Advertisement

Bulletin of Volcanology

, 78:84 | Cite as

MeMoVolc report on classification and dynamics of volcanic explosive eruptions

  • C. BonadonnaEmail author
  • R. Cioni
  • A. Costa
  • T. Druitt
  • J. Phillips
  • L. Pioli
  • D. Andronico
  • A. Harris
  • S. Scollo
  • O. Bachmann
  • G. Bagheri
  • S. Biass
  • F. Brogi
  • K. Cashman
  • L. Dominguez
  • T. Dürig
  • O. Galland
  • G. Giordano
  • M. Gudmundsson
  • M. Hort
  • A. Höskuldsson
  • B. Houghton
  • J.C. Komorowski
  • U. Küppers
  • G. Lacanna
  • J.L. Le Pennec
  • G. Macedonio
  • M. Manga
  • I. Manzella
  • M. de’ Michieli Vitturi
  • A. Neri
  • M. Pistolesi
  • M. Polacci
  • M. Ripepe
  • E. Rossi
  • B. Scheu
  • R. Sulpizio
  • B. Tripoli
  • S. Valade
  • G. Valentine
  • C. Vidal
  • N. Wallenstein
Forum Contribution

Abstract

Classifications of volcanic eruptions were first introduced in the early twentieth century mostly based on qualitative observations of eruptive activity, and over time, they have gradually been developed to incorporate more quantitative descriptions of the eruptive products from both deposits and observations of active volcanoes. Progress in physical volcanology, and increased capability in monitoring, measuring and modelling of explosive eruptions, has highlighted shortcomings in the way we classify eruptions and triggered a debate around the need for eruption classification and the advantages and disadvantages of existing classification schemes. Here, we (i) review and assess existing classification schemes, focussing on subaerial eruptions; (ii) summarize the fundamental processes that drive and parameters that characterize explosive volcanism; (iii) identify and prioritize the main research that will improve the understanding, characterization and classification of volcanic eruptions and (iv) provide a roadmap for producing a rational and comprehensive classification scheme. In particular, classification schemes need to be objective-driven and simple enough to permit scientific exchange and promote transfer of knowledge beyond the scientific community. Schemes should be comprehensive and encompass a variety of products, eruptive styles and processes, including for example, lava flows, pyroclastic density currents, gas emissions and cinder cone or caldera formation. Open questions, processes and parameters that need to be addressed and better characterized in order to develop more comprehensive classification schemes and to advance our understanding of volcanic eruptions include conduit processes and dynamics, abrupt transitions in eruption regime, unsteadiness, eruption energy and energy balance.

Keywords

Volcanism Eruption dynamics Eruption classification Eruptive products Eruptive processes Eruptive styles 

Notes

Acknowledgments

The workshop was made possible by the financial support of the Measuring and Modelling of Volcano Eruption Dynamics (MeMoVolc) ESF Network and of the Earth Sciences Department of the University of Geneva. We thank also James White, Ray Cas, Marcus Bursik and an anonymous reviewer for constructive comments that improved the final manuscript.

References

  1. Andronico D, Cristaldi A, Scollo S (2008) The 4-5 September 2007 lava fountain at south-east crater of Mt Etna, Italy. J Volcanol Geotherm Res 173(3–4):325–328CrossRefGoogle Scholar
  2. Andronico D, Scollo S, Cristaldi A, Lo Castro D (2014a) Representivity of incompletely sampled fall deposits in estimating eruption source parameters: a test using the 12–13 January 2011 lava fountain deposit from Mt. Etna volcano, Italy, Bullettin of Volcanology 76:861. doi: 10.1007/s00445-014-0861-3 Google Scholar
  3. Andronico D, Scollo S, Lo Castro MD, Cristaldi A, Lodato L, Taddeucci J (2014b) Eruption dynamics and tephra dispersal from the 24 November 2006 paroxysm at south-east crater, Mt Etna, Italy. J Volcanol Geotherm Res 274:78–91. doi: 10.1016/j.jvolgeores.2014.01.009 CrossRefGoogle Scholar
  4. Bonadonna C, Costa A (2012) Estimating the volume of tephra deposits: a new simple strategy. Geology 40(5):415–418CrossRefGoogle Scholar
  5. Bonadonna C, Costa A (2013) Plume height, volume and classification of volcanic eruptions based on the Weibull function. Bull Volcanol 75(742). doi: 10.1007/s00445-013-0742-1
  6. Bonadonna C, Houghton BF (2005) Total grainsize distribution and volume of tephra-fall deposits. Bull Volcanol 67:441–456CrossRefGoogle Scholar
  7. Bower SM, Woods AW (1996) On the dispersal of clasts from volcanic craters during small explosive eruptions. J Volcanol Geotherm Res 73(1–2):19–32CrossRefGoogle Scholar
  8. Calvari S, Salerno GG, Spampinato L, Gouhier M, La Spina A, Pecora E, Harris AJL, Labazuy P, Biale E, Boschi E (2011) An unloading foam model to constrain Etna’s 11–13 January 2011 lava fountaining episode. J Geophys Res 116:B11207. doi: 10.1029/2011JB008407 CrossRefGoogle Scholar
  9. Carey S, Sigurdsson H (1987) Temporal variations in column height and magma discharge rate during the 79 ad eruption of Vesuvius. Geol Soc Am Bull 99(2):303–314CrossRefGoogle Scholar
  10. Carey SN, Sparks RSJ (1986) Quantitative models of the fallout and dispersal of tephra from volcanic eruption columns. Bull Volcanol 48:109–125CrossRefGoogle Scholar
  11. Cas RAF, Wright JV (1988) Volcanic successions, modern and ancient: a geological approach to processes, products, and successions. Allen & Unwin, London/Boston, p 528Google Scholar
  12. Castruccio A, Clavero J, Segura A, Samaniego P, Roche O, Le Pennec JL, Droguett B (2016) Eruptive parameters and dynamics of the April 2015 sub-Plinian eruptions of Calbuco volcano (southern Chile). Bull Volcanol 78(9):62. doi: 10.1007/s00445-016-1058-8
  13. Cioni R, Marianelli P, Sbrana A (1992) Dynamics of the AD 79 eruption: stratigraphic, sedimentological and geochemical data on the successions from the Somma-Vesuvius southern and eastern sectors. Acta Vulcanol 2:109–123Google Scholar
  14. Cioni R, Civetta L, Marianelli P, Metrich N, Santacroce R, Sbrana A (1995) Compositional layering and syn-eruptive mixing of a periodically refilled shallow magma chamber—the ad-79 plinian eruption of Vesuvius. J Petrol 36(3):739–776CrossRefGoogle Scholar
  15. Cioni R, Santacroce R, Sbrana A (1999) Pyroclastic deposits as a guide for reconstructing the multi-stage evolution of the Somma-Vesuvius caldera. Bull Volcanol 61(4):207–222CrossRefGoogle Scholar
  16. Collini E, Soledad Osores M, Folch A, Viramonte JG, Villarosa G, Salmuni G (2013) Volcanic ash forecast during the June 2011 Cordon Caulle eruption. Nat Hazards 66(2):389–412Google Scholar
  17. Colucci S, de’Michieli Vitturi M, Neri A, Palladino D (2014) An integrated model of magma chamber, conduit, and column for the analysis of sustained magmatic eruptions. Earth Planet Sci Lett 404:98–110CrossRefGoogle Scholar
  18. Costa A, Sparks RSJ, Macedonio G, Melnik O (2009) Effects of wall-rock elasticity on magma flow in dykes during explosive eruptions. Earth Planetary Science Letters 288:455–462CrossRefGoogle Scholar
  19. Costa A, Gottsmann J, Melnik O, Sparks RSJ (2011) A stress-controlled mechanism for the intensity of very large magnitude explosive eruptions. Earth Planetary Science Letters 310:161–166CrossRefGoogle Scholar
  20. de’ Michieli Vitturi M, Clarke AB, Neri A, Voight B (2013) Extrusion cycles during dome-building eruptions. Earth Planet Sci Lett 371-372:37–48CrossRefGoogle Scholar
  21. Fagents SA, Wilson L (1993) Explosive volcanic-eruptions. 7. The ranges of pyroclasts ejected in transient volcanic explosions. Geophys J Int 113(2):359–370CrossRefGoogle Scholar
  22. Fierstein J, Nathenson M (1992) Another look at the calculation of tephra volumes. Bull Volcanol 54:156–167CrossRefGoogle Scholar
  23. Francis P (1993) Volcanoes: a planetary perspective. Clarendon Press, Oxford, p 443Google Scholar
  24. Francis PW, Glaze LS, Pieri D, Oppenheimer CMM, Rothery DA (1990) Eruption terms. Nature 346Google Scholar
  25. Garces M (2013) On infrasound standards, part 1: time, frequency, and energy scaling. InfraMatics 2:13–35. doi: 10.4236/inframatics.2013.22002 CrossRefGoogle Scholar
  26. Gèze B (1964) Sur la classification des dynamismes volcaniques. Bull Volcanol 27:237–257CrossRefGoogle Scholar
  27. Harris AJL, Flynn LP, Keszthelyi L, Mouginis-Mark PJ, Rowland SK, Resing JA (1998) Calculation of lava effusion rates from Landsat TM data. Bull Volcanol 60(1):52–71CrossRefGoogle Scholar
  28. Hedervari P (1963) On the energy and magnitude of volcanic eruptions. Bull Volcanol 25:373–385CrossRefGoogle Scholar
  29. Houghton BF, Gonnermann HM (2008) Basaltic explosive volcanism: constraints from deposits and models. Chemie Der Erde-Geochemistry 68(2):117–140CrossRefGoogle Scholar
  30. Houghton BF, Swanson DA, Rausch J, Carey RJ, Fagents SA (2013) Pushing the volcanic explosivity index to its limit and beyond: constraints from exceptionally weak explosive eruptions at Kīlauea in 2008. Geology 41:627–630. doi: 10.1130/G34146.1
  31. Houghton BF, Carey RJ, Rosenberg MD (2014) The 1800a Taupo eruption: “ill wind” blows the ultraplinian type event down to plinian. Geology. doi: 10.1130/G35400.1 Google Scholar
  32. Koyaguchi T, Suzuki YJ, Kozono T (2010) Effects of the crater on eruption column dynamics. J Geophys Res 115:B07205. doi: 10.1029/2009JB007146 CrossRefGoogle Scholar
  33. Lacroix A (1908) La Montagne Pelee Apres Ses Eruptions. Kessinger Publishing, Whitefish, p 146Google Scholar
  34. Marchetti E, Harris AJL (2008) Trends in activity at Pu’u ‘O’o during 2001-2003: insights from the continuous thermal record. Geological Society London Special Publications 307:85–101. doi: 10.1144/SP307.6 CrossRefGoogle Scholar
  35. McDonald A (1972) Volcanoes. Prentice-Hall Inc., Englewood Cliffs, p 510Google Scholar
  36. Mercalli G (1907) I vulcani attivi della terra: morfologia - dinamismo - prodotti - distribuzione geografica – cause. Ulrico Hoepli, Milan, p. 421Google Scholar
  37. Newhall CG, Self S (1982) The volcanic explosivity index (Vei)—an estimate of explosive magnitude for historical volcanism. Journal of Geophysical Research-Oceans and Atmospheres 87(NC2):1231–1238CrossRefGoogle Scholar
  38. Perret FA (1950) Volcanological observations. Carnegie Institution of Washington, Publication 549, Washington DC, p. 162Google Scholar
  39. Pioli L, Azzopardi BJ, Cashman KV (2009) Controls on the explosivity of scoria cone eruptions: magma segregation at conduit junctions. J Volcanol Geotherm Res 186(3–4):407–415CrossRefGoogle Scholar
  40. Pyle DM (1989) The thickness, volume and grainsize of tephra fall deposits. Bull Volcanol 51(1):1–15CrossRefGoogle Scholar
  41. Rittmann A (1944) Vulcani attività e genesi. Editrice Politecnica, NaplesGoogle Scholar
  42. Rittmann A (1962) Volcanoes and their activity. Wiley-Interscience Publishers, New York, p. 305Google Scholar
  43. Robertson R, Cole P, Sparks RSJ, Harford C, Lejeune AM, McGuire WJ, Miller AD, Murphy MD, Norton G, Stevens NF, Young SR (1998) The explosive eruption of Soufrière Hills volcano, Montserrat, West Indies, 17 September, 1996. Geophys Res Lett 25(18):3429–3432CrossRefGoogle Scholar
  44. Rosi M, Vezzoli L, Castelmenzano A, Grieco, G (1999) Plinian pumice fall deposit of the Campanian Ignimbrite eruption (Phlegraean Fields, Italy). J Volcanol Geotherm Res 91:179–198Google Scholar
  45. Sapper K (1927) Vulkankunde. J Engelhorns Nachf, Stuttgart, p. 424Google Scholar
  46. Self S, Sparks RSJ (1978) Characteristics of pyroclastic deposits formed by the interaction of silicic magma and water. Bull Volcanol 41:196–212CrossRefGoogle Scholar
  47. Siebert L, Simkin T, Kimberly P (2010) Volcanoes of the world. University of California Press, BerkeleyGoogle Scholar
  48. Sonder (1937) Zur Theorie und Klassifikation der eruptiven vulkanischen Vorgänge. Geol Rundschau 27:499–458CrossRefGoogle Scholar
  49. Sparks RSJ (1986) The dimensions and dynamics of volcanic eruption colums. Bull Volcanol 48:3–15CrossRefGoogle Scholar
  50. Sparks RSJ, Bursik MI, Carey SN, Gilbert JS, Glaze LS, Sigurdsson H, Woods AW (1997) Volcanic Plumes. John Wiley & Sons, Chichester, p. 574Google Scholar
  51. Thorarinsson S (1944) Petrokronologista Studier pa Island. Geographes Annuales Stockholm 26:1–217Google Scholar
  52. Valentine GA, Gregg TKP (2008) Continental basaltic volcanoes—processes and problems. J Volcanol Geotherm Res 177(4):857–873CrossRefGoogle Scholar
  53. Viccaro M, Calcagno R, Garozzo I, Giuffrida M, Nicotra E (2015) Continuous magma recharge at Mt. Etna during the 2011–2013 period controls the style of volcanic activity and compositions of erupted lavas. Miner Petrol 109:67–83. doi: 10.1007/s00710-014-0352-4 CrossRefGoogle Scholar
  54. Vidal CM, Komorowski JC, Métrich N, Pratomo I, Kartadinata N, Prambada O, Michel A, Carazzo G, Lavigne F, Rodysill J (2015) Dynamics of the major plinian eruption of Samalas in 1257 AD (Lombok, Indonesia). Bull Volcanol 77(9):1–24CrossRefGoogle Scholar
  55. Walker GPL (1973) Explosive volcanic eruptions—a new classification scheme. Geol Rundsch 62:431–446CrossRefGoogle Scholar
  56. Walker GPL (1980) The Taupo pumice: product of the most powerful known (ultraplinian) eruption? J Volcanol Geotherm Res 8:69–94CrossRefGoogle Scholar
  57. Williams H, McBirney AR (1979) Volcanology. Freeman, Cooper, San Francisco, CA, p. 397Google Scholar
  58. Woods A, Bokhove O, De Boer A, Hill B (2006) Compressible magma flow in a two-dimensional elastic-walled dike. Earth Planet Sci Lett 246(3–4):241–250CrossRefGoogle Scholar
  59. Wright JV, Smith AL, Self S (1980) A working terminology of pyroclastic deposits. J Volcanol Geotherm Res 8(2–4):315–336CrossRefGoogle Scholar
  60. Yokoyama I (1956) Energetics in active volcanoes. 1st paper (activity of volcano Mihara, Ooshima Island during the period 1953-54). Tokyo University Earthquake Research Institute Bulleting 34:185–196Google Scholar
  61. Yokoyama I (1957a) Energetics in active volcanoes. 2nd paper. Tokyo University Earthquake Research Institute Bulleting 35:75–97Google Scholar
  62. Yokoyama I (1957b) Energetics in active volcanoes. 3rd paper. Tokyo University Earthquake Research Institute Bulleting 35:99–107Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • C. Bonadonna
    • 1
    Email author
  • R. Cioni
    • 2
  • A. Costa
    • 3
  • T. Druitt
    • 4
  • J. Phillips
    • 5
  • L. Pioli
    • 1
  • D. Andronico
    • 6
  • A. Harris
    • 4
  • S. Scollo
    • 6
  • O. Bachmann
    • 7
  • G. Bagheri
    • 1
  • S. Biass
    • 1
    • 8
  • F. Brogi
    • 1
  • K. Cashman
    • 5
  • L. Dominguez
    • 1
  • T. Dürig
    • 9
  • O. Galland
    • 10
  • G. Giordano
    • 11
  • M. Gudmundsson
    • 9
  • M. Hort
    • 12
  • A. Höskuldsson
    • 9
  • B. Houghton
    • 8
  • J.C. Komorowski
    • 13
  • U. Küppers
    • 14
  • G. Lacanna
    • 2
  • J.L. Le Pennec
    • 4
    • 15
  • G. Macedonio
    • 16
  • M. Manga
    • 17
  • I. Manzella
    • 1
  • M. de’ Michieli Vitturi
    • 18
  • A. Neri
    • 18
  • M. Pistolesi
    • 2
  • M. Polacci
    • 18
    • 19
  • M. Ripepe
    • 2
  • E. Rossi
    • 1
  • B. Scheu
    • 14
  • R. Sulpizio
    • 20
  • B. Tripoli
    • 7
  • S. Valade
    • 2
  • G. Valentine
    • 21
  • C. Vidal
    • 13
  • N. Wallenstein
    • 22
  1. 1.Department of Earth SciencesUniversity of GenevaGenevaSwitzerland
  2. 2.Dipartimento di Scienze della TerraUniversità degli Studi di FirenzeFirenzeItaly
  3. 3.Istituto Nazionale di Geofisica e VulcanologiaSezione di BolognaBolognaItaly
  4. 4.Laboratoire Magmas et Volcans (LMV)Université Blaise Pascal-CNRS-IRD, OPGCClermont-FerrandFrance
  5. 5.School of Earth SciencesUniversity of BristolBristolUK
  6. 6.Istituto Nazionale di Geofisica e VulcanologiaOsservatorio EtneoCataniaItaly
  7. 7.Department of Earth SciencesETH ZurichZurichSwitzerland
  8. 8.Department of Geology and GeophysicsUniversity of Hawai’i at MānoaHonoluluUSA
  9. 9.Institute of Earth SciencesUniversity of IcelandReykjavíkIceland
  10. 10.Department of GeosciencesUniversity of OsloOsloNorway
  11. 11.University Roma TreRomaItaly
  12. 12.Universität HamburgHamburgGermany
  13. 13.Institut de Physique du Globe de ParisParisFrance
  14. 14.Department of Earth and Environmental SciencesLudwig-Maximilians-UniversitätMunichGermany
  15. 15.Institut de Recherche pour le Développement (LMV)Clermont-FerrandFrance
  16. 16.Istituto Nazionale di Geofisica e VulcanologiaOsservatorio VesuvianoNaplesItaly
  17. 17.Department of Earth and Planetary SciencesUniversity of CaliforniaBerkeleyUSA
  18. 18.Istituto Nazionale di Geofisica e VulcanologiaPisaItaly
  19. 19.School of Earth, Atmospheric and Environmental SciencesUniversity of ManchesterManchesterUK
  20. 20.Università degli Studi di BariBariItaly
  21. 21.Department of GeologyUniversity at BuffaloBuffaloUSA
  22. 22.Centro de Vulcanologia e Avaliação de Riscos GeológicosUniversidade dos AçoresPonta DelgadaPortugal

Personalised recommendations