Bulletin of Volcanology

, 78:80 | Cite as

Relationship between volcanic ash fallouts and seismic tremor: quantitative assessment of the 2015 eruptive period at Cotopaxi volcano, Ecuador

  • Benjamin BernardEmail author
  • Jean Battaglia
  • Antonio Proaño
  • Silvana Hidalgo
  • Francisco Vásconez
  • Stephen Hernandez
  • Mario Ruiz
Research Article


Understanding the relationships between geophysical signals and volcanic products is critical to improving real-time volcanic hazard assessment. Thanks to high-frequency sampling campaigns of ash fallouts (15 campaigns, 461 samples), the 2015 Cotopaxi eruption is an outstanding candidate for quantitatively comparing the amplitude of seismic tremor with the amount of ash emitted. This eruption emitted a total of ~1.2E + 9 kg of ash (~8.6E + 5 m3) during four distinct phases, with masses ranging from 3.5E + 7 to 7.7E + 8 kg of ash. We compare the ash fallout mass and the corresponding cumulative quadratic median amplitude of the seismic tremor and find excellent correlations when the dataset is divided by eruptive phase. We use scaling factors based on the individual correlations to reconstruct the eruptive process and to extract synthetic Eruption Source Parameters (daily mass of ash, mass eruption rate, and column height) from the seismic records. We hypothesize that the change in scaling factor through time, associated with a decrease in seismic amplitudes compared to ash emissions, is the result of a more efficient fragmentation and transport process. These results open the possibility of feeding numerical models with continuous geophysical data, after adequate calibration, in order to better characterize volcanic hazards during explosive eruptions.


Cotopaxi Ash fallout Seismic tremor Correlation Ashgram 



Field campaigns for this study were funded by the project SENPLADES. Seismic data came from the JICA seismic network. This research has been conducted in the context of the Laboratoire Mixte International “Séismes et Volcans dans les Andes du Nord” of IRD. This work is the contribution n°2 of the project “Grupo de Investigación sobre la Ceniza Volcánica en Ecuador”. The authors thank the personnel of IGEPN, in particular those who participated to the field campaigns. Comments from D. Pyle, T. Nishimura, and an anonymous reviewer greatly improved a first version of this paper. We thank two anonymous reviewers and J. Taddeucci for their constructive comments which helped improving this paper.

Supplementary material

445_2016_1077_MOESM1_ESM.xls (96 kb)
Online Resources 1 (XLS 95 kb)
445_2016_1077_MOESM2_ESM.pdf (7.5 mb)
Online Resources 2 (PDF 7665 kb)
445_2016_1077_MOESM3_ESM.pdf (38 kb)
Online Resources 3 (PDF 38 kb)
445_2016_1077_MOESM4_ESM.pdf (46 kb)
Online Resources 4 (PDF 46 kb)
445_2016_1077_MOESM5_ESM.xls (3.3 mb)
Online Resources 5 (XLS 3382 kb)


  1. Alparone S, Andronico D, Lodato L, Sgroi T (2003) Relationship between tremor and volcanic activity during the southeast crater eruption on Mount Etna in early 2000. J Geophys Res-Sol Ea 108(B5):2241. doi: 10.1029/2002JB001866 CrossRefGoogle Scholar
  2. Andronico D, Scollo S, Cristaldi A, Ferrari F (2009) Monitoring ash emission episodes at Mt. Etna: the 16 November 2006 case study. J Volcanol Geoth Res 180(2–4):123–134. doi: 10.1016/j.jvolgeores.2008.10.019 CrossRefGoogle Scholar
  3. Andronico D, Lo Castro MD, Sciotto M, Spina L (2013) The 2010 ash emissions at the summit craters of Mt Etna: relationship with seismo-acoustic signals. J Geophys Res Solid Earth 118:51–70. doi: 10.1029/2012JB009895 CrossRefGoogle Scholar
  4. Battaglia J, Aki K, Ferrazzini V (2005) Location of tremor sources and estimation of lava output using tremor source amplitude on the piton de la fournaise volcano: 2. Estimation of lava output. J Volcanol Geoth Res 147:291–308CrossRefGoogle Scholar
  5. Bernard B (2013) Homemade ashmeter: a low-cost, high-efficiency solution to improve tephra field-data collection for contemporary explosive eruptions. J Appl Volcanol 2(1):1–9. doi: 10.1186/2191-5040-2-1 CrossRefGoogle Scholar
  6. Bernard B, Bustillos J, Wade B, Hidalgo S (2013) Influence of the wind direction variability on the quantification of tephra fallouts: December 2012 and march 2013 Tungurahua eruptions. Avances en Ciencias e Ingenierías 5(1):A14–A21Google Scholar
  7. Biass S, Bonadonna C (2011) A quantitative uncertainty assessment of eruptive parameters derived from tephra deposits: the example of two large eruptions of Cotopaxi volcano, Ecuador. Bull Volcanol 73(1):73–90CrossRefGoogle Scholar
  8. Bonadonna C, Costa A (2012) Estimating the volume of tephra deposits: a new simple strategy. Geology 40(5):415–418. doi: 10.1130/G32769.1 CrossRefGoogle Scholar
  9. Bonadonna C, Houghton BF (2005) Total grain-size distribution and volume of tephra-fall deposits. Bull Volcanol 67:441–456CrossRefGoogle Scholar
  10. Bonadonna C, Folch A, Loughlin S, Puempel H (2012) Future developments in modelling and monitoring of volcanic ash clouds: outcomes from the first IAVCEI-WMO workshop on ash dispersal forecast and civil aviation. Bull Volcanol 74(1):1–10. doi: 10.1007/s00445-011-0508-6 CrossRefGoogle Scholar
  11. Bursik M (2001) Effect of wind on the rise height of volcanic plumes. Geophys Res Lett 28:3621–3624. doi: 10.1029/2001GL013393 CrossRefGoogle Scholar
  12. Caplan-Auerbach J, Bellesiles A, Fernandes JK (2010) Estimates of eruption velocity and plume height from infrasonic recordings of the 2006 eruption of Augustine volcano, Alaska. J Volcanol Geoth Res 189(1–2):12–18. doi: 10.1016/j.jvolgeores.2009.10.002 CrossRefGoogle Scholar
  13. Cashman KV, Scheu B (2015) Magmatic fragmentation. In: Sigurdsson H (ed) The encyclopedia of volcanoes, 2nd edn. Academic Press, Amsterdam, p 459–471Google Scholar
  14. Collini E, Osores MS, Folch A, Viramonte JG, Villarosa G, Salmuni G (2012) Volcanic ash forecast during the June 2011 cordón caulle eruption. Nat Hazards 66(2):389–412. doi: 10.1007/s11069-012-0492-y CrossRefGoogle Scholar
  15. Connor CB, Hill B, Winfrey B, Franklin N, La Femina PC (2001) Estimation of volcanic hazards from tephra fallout. Nat Hazards Rev 2(1):33–42. doi: 10.1061/(ASCE)1527-6988(2001)2:1(33) CrossRefGoogle Scholar
  16. Coppola D, Piscopo D, Staudacher T, Cigolini C (2009) Lava discharge rate and effusive pattern at piton de la fournaise from MODIS data. J Volcanol Geoth Res 184(1–2):174–192. doi: 10.1016/j.jvolgeores.2008.11.031 CrossRefGoogle Scholar
  17. Costa A, Macedonio G, Folch A (2006) A three-dimensional Eulerian model for transport and deposition of volcanic ashes. Earth Planet Sci Lett 241(3–4):634–647. doi: 10.1016/j.epsl.2005.11.019 CrossRefGoogle Scholar
  18. Devenish BJ (2013) Using simple plume models to refine the source mass flux of volcanic eruptions according to atmospheric conditions. J Volcanol Geotherm Res. doi: 10.1016/j.jvolgeores.2013.02.015 Google Scholar
  19. Donnadieu F (2012) Volcanological applications of doppler radars: A review and examples from a transportable pulse radar in L-Band. In: Bech J (ed) Doppler radar observations—weather radar, wind profiler, ionospheric radar, and other advanced applications, InTechGoogle Scholar
  20. Donnadieu F, Freville P, Hervier C, Coltelli M, Scollo S, Prestifilippo M, Valade S, Rivet S, Cacault P (2016) Near-source Doppler radar monitoring of tephra plumes at Etna. J Volcanol Geotherm Res 312:26–39. doi: 10.1016/j.jvolgeores.2016.01.009 CrossRefGoogle Scholar
  21. Dürig T, Gudmundsson MT, Karmann S, Zimanowski B, Dellino P, Rietze M, Büttner R (2015) Mass eruption rates in pulsating eruptions estimated from video analysis of the gas thrust-buoyancy transition—a case study of the 2010 eruption of Eyjafjallajökull, Iceland. Earth Planets Space 67:1–17. doi: 10.1186/s40623-015-0351-7 CrossRefGoogle Scholar
  22. Engwell SL, Sparks RSJ, Aspinall WP (2013) Quantifying uncertainties in the measurement of tephra fall thickness. J Appl Volcanol 2(1):1–12. doi: 10.1186/2191-5040-2-5 CrossRefGoogle Scholar
  23. Hall M, Mothes P (2008) The rhyolitic-andesitic eruptive history of Cotopaxi volcano, Ecuador. Bull Volcanol 70(6):675–702. doi: 10.1007/s00445-007-0161-2 CrossRefGoogle Scholar
  24. Hibert C, Mangeney A, Polacci M, Muro AD, Vergniolle S, Ferrazzini V, Peltier A, Taisne B, Burton M, Dewez T, Grandjean G, Dupont A, Staudacher T, Brenguier F, Kowalski P, Boissier P, Catherine P, Lauret F (2015) Toward continuous quantification of lava extrusion rate: results from the multidisciplinary analysis of the 2 January 2010 eruption of piton de la fournaise volcano, La Réunion. J Geophys Res-Sol Ea 120(5):2014JB011769. doi: 10.1002/2014JB011769 Google Scholar
  25. Hickey J, Gottsmann J, Mothes P (2015) Estimating volcanic deformation source parameters with a finite element inversion: the 2001–2002 unrest at Cotopaxi volcano, Ecuador. J Geophys Res-Sol Ea 120(3):2014JB011731. doi: 10.1002/2014JB011731 Google Scholar
  26. Hidalgo S, Bernard B, Battaglia J, Gaunt E, Barrington C, Andrade D, Ramón P, Arellano S, Yepes H, Proaño A, Almeida S, Sierra D, Dinger F, Kelly P, Parra R, Bobrowski N, Galle B, Almeida M, Mothes P, Alvarado A, IGEPN (2016) Cotopaxi volcano’s unrest and eruptive activity in 2015: Mild awakening after 73 years of quiescence. In: Abstract volume of the 2016 EGU General Assembly. p EGU2016–5043-1Google Scholar
  27. Houghton BF, Swanson DA, Rausch J, Carey RJ, Fagents SA, Orr TR (2013) Pushing the volcanic explosivity index to its limit and beyond: constraints from exceptionally weak explosive eruptions at Kilauea in 2008. Geology v 41:627–630. doi: 10.1130/G34146.1 CrossRefGoogle Scholar
  28. Jenkins SF, Wilson TM, Magill CR, Miller V, Stewart C, Marzocchi W, Boulton M (2015) Volcanic ash fall hazard and risk: Technical background paper for the UNISDR 2015 global assessment report on disaster risk reduction. Global volcano model and IAVCEIGoogle Scholar
  29. Johnson JB, Aster RC (2005) Relative partitioning of acoustic and seismic energy during Strombolian eruptions. J Volcanol Geoth Res 148:334–354. doi: 10.1016/j.jvolgeores.2005.05.002 CrossRefGoogle Scholar
  30. Kratzmann DJ, Carey SN, Fero J, Scasso RA, Naranjo J (2010) Simulations of tephra dispersal from the 1991 explosive eruptions of Hudson volcano, Chile. J Volcanol Geoth Res 190(3–4):337–352. doi: 10.1016/j.jvolgeores.2009.11.021 CrossRefGoogle Scholar
  31. Kumagai H, Mothes P, Ruiz M, Maeda Y (2015) An approach to source characterization of tremor signals associated with eruptions and lahars. Earth Planets Space 67(1):178. doi: 10.1186/s40623-015-0349-1 CrossRefGoogle Scholar
  32. Mastin LG, Guffanti M, Servranckx R, Webley P, Barsotti S, Dean K, Durant A, Ewert JW, Neri A, Rose WI, Schneider D, Siebert L, Stunder B, Swanson G, Tupper A, Volentik A, Waythomas CF (2009) A multidisciplinary effort to assign realistic source parameters to models of volcanic ash-cloud transport and dispersion during eruptions. J Volcanol Geoth Res 186(1–2):10–21. doi: 10.1016/j.jvolgeores.2009.01.008 CrossRefGoogle Scholar
  33. Matoza RS, Fee D, Neilsen TB, Gee KL, Ogden DE (2013) Aeroacoustics of volcanic jets: acoustic power estimation and jet velocity dependence. J Geophys Res Solid Earth 118:6269. doi: 10.1002/2013JB010303 CrossRefGoogle Scholar
  34. McNutt SR (1992) Volcanic tremor, in encyclopedia of earth system science. Academic Press, San Diego, California, pp. 417–425Google Scholar
  35. McNutt SR (1994) Volcanic tremor amplitude correlated with Volcanic Explosivity Index and its potential use in determining ash hazards to aviation. Acta Vulcanol 5:193–196Google Scholar
  36. McNutt SR (2005) Volcanic seismology. Annu Rev Earth Planet Sci 32:15.1–15.31. doi: 10.1146/ Google Scholar
  37. McNutt SR, Nishimura T (2008) Volcanic tremor during eruptions: temporal characteristics, scaling and constraints on conduit size and processes. J Volcanol Geotherm Res 178:10–18. doi: 10.1016/j.jvolgeores.2008.03.010 CrossRefGoogle Scholar
  38. Molina I, Kumagai H, García-Aristizábal A, Nakano M, Mothes P (2008) Source process of very-long-period events accompanying long-period signals at Cotopaxi volcano, Ecuador. J Volcanol Geoth Res 176(1):119–133. doi: 10.1016/j.jvolgeores.2007.07.019 CrossRefGoogle Scholar
  39. Newhall CG, Self S (1982) The volcanic explosivity index (VEI): an estimate of explosive magnitude for historical volcanism. J Geophys Res 87(C2):123–1238CrossRefGoogle Scholar
  40. Parra R, Bernard B, Narváez D, Le Pennec J-L, Hasselle N, Folch A (2016) Eruption source parameters for forecasting ash dispersion and deposition from vulcanian eruptions at Tungurahua volcano: insights from field data from the July 2013 eruption. J Volcanol Geoth Res 309:1–13. doi: 10.1016/j.jvolgeores.2015.11.001 CrossRefGoogle Scholar
  41. Pistolesi M, Rosi M, Cioni R, Cashman KV, Rossotti A, Aguilera E (2011) Physical volcanology of the post–twelfth-century activity at Cotopaxi volcano, Ecuador: behavior of an andesitic central volcano. Geol Soc Am Bull 123(5–6):1193–1215. doi: 10.1130/B30301.1 CrossRefGoogle Scholar
  42. Prejean SG, Brodsky EE (2011) Volcanic plume height measured by seismic waves based on a mechanical model. J Geophys Res 116:B01306. doi: 10.1029/2010JB007620 CrossRefGoogle Scholar
  43. Pyle DM (1989) The thickness, volume and grainsize of tephra fall deposits. Bull Volcanol 51:1–15CrossRefGoogle Scholar
  44. Pyle DM (2000) Sizes of volcanic eruptions. In: Sigurdsson H, Houghton BF, McNutt SR, Rymer H, Stix J (eds) Encyclopedia of volcanoes. Academic Press, London, pp. 263–270Google Scholar
  45. Ripepe M, Bonadonna C, Folch A, Delle Donne D, Lacanna G, Marchetti E, Höskuldsson A (2013) Ash-plume dynamics and eruption source parameters by infrasound and thermal imagery: the 2010 Eyjafjallajökull eruption. Earth Planet Sci Lett 366:112–121. doi: 10.1016/j.epsl.2013.02.005 CrossRefGoogle Scholar
  46. Ruiz M, Guillier B, Chatelain J-L, Yepes H, Hall M, Ramon P (1998) Possible causes for the seismic activity observed in Cotopaxi volcano, Ecuador. Geophys Res Lett 25:2305–2308CrossRefGoogle Scholar
  47. Sparks RSJ (2003) Forecasting volcanic eruptions. Earth Planet Sci Lett 210(1–2):1–15. doi: 10.1016/S0012-821X(03)00124-9 CrossRefGoogle Scholar
  48. Sparks RSJ, Bursik MI, Carey SN, Gilbert JS, Glaze LS, Sigurdsson H, Woods AW (1997) Volcanic plumes. John Wiley & Sons, ChichesterGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Escuela Politécnica NacionalInstituto GeofísicoQuitoEcuador
  2. 2.Laboratoire Magmas et VolcansUniversité Blaise Pascal–CNRS–IRD, OPGCClermont-FerrandFrance

Personalised recommendations