Bulletin of Volcanology

, 79:7 | Cite as

Pāhoehoe, ‘a‘ā, and block lava: an illustrated history of the nomenclature

  • Andrew J. L. Harris
  • Scott K. Rowland
  • Nicolas Villeneuve
  • Thor Thordarson
Review Article

Abstract

Lava flows occur worldwide, and throughout history, various cultures (and geologists) have described flows based on their surface textures. As a result, surface morphology-based nomenclature schemes have been proposed in most languages to aid in the classification and distinction of lava surface types. One of the first to be published was likely the nine-class, Italian-language description-based classification proposed by Mario Gemmellaro in 1858. By far, the most commonly used terms to describe lava surfaces today are not descriptive but, instead, are merely words, specifically the Hawaiian words ‘a‘ā (rough brecciated basalt lava) and pāhoehoe (smooth glassy basalt lava), plus block lava (thick brecciated lavas that are typically more silicic than basalt). ‘A‘ā and pāhoehoe were introduced into the Western geological vocabulary by American geologists working in Hawai‘i during the 1800s. They and other nineteenth century geologists proposed formal lava-type classification schemes for scientific use, and most of them used the Hawaiian words. In 1933, Ruy Finch added the third lava type, block lava, to the classification scheme, with the tripartite system being formalized in 1953 by Gordon Macdonald. More recently, particularly since the 1980s and based largely on studies of lava flow interiors, a number of sub-types and transitional forms of all three major lava types have been defined. This paper reviews the early history of the development of the pāhoehoe, ‘a‘ā, and block lava-naming system and presents a new descriptive classification so as to break out the three parental lava types into their many morphological sub-types.

Keywords

Pāhoehoe ‘A‘ā Block lava Nomenclature Classification Morphology 

References

  1. Azéma G (1862) Histoire de l'île Bourbon depuis 1643 jusqu'au 20 décembre 1848, chez Henri Plon, ParisGoogle Scholar
  2. Benn DI, Evans DJ (2010) Glaciers and glaciation. Second edition. p 802, Hodder Education, London. ISBN 978-0-340-905791Google Scholar
  3. Bert A (1791) Description du volcan de l’île de la Réunion et des environs, précédée de quelques idées sur la structure générale de cette île, manuscrit de p 39, coll. PrivéeGoogle Scholar
  4. Bonney TG (1899) Volcanoes Their Structure and Significance, First edn. John Murray, London, 351 ppGoogle Scholar
  5. Bonney TG (1912) Volcanoes Their Structure and Significance, Third edn. John Murray, London, 379 ppGoogle Scholar
  6. Bory de Saint-Vincent BGM (1804a). Voyage dans les quatre principales îles des mers d’Afrique, Ténériffe, Maurice, Bourbon et Sainte-Hélène. Volume 2. F. Buisson (Paris), 431 ppGoogle Scholar
  7. Bory de Saint-Vincent BGM (1804b). Voyage dans les quatre principales îles des mers d’Afrique, Ténériffe, Maurice, Bourbon et Sainte-Hélène. Volume 3. F. Buisson (Paris), 473 ppGoogle Scholar
  8. Brigham WT (1909) The volcanoes of Kilauea and Mauna Loa on the island of Hawaii. Memoirs of the Bernice Pauahi Bishop Museum, Vol II, no 4. Bishop Museum, Honolulu, 222 pp. Reprinted in 1974 by Kraus Reprint Co., Millwood, NYGoogle Scholar
  9. Bullard FM (1947) Studies on Paricutin volcano, Michoacan, Mexico. Bull Geol Soc Am 58:433–450CrossRefGoogle Scholar
  10. Calvari S, Pinkerton H (1998) Formation of lava tubes and extensive flow field during the 1991-1993 eruption of Mount Etna. J Geophys Res 103(Bll):27291–27301CrossRefGoogle Scholar
  11. Cas RAF, Wright JV (1987) Chapter 4: lava flows. In: Volcanic Successions. Chapman & Hall, London, 59–92 ppGoogle Scholar
  12. Cashman KV, Thornber C, Kauahikaua JP (1999) Cooling and crystallization of lava in open channels, and the transition of pahoehoe to aa. Bull Volcanol 61:306–323CrossRefGoogle Scholar
  13. Castro J, Cashman K, Joslin N, Olmsted B (2002) Structural origin of large gas cavities in the big obsidian flow, Newberry volcano. J Volacanol Geotherm Res 114:313–330CrossRefGoogle Scholar
  14. Chester DK, Duncan AM, Guest JE, Kilburn CRJ (1985) Chapter 4: volcanic processes and products. In: Mount Etna, the anatomy of a volcano. Stanford University Press, Stanford, 123–185 ppGoogle Scholar
  15. Chester D (1993) Volcanoes and Society. Edward Arnold, London, p 351Google Scholar
  16. Chun MN (2006) Ka Mo‘olelo Hawai‘i Hawaiian traditions by David Malo. Iou Teng Printing Co., Taiwan, 274 ppGoogle Scholar
  17. Cioni R, Funedda A (2005) Structural geology of crystal-rich, silicic flows: a case study from San Pietro Island (Sardinia, Italy). Geol Soc Am 396:1–14Google Scholar
  18. Combeau Y (2002) De Bourbon à La Réunion, l’histoire d”une île (du XVIIe au XXe siècle). Hermès, La Revue, n° 32-33, 91--99 ppGoogle Scholar
  19. Cotton CA (1969) Volcanoes as landscape forms, Second edn. Hafner Publishing Company, New York, 416 ppGoogle Scholar
  20. Crisp J, Baloga S (1994) Influence of crystallization and entrainment of cooler material on the emplacement of basaltic aa lava flows. J Geophys Res 99(B6):11 819–11 831CrossRefGoogle Scholar
  21. Cuffey KM, Paterson WSB (2010) The physics of glaciers. Butterworth-Hienemann, Burlington, MA, 443–445 ppGoogle Scholar
  22. Dadd KA (1992) Structures within large volume rhyolite lava flows of the Devonian Comerong Volcanics, southeastern Australia, and the Pleistocene Ngongotaha lava dome, New Zealand. J Volcanol Geotherm Res 54:33–51CrossRefGoogle Scholar
  23. Dana CE (1891) Characteristics of volcanoes with contributions of facts and principles from the Hawaiian Islands. Dodd, Mead and Company, New York, 399 ppGoogle Scholar
  24. Darwin C (1898) Geological observations on the Volcanic Islands and parts of South America visited during the voyage of H.M.S. ‘Beagle’. D. Appleton and Company, New York, 648 ppGoogle Scholar
  25. de Crémont H (1770) Lettre IV, Relation du premier voyage fait au volcan de l’isle Bourbon. In: Fréron E-C (ed) L’année littéraire, 7. Delalain, Paris, 73–97 ppGoogle Scholar
  26. de Silva SL, Self S, Francis PW, Drake RE, Carlos Ramirez R (1994) Effusive silicic volcanism in the Central Andes: the Chao dacite and other younger lavas of the Altiplano-Puna volcanic complex. J Geophys Res 99(B9):17,805–17,825CrossRefGoogle Scholar
  27. D’Heguerty PA (1755) Observations sur le volcan de l’isle Bourbon. Mémoires de la Société Royale des Sciences et Belles Lettres de Nancy, 3:218–235Google Scholar
  28. Duraiswami RA, Dole G, Bondre N (2003) Slabby pahoehoe from the western Deccan Volcanic Province: evidence for incipient pahoehoe-aa transitions. J Volcanol Geotherm Res 121:195–217CrossRefGoogle Scholar
  29. Dutton CE (1883) Hawaiian volcanoes, 2005 edn. University of Hawaii Press, Honolulu, 235 ppGoogle Scholar
  30. Einarsson T (1949) The eruption of Hekla 1947-1948: IV, 3. The flowing lava. Studies of its main physical & chemical properties. Soc Scientarium Islandica, Reykjavik, 1–70Google Scholar
  31. Ellis W (1825) A narrative of an 1823 tour through Hawai’i with remarks on the history, traditions, manners, customs and language of the inhabitants of the South Sandwich Islands, 2004 edn. Mutual, Honolulu, 488 ppGoogle Scholar
  32. Finch RH (1933) Block lava. J Geol 41(7):769–770CrossRefGoogle Scholar
  33. Fink J (1983) Structure and emplacement of a rhyolitic obsidian flow: Little Glass Mountain, Medicine Lake Highland, Northern California. Geol Soc Am Bull 94:362–380CrossRefGoogle Scholar
  34. Fink JH, Fletcher RC (1978) Ropy pahoehoe: surface folding of a viscous fluid. J Volcanol Geotherm Res 4(1–2):151–170CrossRefGoogle Scholar
  35. Fisher RV, Schmincke H-U (1984) Pyroclastic rocks. Springer-Verlag, Berlin, 472 ppCrossRefGoogle Scholar
  36. Forbes JD (1846) Illustrations of the viscous theory of glacier motion. Part I. Containing experiments on the flow of plastic bodies, and observations on the phenomena of lava streams. Philos Trans R Soc Lond 136:143–155CrossRefGoogle Scholar
  37. Foster HL, Mason AC (1955) 1950 and 1951 eruptions of Mihara yama, Oshima volcano, Japan. Geol Soc Am Bull 66:731–762CrossRefGoogle Scholar
  38. Foucault A, Raoult J-F (2010) Dictionnaire de Géologie, Seventh edn. Dunod, Paris, 388 ppGoogle Scholar
  39. Francis PW (1993) Chapter 7: lava flows. In: Volcanoes: a planetary perspective. Oxford University Press, Oxford, 137–166 ppGoogle Scholar
  40. Friedländer I (1915) Über die Kleinformen der vulkanischen produkte. Ill Laven. Zeit Vulkan 1:219–224Google Scholar
  41. Gemmellaro C (1857) La Vulcanologia dell’Etna: la Topografia, la Geologia, la Storia delle sue Eruzioni, la Descrizione e lo Esame de Fenomeni Vulcanici. Catania, Atti Accad Gioco XIV, 1859, pp 183--340. Reprinted in 1989, Giuseppe Maimone, ed, 262 ppGoogle Scholar
  42. Germanaz C (2005) Du pont des navires au bord des cratères: regards croisés sur le Piton de la Fournaise (1653-1964). Itinéraires iconographiques et essai d’iconologie du volcan actif de La Réunion. Paris, Université Paris-Sorbonne, thèse de doctoratGoogle Scholar
  43. Gourgaud A (2009) Chapter 5: L’Activité effusive et ses Produits. In: Planète Volcan: I’Auvergne pour Comprendre le Volcansime. CRDP d’Auvergne, 41–48 ppGoogle Scholar
  44. Gregg TKP, Fink JH, Griffiths RW (1998) Formation of multiple fold generations on lava flow surfaces: influence of strain rate, cooling rate, and lava composition. J Volcanol Geotherm Res 80:281–292CrossRefGoogle Scholar
  45. Grotzinger J, Jordan JH, (2010), Understanding Earth. W.H. Freeman and Company, New York, 654 ppGoogle Scholar
  46. Harris AJL, Rowland SK (2015) Lava flows and rheology. In: The encyclopedia of volcanoes, 321–342Google Scholar
  47. Harris AJL, Flynn LP, Matías O, Rose WI (2002) The thermal stealth flows of Santiaguito: implications for the cooling and emplacement of dacitic block lava flows. Geol Soc Am Bull 114(5):533–546CrossRefGoogle Scholar
  48. Heiken G, Wohletz K (1992) Volcanic ash. University of California Press, Berkeley, 246 ppGoogle Scholar
  49. Hitchcock CH (1909) Hawaii and its volcanoes. The Hawaiian Gazette Company, Honolulu, 314 ppGoogle Scholar
  50. Hiroa TR (1957) Arts and Crafts of Hawaii. Bishop Museum Press, Honolulu, 606 ppGoogle Scholar
  51. Holland H (1987) The Iceland journal of Henry Holland, 1810. Hakluyt Soc,  London, 342 ppGoogle Scholar
  52. Hon K, Gansecki C, Kauahikaua J (2003) The transition from ‘a‘ā to pāhoehoe crust on flows emplaced during the Pu‘u ‘Ō‘ō-Kūpaianaha eruption. USGS Prof Pap 1676:89–103Google Scholar
  53. Hon K, Kauahikaua J, Denlinger R, McKay K (1994) Emplacement and inflation of pahoehoe sheet flows: observations and measurements of active lava flows on Kilauea volcano Hawaii. Geol Soc Am Bull 106:351–370CrossRefGoogle Scholar
  54. Jaggar TA (1930) Distinction between pahoehoe and aa or block lava. Volcano Lett 281:1–3Google Scholar
  55. Jones AE (1943) Classification of lava surfaces. Trans Am Geophys Union, Part 1:265–268CrossRefGoogle Scholar
  56. Kāne HK (1997) Ancient Hawai‘i. The Kawainui Press, Captain Cook, 111 ppGoogle Scholar
  57. Keszthelyi L (2002) Classification of the mafic lava flows from ODP Leg 183. In: Frey FA, Coffin MF, Wallace PJ and Quilty PG (Eds.), Proc. ODP (Science Results): 183 [Online]. Available from World Wide Web: http://www-odp.tamu.edu/publications/183_SR/012/012.htm
  58. Keszthelyi L, McEwan AS, Thordarson T (2000) Terrestrial analogs and thermal models for Martian flood basalts. Geophys Res Lett 105(E6):15027–15049CrossRefGoogle Scholar
  59. Keszthelyi L, Thordarson T, McEwen A, Haack H, Guilbaud M-H, Self S, Rossi MJ (2004) Icelandic analogs to Martian flood lavas. Geochem, Geophys, Geosystems 5(11):Q11014. doi:10.1029/2004GC000758 CrossRefGoogle Scholar
  60. Kilburn C (1990) Surfaces of aa flow-fields on Mount-Etna, Sicily: morphology, rheology, crystallization and scaling phenomena. In: Lava flows and domes, IAVCEI Proceedings in Volcanology (New York, Springer): 129–156Google Scholar
  61. Kilburn CRJ, Guest JE (1993) Aa lavas of Mount Etna, Sicily. In: Active lavas (UCL, London), p 73–106Google Scholar
  62. Krauskopf KB (1948) Lava movement at Paricutin volcano, Mexico. Bull Geol Soc Am 59:1267–1284CrossRefGoogle Scholar
  63. Lacroix A (1925) Succession des éruptions et bibliographie du Volcan actif de la Réunion. Bull Volcanol 1(3):20–56CrossRefGoogle Scholar
  64. Lacroix A (1936) Le volcan actif de l’île de La Réunion et ses produits. Gauthier-Villars, Paris, 297 ppGoogle Scholar
  65. Lacroix A (1938) Le volcan actif de l’île de La Réunion (supplément) et celui de la Grande-Comore. Gauthier-Villars, Paris, pp 39-57Google Scholar
  66. Latutrie B, Harris A, Médard E Gurioli L (2016) Eruption and emplacement dynamics of a thick trachytic lava flow of the Sancy Volcano (France). Bull Volcanol. doi:10.1007/s00445-016-1084-6
  67. Lescinsky DT, Skoblenick SV, Mansinha L (2007) Automated identification of lava flow structures using local Fourier spectrum of digital elevation data. J Geophys Res 112(B05212). doi:10.1029/2006JB004263
  68. Lipman PW, Banks NG (1987) Aa flow dynamics, Mauna Loa. UGSG Prof Paper 1350:1527–1567Google Scholar
  69. Lockwood JP, Hazlett RW (2010) Chapter 6: effusive volcanic eruptions and their products. In: Volcanoes: global perspectives, Wiley-Blackwell (Chichester), pp 127–172Google Scholar
  70. Lockwood JP, Lipman PW (1980) Recovery of datable charcoal beneath young lavas: lessons from Hawaii. Bull Volcanol 43(3):609–615CrossRefGoogle Scholar
  71. Lodato L, Spampinato L, Harris A, Calvari S, Dehn J, Patrick M (2007) The morphology and evolution of the Stromboli 2002-03 lava flow field: an example of basaltic flow field emplaced on a steep slope. Bull Volcanol 69:661–679CrossRefGoogle Scholar
  72. Lopes R (2006) The Volcano Adventure Guide. Cambridge University Press, Cambridge, 352 ppGoogle Scholar
  73. Macdonald GA (1953) Pahoehoe, aa and block lava. Am J Sci 251:169–191CrossRefGoogle Scholar
  74. Macdonald GA (1967) Forms and structures of extrusive basaltic rocks. In: Hess HH, Poldervaart A (eds) The Poldervaart Treatise on rocks of basaltic composition. Interscience, New York, 1–61Google Scholar
  75. Macdonald GA (1972) Volcanoes. Prentice Hall Inc., Englewood Cliffs, 501 ppGoogle Scholar
  76. Macdonald GA, Abbott AT (1970) Volcanoes in the sea. University of Hawaii Press, Honolulu, 441 ppGoogle Scholar
  77. MacKay ME, Rowland SK, Mouginis-Mark PJ, Garbeil H (1998) Thick lava flows of Karisimbi volcano, Rwanda: insights from SIR-C interferometric topography. Bull Volcanol 60:239–251CrossRefGoogle Scholar
  78. Malin MC (1980) Lengths of Hawaiian lava flows. Geology 8:306–308CrossRefGoogle Scholar
  79. Manley CR, Fink JH (1987) Internal textures of rhyolite flows as revealed by research drilling. Geology 15:549–552CrossRefGoogle Scholar
  80. Mattsson HB, Höskuldsson Á (2005) Eruption reconstruction, formation of flow-lobe tumuli and eruption duration in the 5900 BP Helgafell lava field (Heimaey), South Iceland. J Volcanol Geotherm Res 147:157–172CrossRefGoogle Scholar
  81. Mercalli G (1907) I Vulcani Attivi della Terra. Milano, Ulrico Hoepli, 421 ppGoogle Scholar
  82. Nichols RT (1938) Grooved lava. J Geol 46:601–614CrossRefGoogle Scholar
  83. Ollier C (1988) Volcanoes. Basil Blackwell, Oxford, 228 ppGoogle Scholar
  84. Ondrusek J, Christensen PR, Fink JH (1993) Mapping the distribution of vesicular textures on silicic lavas using the thermal infrared mulitspectral scanner. J Geohpys Res 98(B9):15903–15908CrossRefGoogle Scholar
  85. Peterson DW, Tilling RI (1980) Transition of basaltic lava from pahoehoe to aa, Kilauea, Hawaii: field observations and key factors. J Volcanol Geotherm Res 7:271–293CrossRefGoogle Scholar
  86. Philpotts AR, Lewis CR (1987) Pipe vesicles—an alternate model for their origin. Geology 15:971–974CrossRefGoogle Scholar
  87. Polacci M, Cashman KV, Kauahikaua JP (1999) Textural characterization of the pāhoehoe-to-‘a‘ā transition in Hawaiian basalt. Bull Volcanol 60:595–609CrossRefGoogle Scholar
  88. Press F, Siever R (1982) Earth, 3rd edn. W.H. Freeman, San Francisco, 613 ppGoogle Scholar
  89. Richet P (2003) Guide des volcans de France. BRGM editions, Paris, p 427 ppGoogle Scholar
  90. Richet P (2007) Guide des volcans d’Outre-mer. BRGM editions, Paris, 492 ppGoogle Scholar
  91. Rittmann A (1962) Volcanoes and their activity, English edn. John Wiley & Sons, New York, 305 ppGoogle Scholar
  92. Rossi MJ (1997) Morphology of the 1984 open-channel lava flow at Krafla volcano, northern Iceland. Geomorphology 20:95–112CrossRefGoogle Scholar
  93. Rossi MJ, Gudmundsson A (1996) The morphology and formation of flow-lobe shield volcanoes. J Volcanol Geotherm Res 72:291–308CrossRefGoogle Scholar
  94. Rowland SK, Walker GPL (1987) Toothpaste lava: characteristics and origin of a lava structural type transition between pahoehoe and aa. Bull Volcanol 49:631–641CrossRefGoogle Scholar
  95. Rowland S, Walker GPL (1990) Pahoehoe and aa in Hawaii: volumetric flow rate controls the lava structure. Bull Volcanol 52:615–628CrossRefGoogle Scholar
  96. Russell IC (1897) Voclanoes of North America: a reading lesson for students of geography and geology. The Macmillan Company, London, 346 ppGoogle Scholar
  97. Scandone R, Giacomelli L (1998) Chapter 7: I Prodooti delle Eruzioni Effusive. In: Vulcanologia: Principi Fisci e Metodi d’Indagine, Liguori Editore (Napoli), pp 211–257Google Scholar
  98. Schmincke H-U (1998) Volcanism. Sringer-Verlag, Berlin, 324 ppGoogle Scholar
  99. Schütz AJ (1994) The voices of Eden, a history of Hawaiian language studies. University of Hawai‘i Press, Honolulu, 512 ppGoogle Scholar
  100. Scrope GP (1858) The geology and extinct volcanoes of Central France. John Murray, London, 336 ppGoogle Scholar
  101. Self S, Keszthelyi L, Thordarson T (1998) The importance of pāhoehoe. Annu Rev Earth Planet Sci 26:81–110CrossRefGoogle Scholar
  102. Self S, Thordarson T, Keszthelyi L, Walker GPL, Hon K, Murphy MT, Long P, Finnemore S (1996) A new model for the emplacement of Columbia River basalts as large, inflated pahoehoe lava flow fields. Geophys Res Lett 23(19):2689–2692CrossRefGoogle Scholar
  103. Smith JV (1996) Ductile-brittle transition structures in the basal shear zone of a rhyolite lava flow, eastern Australia. J Volcanol Geotherm Res 72:217–223CrossRefGoogle Scholar
  104. Soule SA, Cashman KV (2005) Shear rate dependence of the pāhoehoe-to-‘a‘ā transition: analog experiments. Geology 31(5):361–364CrossRefGoogle Scholar
  105. Sparks RSJ, Stasiuk MV, Gardeweg M, Swanson DA (1993) Welded breccias in andesite lavas. J Geol Soc Lond 150:897–902CrossRefGoogle Scholar
  106. Steingrímsson J (1998) Fires of the earth: the Laki eruption 1783-1784. English translation of the original text (written in 1788) by K. Kunz, University of Iceland Press, Reykjavík, 95 ppGoogle Scholar
  107. Swanson DA (1973) Pahoehoe flows from the 1969-1971 Mauna Ulu eruption, Kilauea volcano, Hawaii. Geol Soc Am Bull 84:615–626CrossRefGoogle Scholar
  108. Symes RF (1988) Steina Ríkið. Translation into Icelandic by Guðmundsson AT and Kjartansson H, Vaka-Helgafell (Reykjavík), 64 ppGoogle Scholar
  109. Thordarson T (2013) Hraun. In: Náttúruvá á Íslandi, Höfundar (Reykjavik), pp 105–129Google Scholar
  110. Thordarson T, Höskuldsson Á (2002) Classic geology in Europe 3: Iceland. Terra (Harpenden, UK), 200 ppGoogle Scholar
  111. Thordarson T, Höskuldsson Á (2008) Postglacial volcanism in Iceland. Jökull 58:197–228Google Scholar
  112. Thordarson T, Self S (1996) Sulfur, chlorine and fluorine degassing and atmospheric loading by the Roza eruption, Columbia River Basalt Group, Washington, USA. J Volcanol Geotherm Res 74:49–73CrossRefGoogle Scholar
  113. Thordarson T, Self S (1998) The Roza member, Columbia River Basalt Group: a gigantic pahoehoe lava flow field formed by endogenous processes? J Geophys Res 103(Bll):27411–27445CrossRefGoogle Scholar
  114. Thoroddsen T (1888) Vulkaner I det Nordöstlige Island. Bihang Till Kongliga Svenska Vetenskaps-Akademiens Handlingar, Kongl. Boktryckeriet (P. A. Norstedt and Sönner, Stockholm): 14-II(5): 1–71.Google Scholar
  115. Tucker D (2015) Geology Underfoot in Western Washington. Mountain Press Publishing Co., Missoula, MT, 376 ppGoogle Scholar
  116. Vaxelaire D (2012) L’histoire de La Réunion 1. Des origines à 1848. Édtions Orphie (Saint-Denis, La Réunion): 350 ppGoogle Scholar
  117. von Buch (1836) Description physique des Iles Canaries. F Levrault, libraire-éditeur (Paris), 525 ppGoogle Scholar
  118. Walker GPL (1987) Pipe vesicles in Hawaiian basaltic lava: their origin and potential as paleoslope indicators. Geology 15:84–87CrossRefGoogle Scholar
  119. Walker GPL (1989) Spongy pahoehoe in Hawaii: a study of vesicle-distribution patterns in basalt and their significance. Bull Volcanol 51:199–209CrossRefGoogle Scholar
  120. Walker GPL (1991) Structure, and origin by injection of lava under surface crust, of tumuli, “lava rises”, “lava-rise pits”, and “lava-inflation clefts” in Hawaii. Bull Volcanol 53:546–558CrossRefGoogle Scholar
  121. Walker GPL, Cañón-Tapia E, Herrero-Bervera E (1999) Origin of vesicle layering and double imbrication by endogenous growth in the Birkett basalt flow (Columbia river plateau). J Volcanol Geotherm Res 88:15–28CrossRefGoogle Scholar
  122. Washington HS (1923) Petrology of the Hawaiian Islands; IV the formation of aa and pahoehoe. Am J Sci VI(35):409–423 5th SeriesCrossRefGoogle Scholar
  123. Wentworth CK, Macdonald GA (1953) Structures and forms of basaltic rocks in Hawaii. Bulletin 994, USGS int. Report, 98 ppGoogle Scholar
  124. Whitten DGA, Brooks JRV (1972) The penguin dictionary of geology. Penguin Books, Harmondsworth, 495 ppGoogle Scholar
  125. Whittow J (1984) The penguin dictionary of physical geography. Penguin Books, Harmondsworth, 591 ppGoogle Scholar
  126. Wilmoth RA, Walker GPL (1993) P-type and S-type pahoehoe: a study of vesicle distribution patterns in Hawaiian lava flows. J Volcanol Geotherm Res 55:129–142CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Andrew J. L. Harris
    • 1
  • Scott K. Rowland
    • 2
  • Nicolas Villeneuve
    • 3
  • Thor Thordarson
    • 4
  1. 1.Laboratoire Magmas et VolcansUniversité Blaise PascalAubièreFrance
  2. 2.Department of Geology and Geophysics, School of Ocean and Earth Science and TechnologyUniversity of Hawai‘i at MānoaHonoluluUSA
  3. 3.Observatoire Volcanologique du Piton de la Fournaise, Institut de Physique du Globe de Paris, Sorbonne Paris CitéUniversity of Paris Diderot, CNRSLa Plaine des CafresFrance
  4. 4.School of Engineering and Natural Sciences, Faculty of Earth SciencesUniversity of IcelandReykjavikIceland

Personalised recommendations