Advertisement

Bulletin of Volcanology

, 78:87 | Cite as

Water in volcanoes: evolution, storage and rapid release during landslides.

  • Audray DelcampEmail author
  • Gioachino Roberti
  • Benjamin van Wyk de Vries
Research Article

Abstract

Volcanoes can store and drain water that is used as a valuable resource by populations living on their slopes. The water drainage and storage pattern depend on the volcano lithologies and structure, as well as the geological and hydrometric settings. The drainage and storage pattern will change according to the hydrometric conditions, the vegetation cover, the eruptive activity and the long- and short-term volcano deformation. Inspired by our field observations and based on geology and structure of volcanic edifices, on hydrogeological studies, and modelling of water flow in opening fractures, we develop a model of water storage and drainage linked with volcano evolution. This paper offers a first-order general model of water evolution in volcanoes.

The volcano’s water plays an important role in volcano stability and instability. Nevertheless, the migration and storage of volcanic water prior and during landslide have not been extensively studied in regard to volcano evolution. We further explore this role and its impact on debris avalanche emplacement behaviour. Isolated water-saturated domains will favour ductile deformation, and unequal distribution of water within the debris avalanche partly explains the coeval occurrence of brittle and ductile deformation, indicating complex rheologies, and varied emplacement mechanisms. If the volcano prior to landslide is storing large amounts of water, this water will quickly flow in the landslide and will form a basal slurry upon which the avalanche will spread further.

Keywords

Volcano deformation Volcano collapse Water Debris avalanche 

Notes

Acknowledgements

A.D. is funded by Fonds Wetenschappelijk Onderzoek (FWO) postdoctoral grant. Permit to work in Tanzania has been provided by Tanzania Commission for Science and Technology (COSTECH). The early manuscript benefited from discussions with A.J. Scarcamp. The manuscript has been improved thanks to the critical review of two anonymous reviewers, M. Heap, and the Editors, V. Acocella and J. White.

Supplementary material

445_2016_1082_MOESM1_ESM.doc (14.4 mb)
ESM 1 (DOC 14.3 mb)

References

  1. Aizawa K, Ogawa Y, Ishido T (2009) Groundwater flow and hydrothermal systems within volcanic edifices: delineation by electric self-potential and magnetotellurics. J Geophys Res 114:B01208CrossRefGoogle Scholar
  2. Ball JL, Stauffer PH, Calder ES, Valentine GA (2015) The hydrothermal alteration of cooling lava domes. Bull Volcanol 77(12):1–16CrossRefGoogle Scholar
  3. Bear J (1972) Dynamics of fluids in porous media. Elsevier, AmericanGoogle Scholar
  4. Bernard B, van Wyk de Vries B, Barba D, Leyrit H, Robin C, Alcaraz S, Samaniego P (2008) The Chimborazo sector collapse and debris avalanche: deposit characteristics as evidence of emplacement mechanisms. J Volcanol Geotherm Res 176:36–43CrossRefGoogle Scholar
  5. Capra L, Macı́as JL (2002) The cohesive Naranjo debris-flow deposit (10 km3): a dam breakout flow derived from the Pleistocene debris-avalanche deposit of Nevado de Colima Volcano (México). J Volcanol Geotherm Res 117:213–235CrossRefGoogle Scholar
  6. Coe JA, Baum RL, Allstadt KE, Kochevar BF, Schmitt RG, Morgan ML, White JL, Stratton BT, Hayashi TA, Kean JW (2016) Rock-avalanche dynamics revealed by large-scale field mapping and seismic signals at a highly mobile avalanche in the West Salt Creek valley, western Colorado. Geosphere 12:1–25. doi: 10.1130/GES01265.1 CrossRefGoogle Scholar
  7. Cuffey K, Paterson W (2010) The physics of glaciers: Elsevier, ed. 4. ISBN 978-0-12-369461-4.Google Scholar
  8. Cummans J (1981) Mudflows resulting from the May 18, 1980, eruption of Mount St. Helens, Washington. Geol Survey Circular 850-BGoogle Scholar
  9. Delcamp A, Delvaux D, Kwelwa S, Macheyeki A (2016a) Sector collapse events at volcanoes in the North Tanzanian divergence zone and their implications for regional tectonics. Geol Soc Am Bull 128:169–186. doi: 10.1130/B31119.1 Google Scholar
  10. Delcamp A, Kervyn M, Benbakkar M, Kwelwa S, Peter D (2016b) Large volcanic landslide and debris avalanche deposit at Meru, Tanzania. Landslides. doi: 10.1007/s10346-016-0757-8 Google Scholar
  11. Domenico PA, Schwartz FW (1990) Physical and chemical hydrogeology. Wiley, New YorkGoogle Scholar
  12. Downie C, Wilkinson P (1972) The geology of Kilimanjaro: Sheffield Univ. Dept. Geol, Sheffield, p. 253Google Scholar
  13. Ecker A (1976) Groundwater behaviour in Tenerife volcanic island (Canary Island, Spain). J Hydrology 28:73–86CrossRefGoogle Scholar
  14. Edmonds M, Oppenheimer C, Pyle DM, Herd RA, Thompson G (2003) SO2 emissions from Soufrière Hills Volcano and their relationship to conduit permeability, hydrothermal interaction and degassing regime. J Volcanol Geotherm Res 124:23–43CrossRefGoogle Scholar
  15. Farquharson J, Heap MJ, Varley NR, Baud P, Reuschlé T (2015) Permeability and porosity relationships of edifice-forming andesites: a combined field and laboratory study. J Volcanol Geotherm Res 297:52–68CrossRefGoogle Scholar
  16. Finn CA, Deszcz-Pan M, Anderson ED, John DA (2007) Three-dimensional geophysical mapping of rock alteration and water content at Mount Adams, Washington: implications for lahar hazards. J Geophys Res Solid Earth 112(B10)Google Scholar
  17. Galland O, Burchardt S, Hallot E, Mourgues R, Bulois C (2014) Dynamics of dikes versus cone sheets in volcanic systems. J Geophys Res Solid Earth 119. doi: 10.1002/2014JB011059
  18. Guthrie RH, Friele P, Allstadt K, Roberts N, Evans SG, Delaney KB, Roche D, Clague JJ, Jakob M (2012) The 6 August 2010 Mount Meager rock slide-debris flow, Coast Mountains, British Columbia: characteristics, dynamics, and implications for hazard and risk assessment. Nat Haz and Earth Syst Sc 12:1277–1294CrossRefGoogle Scholar
  19. Heap MJ, Farquharson JI, Baud P, Lavallée Y, Reuschlé T (2015) Fracture and compaction of andesite in a volcanic edifice. Bull Volcanol 77:55. doi: 10.1007/s00445-015-0938-7 CrossRefGoogle Scholar
  20. Heap MJ, Kennedy BM (2016) Exploring the scale-dependent permeability of fractured andesite. Earth Planet Sc Let 447:139–150CrossRefGoogle Scholar
  21. Heap MJ, Wadsworth FB (2016) Closing an open system: pore pressure changes in permeable edifice rock at high strain rates. J Volcanol Geotherm Res 315:40–50CrossRefGoogle Scholar
  22. Hecky RE (1971) The palaeolimnology of the alkaline, saline lakes on the Mt Meru lahars (PhD thesis). Duke University, Durham, North Carolina, p. 418Google Scholar
  23. Hurwitz S, Kipp KL, Ingebritsen SE, Reid ME (2003) Groundwater flow, heat transport, and water table position within volcanic edifices: implications for volcanic processes in the Cascade Range. J Geoph Res 108(B12):2557CrossRefGoogle Scholar
  24. Ingebritsen SE, Sherrod DR, Mariner RH (1992) Rates and patterns of groundwater flow in the Cascade Range volcanic arc, and the effect on subsurface temperatures. J Geoph Res Solid Earth 97(B4):4599–4627CrossRefGoogle Scholar
  25. Iverson RM (1997) The physics of debris flows. Rev Geophys 35:245–296CrossRefGoogle Scholar
  26. Iverson RM, George DL, Allstadt K, Reid ME, Collins BD, Vallance JW, Schilling SP, Godt JW, Cannon CM, Magirl CS (2015) Landslide mobility and hazards: implications of the 2014 Oso disaster. Earth Planet Sc Let 412:197–208CrossRefGoogle Scholar
  27. Join JL, Folio JL, Robineau B (2005) Aquifers and groundwater within active shield volcanoes. Evolution of conceptual models in the Piton de la Fournaise volcano. J Volcanol Geotherm Res 147:187–201CrossRefGoogle Scholar
  28. Johnson B (1978) Blackhawk landslide, California, U.S.A. In: Voight B (ed) Rockslides and avalanches, I. Natural phenomena. Elsevier, Amsterdam, pp. 481–504CrossRefGoogle Scholar
  29. Julia F, Vladimir L, Sergey R, David Z (2014) Effects of hydrothermal alterations on physical and mechanical properties of rocks in the Kuril-Kamchatka island arc. Eng Geol 183:80–95CrossRefGoogle Scholar
  30. Keller GV, Grose LT, Murray JC, Skokan CK (1979) Results of an experimental drill hole at the summit of Kilauea Volcano, Hawaii. J Volcanol Geotherm Res 5:345–385CrossRefGoogle Scholar
  31. Kerle N, van Wyk de Vries B (2001) The 1998 debris avalanche at Casita volcano, Nicaragua: investigation of structural deformation as the cause of slope instability using remote sensing. J Volcanol Geotherm Res 105:49–63CrossRefGoogle Scholar
  32. Manga M (1997) A model for discharge in spring-dominated streams and implications for the transmissivity and recharge of quaternary volcanics in the Oregon Cascades Water. Resour Res 33:1813–1822CrossRefGoogle Scholar
  33. Mueller S, Melnik O, Spieler O, Scheu B, Dingwell DB (2005) Permeability and degassing of dome lavas undergoing rapid decompression: an experimental determination. Bull Volcanol 67(6):526–538CrossRefGoogle Scholar
  34. Nara Y, Meredith PG, Yoneda T, Kaneko K (2011) Influence of macro-fractures and micro-fractures on permeability and elastic wave velocities in basalt at elevated pressure. Tectonophysics 503(1):52–59CrossRefGoogle Scholar
  35. Paguican EMR, van Wyk de Vries B, Lagmay AMF (2012) Volcano-tectonic controls and emplacement kinematics of the Iriga debris avalanches (Philippines). Bull Volcanol 74:2067–2081CrossRefGoogle Scholar
  36. Palmer BA, Neall VE (1989) The Murimotu Formation 9500 year old deposits of a debris avalanche and associated lahars, Mount Ruapehu, North Island, New Zealand. N Z J Geol Geoph 32:477–486CrossRefGoogle Scholar
  37. Peterson FL (1972) Water development on tropical volcanic islands, type example: Hawaii. Ground Water 5:18–23CrossRefGoogle Scholar
  38. Pola A, Crosta G, Fusi N, Barberini V, Norini G (2012) Influence of alteration on physical properties of volcanic rocks. Tectonophysics 566:67–86CrossRefGoogle Scholar
  39. Reid ME (2004) Massive collapse of volcano edifices triggered by hydrothermal pressurization. Geology 32:373–376CrossRefGoogle Scholar
  40. Revil A, Finizola A, Ricci T, Delcher E, Peltier A, Barde-Cabusson S, Avard G, Bailly T, Bennati L, Byrdina S, Colonge J, Di Gangi F, Douillet G, Lupi M, Letort J, Tsang Hin Sun E (2011) Hydrogeology of Stromboli volcano, Aeolian Islands (Italy) from the interpretation of resistivity tomograms, self-potential, soil temperature and soil CO2 concentration measurements. Geophys J Int 186:1078–1094CrossRefGoogle Scholar
  41. Roberti G, Ward B, van Wyk De Vries B,  Falorni G, Perotti L, Clague J J (2015) Mount Meager Volcano, Canada: a Case Study for Landslides on Glaciated Volcanoes. AGU fall meeting, San FranciscoGoogle Scholar
  42. Rose TP, Lee DM, Criss RE (1996) Isotope hydrology of voluminous cold springs in fractured rock from an active volcanic region, northeastern California. J Hydro 179:207–236CrossRefGoogle Scholar
  43. Roverato M, Capra L, Sulpizio R, Norini G (2011) Stratigraphic reconstruction of two debris avalanche deposits at Colima Volcano (Mexico): insights into pre-failure conditions and climate influence. J Volcanol Geotherm Res 207:33–46CrossRefGoogle Scholar
  44. Roverato M, Cronin SJ, Procter JN, Capra L (2014) Textural features as indicators of debris avalanche transport and emplacement, Taranaki volcano. Geol Soc Am Bull 127(1–2):3Google Scholar
  45. Sandford WE, Konikow LF, Rowe GL Jr, Brantley SL (1995) Groundwater transport of crater-lake brine at PO & Volcano, Costa Rica. J Volcanol Geotherm Res 64:269–293CrossRefGoogle Scholar
  46. Scott KM, Macias JL, Vallance JW, Naranjo JA, Rodriguez-Elizarraras SR, JP McGeehin (2002) Catastrophic debris flows transformed from landslides in volcanic terrains: mobility, hazard assessment, and mitigation strategies. USGS Professional Paper 1630Google Scholar
  47. Sekiya S, Kikuchi Y (1889) The eruption of Bandai-san: Tokyo, Japan, Imperial University. Journal of the College of Science 3:91–172Google Scholar
  48. Sigmundsson F, Hooper A, Hreinsdottir S, Vogfjord KS, Ofeigsson BG et al (2015) Segmented lateral dyke growth in a rifting event at Bardarbunga volcanic system, Iceland. Nature 517:191–195CrossRefGoogle Scholar
  49. Singhal BBS, Gupta RP (2010) Hydrogeology of volcanic rocks, in Applied hydrogeology of fractured rocks, p 257–268Google Scholar
  50. Sruoga P, Rubinstein N, Hinterwimmer G (2004) Porosity and permeability in volcanic rocks: a case study on the Serie Tobı́fera, South Patagonia, Argentina. J Volcanol Geotherm Res 132:31–43CrossRefGoogle Scholar
  51. Street FA, Grove AT (1979) Global maps of lake level fluctuations since 30, 000 yr B.P. Quaternary Res 12:83–118CrossRefGoogle Scholar
  52. Thompson LG, Mosley-Thompson E, Davis ME, Henderson KA, Brecher HH, Zagorodnov VS, Mashiota TA, Lin P-N, Mikhalenko VN, Hardy DR, Beer J (2002) Kilimanjaro ice core records: evidence of Holocene climate change in tropical Africa. Science 298:589–593CrossRefGoogle Scholar
  53. Tost M, Cronin SJ, Procter JN (2014) Transport and emplacement mechanisms of channelised long-runout debris avalanches, Ruapehu volcano, New Zealand. Bull Volcanol 76:881CrossRefGoogle Scholar
  54. Ui T, Takarada S, Yoshimoto M (2000) Debris avalanches. In: Sigurdsson H, Houghton BF, McNutt SR, Rymer H, Stix J (eds) Encyclopedia of volcanoes: San Diego. Academic Press, California, pp. 617–626Google Scholar
  55. van Wyk de Vries, B (1993) Tectonics and magma evolution of Nicaraguan volcanic systems. PhD Thesis, Open University, Milton Keynes, pp 1–328Google Scholar
  56. van Wyk de Vries B, Self S, Francis FW, Kesthelyi L (2001) A spreading origin for the Socompa debris avalanche. J Volcanol Geotherm Res 105:225–247CrossRefGoogle Scholar
  57. van Wyk de Vries B, Davies T (2015) Landslides, debris avalanches, and volcanic gravitational deformation. In: Sigurdsson H, Houghton BF, McNutt SR, Rymer H, Stix J (eds) Encyclopedia of volcanoes, second edn. Academic Press, USA, pp. 665–685CrossRefGoogle Scholar
  58. Vallance W, Scott KM (1997) The Osceola mudflow from Mount Rainier: sedimentology and hazard implications of a huge clay-rich debris flow. Geol Soc Am Bull 109:143–163CrossRefGoogle Scholar
  59. Voight B, Elsworth D (1997) Failure of volcano slopes. Geotechnique 47:1–31. doi: 10.1680/geot.1997.47.1.1 CrossRefGoogle Scholar
  60. Voight B, Janda RJ, Glicken H, Douglass PM (1983) Nature and mechanics of the Mount St. Helens rockslide-avalanche of 18 May 1980. Geotechnique 33:243–273CrossRefGoogle Scholar
  61. Voight B, Sousa J (1994) Lessons from Ontake-san: a comparative analysis of debris avalanche dynamics. Eng Geol 38:261–297CrossRefGoogle Scholar
  62. White RS, Drew J, Martens HR, Key J, Soosalu H, Jakobsdóttir SS (2011) Dynamics of dyke intrusion in the mid-crust of Iceland. Earth Planet Sc Let 304:300–312CrossRefGoogle Scholar
  63. Wright HM, Cashman KV, Gottesfeld EH, Roberts JJ (2009) Pore structure of volcanic clasts: measurements of permeability and electrical conductivity. Earth Planet Sc Let 280(1):93–104CrossRefGoogle Scholar
  64. Wyering LD, Villeneuve MC, Wallis IC, Siratovich PA, Kennedy BM, Gravley DM, Cant JL (2014) Mechanical and physical properties of hydrothermally altered rocks, Taupo Volcanic Zone, New Zealand. J Volcanol Geotherm Res 288:76–93CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Department of GeographyVrije Universiteit BrusselBrusselsBelgium
  2. 2.Laboratoire Magmas et Volcans, Laboratoire Magmas et VolcansUniversité Blaise Pascal-CNRS-IRD, OPGCClermont-FerrandFrance

Personalised recommendations