakhovsky V (2008) Cyclic activity at Soufrière Hills Volcano, Montserrat: degassing-induced pressurization and stick-slip extrusion. Geol Soc Lond, Spec Publ 307:169–188. doi: 10.1144/SP307.10
  58. Lescinsky DT, Skoblenick SV, Mansinha L (2007) Automated identification of lava flow structures using local Fourier spectrum of digital elevation data. J Geophys Res 112(B05212). doi: 10.1029/2006JB004263
  59. Macdonald GA (1953) Pahoehoe, aa, and block lava. Am J Sci 251(3):169–191CrossRefGoogle Scholar
  60. Macdonald GA (1972) Volcanoes. Prentice Hall, Englewood Cliffs 510 pGoogle Scholar
  61. MacKay ME, Rowland SK, Mouginis-Mark PJ, Garbeil H (1998) Thick lava flows of Karisimbi Volcano, Rwanda: insights from SIR-C interferometric topography. Bull Volcanol 60:239–251CrossRefGoogle Scholar
  62. Manley CR (1992) Extended cooling and viscous flow of large, hot rhyolite lavas: implications of numerical modeling results. J Geophys Res 53:27–46Google Scholar
  63. Manley CR (1996a) Physical volcanology of a voluminous rhyolite flow: the Badlands lava, Owyhee Plateau, southwestern Idaho. J Volcanol Geotherm Res 71:129–153CrossRefGoogle Scholar
  64. Manley CR (1996b) In situ formation of welded tuff-like textures in the carapace of a voluminous silicic lava flow, Owyhee County, SW Idaho. Bull Volcanol 57:672–686CrossRefGoogle Scholar
  65. Manley CR, Fink JH (1987) Internal textures of rhyolite flows as revealed by research drilling. Geology 15:549–552CrossRefGoogle Scholar
  66. Martel C, Champallier R, Prouteau G, Pichavant M, Arbaret L, Balcone-Boissard H, Boudon G, Boivin P, Bourdier J-L, Scaillet B (2013) Trachyte phase relations and implication for magma storage conditions in the Chaîne des Puys (French Massif Central). J Petrol 54(6):1071–1107. doi: 10.1093/petrology/egt006 CrossRefGoogle Scholar
  67. Martin VM, Holness MB, Pyle DM (2006a) Textural analysis of magmatic enclaves from the Kameni Islands, Santorini, Greece. J Volcanol Geotherm Res 54:89–102CrossRefGoogle Scholar
  68. Martin VM, Pyle DM, Holness MB (2006b) The role of crystal frameworks in the preservation of enclaves during magma mixing. Earth Planet Sci Lett 248:787–799CrossRefGoogle Scholar
  69. Masotta M, Mollo S, Freda C, Gaeta M, Moore G (2013) Clinopyroxene–liquid thermometers and barometers specific to alkaline differentiated magmas. Contr Mineral Petrol 166(6):1545–1561CrossRefGoogle Scholar
  70. Médard E, Grove TL (2008) The effect of H2O on the olivine liquidus of basaltic melts: experiments and thermodynamic models. Contr Mineral Petrol 155(4):417–432CrossRefGoogle Scholar
  71. Moore HJ (1987), Preliminary estimates of the rheological properties of 1984 Mauna Loa Lava, U.S. Geol. Surv. Prof. Pap 1350:1569–1588Google Scholar
  72. Mueller S, Llewellin EW, Mader HM (2010) The rheology of suspensions of solid particles. Phil Trans R Soc Lond A 466:1201–1228Google Scholar
  73. Nakada S, Miyake Y, Sato H, Oshima O, Fujinawa A (1995) Endogenous growth of dacite dome at Unzen volcano (Japan), 1993–1994. Geology 23(2):157–160CrossRefGoogle Scholar
  74. Navarro-Ochoa C, Gavilanes-Ruíz JC, Cotés-Cortés A (2002) Movement and emplacement of lava flows at Volcán de Colima, México: November 1998–February 1999. J Volcanol Geotherm Res 117:155–167CrossRefGoogle Scholar
  75. Nehlig P, Boivin P, De Goër de Hervé A, Mergoil J, Prouteau G, Thiéblemont D (2001) Les volcans du Massif central. Géologues Paris 130–131:66–91Google Scholar
  76. Nichols RT (1938) Grooved lava. J Geology 46:601–614CrossRefGoogle Scholar
  77. Nomade S, Pastre J-F, Nehlig P, Guillou H, Scao V, Scaillet S (2014) Tephrochronology of the Mont-Dore volcanic massif (Massif Central, France): new 40Ar/39Ar constraints on the Late Pliocene and Early Pleistocene activity. Bull Volcanol 76(3):1–17CrossRefGoogle Scholar
  78. Nomade S, Scaillet S, Pastre J-F, Nehlig P (2012) Pyroclastic chronology of the Sancy stratovolcano (Mont-Dore, French Massif Central): new high-precision 40Ar/39Ar constraints. J Volcanol Geother Res 225–226:1–12CrossRefGoogle Scholar
  79. Ondrusek J, Christensen PR, Fink JH (1993) Mapping the distribution of vesicular textures on silicic lavas using the thermal infrared multispectral scanner. J Geophys Res 98(B9):15903–15908CrossRefGoogle Scholar
  80. Polacci M, Pioli L, Rosi M (2003) The Plinian phase of the Campanian Ignimbrite eruption (Phlegrean Fields, Italy): evidence from density measurements and textural characterization of pumice. Bull Volcanol 65:418–432CrossRefGoogle Scholar
  81. Putirka KD (2008) Thermometers and barometers for volcanic systems. In: Putirka KD, Tepley FJ (eds) Minerals, inclusions and volcanic processes. Mineralog Soc Am, Chantilly, pp. 61–120Google Scholar
  82. Pyle DM, Elliott JR (2006) Quantitative morphology, recent evolution, and future activity of the Kameni Islands volcano, Santorini, Greece. Geosphere 2(5):253–268CrossRefGoogle Scholar
  83. Robert B, Harris A, Gurioli L, Médard E, Sehlke A, Whittington A (2014) Textural and rheological evolution of basalt flowing down a lava channel. Bull Volcanol 76:824. doi: 10.1007/s00445-014-0824-8 CrossRefGoogle Scholar
  84. Roeder PL, Emslie RF (1970) Olivine-liquid equilibrium. Contr Mineral Petrol 29(4):275–289CrossRefGoogle Scholar
  85. Romine WL, Whittington AG (2015) A simple model for the viscosity of rhyolites as a function of temperature, pressure and water content. Geochim Cosmochim Acta 170:281–300CrossRefGoogle Scholar
  86. Rutherford MJ, Hill PM (1993) Magma ascent rates from amphibole breakdown—an experimental study applied to the 1980-1986 Mount St-Helens eruptions. J Geophys Res 98(B11):19667–19685CrossRefGoogle Scholar
  87. Scaillet B, Clemente B, Evans B, Pichavant M (1998) Redox control of sulfur degassing in silicic magmas, JGR - Sold Earth 103(B10):23937–23949. doi:  10.1029/98JB02301
  88. Shaw H (1972) Viscosities of magmatic silicate liquids; an empirical method of prediction. Am J Sci 272(9):870–893CrossRefGoogle Scholar
  89. Shea T, Houghton BF, Gurioli L, Cashman KV, Hammer JE, Hobden BJ (2010a) Textural studies of vesicles in volcanic rocks: an integrated methodology. J Volcanol Geotherm Res 190(3–4):271–289CrossRefGoogle Scholar
  90. Shea T, Houghton BF, Gurioli L, Cashman KV, Hammer JE, Hobden BJ (2010b) SEM image processing with Photoshop. On: <http://www2.hawaii.edu/~tshea/methodsimrec.html>
  91. Shea T, Houghton BF, Gurioli L, Cashman KV, Hammer JE, Hobden BJ (2010c) FOAMS: version 1.0.4—user guide. On: <http://www2.hawaii.edu/~tshea/foamsmanual.html>
  92. Smith JV (1996) Ductile-brittle transition structures in the basal shear zone of a rhyolite lava flow, Eastern Australia. J Volcanol Geotherm Res 72:217–223CrossRefGoogle Scholar
  93. Sparks SRJ, Sigurdsson H (1977) Magma mixing: a mechanism for triggering acid explosive eruptions Nature, 267(5609):315-318Google Scholar
  94. Sparks RSJ, Stasiuk MV, Gardeweg M, Swanson DA (1993) Welded breccias in andesite lavas. J Geol Soc Lond 150:897–902CrossRefGoogle Scholar
  95. Sugden D, John B (1976) Glaciers and landscape: a geomorphological approach, 376 pp. Edward Arnold, LondonGoogle Scholar
  96. Tuffen H, Dingwell D (2005) Fault textures in volcanic conduits: evidence for seismic trigger mechanisms during silicic eruptions. Bull Volcanol 67:370–387CrossRefGoogle Scholar
  97. Tuffen H, Dingwell DB, Pinkerton H (2003) Repeated fracture and healing of silicic magma generate flow banding and earthquakes? Geology 31(12):1089–1092CrossRefGoogle Scholar
  98. Tuffen H, James MR, Castro JM, Schipper CI (2013) Exceptional mobility of an advancing rhyolitic obsidian flow at Cordón Caulle volcano in Chile. Nat Commun 4(2709). doi: 10.1038/ncomms3709
  99. Ui T, Matsuwo N, Sumita M, Fujinawa A (1999) Generation of block and ash flows during the 1990–1995 eruption of Unzen volcano, Japan. J Volcanol Geotherm Res 89(1–4):123–137CrossRefGoogle Scholar
  100. Vogel TA, Eichelberger JC, Younker LW, Schuraytz BC, Horkowitz JP, Stockman HW, Westrich HR (1989) Petrology and emplacement dynamics of intrusive and extrusive rhyolites of obsidian dome, Inyo Craters volcanic chain, Eastern California. J Geophys Res 94(12):17937–17956CrossRefGoogle Scholar
  101. von Buch, L. (1836) Description physique des Iles Canaries. F.G. Levrault, libraire-éditeur (Paris), 525 p.Google Scholar
  102. Wager L, Bailey E (1953) Basic magma chilled against acid magma. Nature 172:68–69CrossRefGoogle Scholar
  103. Walker GP (1989) Spongy pahoehoe in Hawaii: a study of vesicle-distribution patterns in basalt and their significance. Bull Volcanol 51(3):199–209CrossRefGoogle Scholar
  104. Wilcox RE (1944) Rhyolite-basalt complex on Gardiner River, Yellowstone Park, Wyoming. Geol Soc Am Bull 55(9):1047–1080CrossRefGoogle Scholar
  105. Yamamoto T, Takarada S, Suto S (1993) Pyroclastic flows from the 1991 eruption of Unzen volcano, Japan. Bull Volcanol 55(3):166–175CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Benjamin Latutrie
    • 1
  • Andrew Harris
    • 1
  • Etienne Médard
    • 1
  • Lucia Gurioli
    • 1
  1. 1.Laboratoire Magmas et VolcansCampus Universitaire des CézeauxAubiere CedexFrance

Personalised recommendations