Bulletin of Volcanology

, 78:74 | Cite as

Shallow conduit processes during the ad 1158 explosive eruption of Hekla volcano, Iceland

  • Maria H. Janebo
  • Bruce F. Houghton
  • Thorvaldur Thordarson
  • Gudrun Larsen
Research Article


Hekla is one of the most frequently active felsic volcanic systems in the world, with several known pre-historic large Plinian eruptions and 18 historical subplinian to small Plinian eruptions. A common view is that Plinian eruptions of Hekla are relatively short lived and purely explosive events. In detail, these events exhibit subtle differences in terms of deposit characteristics, reflecting significant differences in eruption behaviour. Of the 18 historical eruptions, two had bulk magma compositions with >66 wt% SiO2: a Plinian eruption in ad 1104 and a smaller, less well characterised, but atypical subplinian eruption in ad 1158. The ad 1158 eruption was a relatively sustained, dry (magmatic) eruption with a more powerful opening phase followed by a lower intensity, waning phase accompanied by minor destabilisation and collapse of the conduit walls. We examine here the dynamics of the ad 1158 eruption, focussing on the role of shallow conduit processes in modulating eruption dynamics. Vesicularity data constrain the relative influence of bubble nucleation, growth, and coalescence. The juvenile pyroclasts are composed of two types of microvesicular pumice (white and grey) with contrasting vesicle number density, vesicle-size distribution, and phenocryst and microlite contents. Textural analysis shows that these pumices reflect heterogeneity developed pre- to syn-eruptively in the conduit and that entrainment of longer resident magma by faster ascending magma permitted magma of contrasting maturity to be fragmented simultaneously. In this regard, the mixed melt of the ad 1158 eruption contrasts with the compositionally homogeneous melt phase of the more powerful ad 1104 Plinian event, which was typified by more uniform conduit and eruption dynamics accompanying higher average ascent rates.


Hekla volcano Plinian eruptions Eruption style Vesicle number density 



This research was funded by the National Science Foundation grant EAR12-20596. The manuscript was significantly enhanced by insightful reviews by editor J. Gardner and two anonymous reviewers, and comments from D. A. Swanson and S. A. Fagents. The authors are grateful to Carolyn Parcheta for assistance with fieldwork; Isaac Ishihara for density analysis; JoAnn Sinton for thin section polishing; and Eva Kakone, Hannah Azouz, and Jaclyn Guenther for image processing.

Supplementary material

445_2016_1070_MOESM1_ESM.pdf (125 kb)
ESM 1 (PDF 124 kb)
445_2016_1070_MOESM2_ESM.pdf (118 kb)
ESM 2 (PDF 118 kb)


  1. Adams NK, Houghton BF, Hildreth W (2006) Abrupt transitions during sustained explosive eruptions: examples from the 1912 eruption of Novarupta, Alaska. B Volcanol 69:189–206CrossRefGoogle Scholar
  2. Blower JD, Keating JP, Mader HM, Phillips JC (2001) Inferring volcanic degassing processes from vesicle size distributions. Geophys Res Lett 28:347–350CrossRefGoogle Scholar
  3. Blower JD, Keating JP, Mader HM, Phillips JC (2002) The evolution of bubble size distributions in volcanic eruptions. J Volcanol Geoth Res 120:1–23CrossRefGoogle Scholar
  4. Cashman KV, Mangan MT (1994) Physical aspects of magmatic degassing; II, constraints on vesiculation processes from textural studies of eruptive products. Rev Mineral Geochem 30:447–478Google Scholar
  5. Eichelberger JC, Carrigan CR, Westrich HR, Price RH (1986) Non-explosive silicic volcanism. Nature 323:598–602CrossRefGoogle Scholar
  6. Gaonac’h H, Lovejoy S, Stix J, Scherzter D (1996) A scaling growth model for bubbles in basaltic lava flows. Earth Planet Sc Lett 139:395–409CrossRefGoogle Scholar
  7. Gardner JE, Thomas RM, Jaupart C, Tait S (1996) Fragmentation of magma during Plinian volcanic eruptions. B Volcanol 58:144–162CrossRefGoogle Scholar
  8. Gonnermann HM, Houghton BF (2012) Magma degassing during the Plinian eruption of Novarupta, Alaska, 1912. Geochem Geophy Geosy. doi: 10.1029/2012GC004273 Google Scholar
  9. Gonnermann HM, Manga M (2003) Explosive volcanism may not be an inevitable consequence of magma fragmentation. Nature 426:432–435CrossRefGoogle Scholar
  10. Gonnermann HM, Manga M (2007) The fluid mechanics inside a volcano. Annu Rev Fluid Mech 39:321–356CrossRefGoogle Scholar
  11. Gronvold K, Larsen G, Einarsson P, Thorarinsson S, Saemundsson K (1983) The Hekla eruption 1980–1981. B Volcanol 46:349–363CrossRefGoogle Scholar
  12. Gudmundsdóttir ER, Larsen G, Eiríksson J (2011) Two new Icelandic tephra markers: the Hekla Ö tephra layer, 6060 cal. yr BP, and Hekla DH tephra layer, ∼6650 cal. yr BP. Land–sea correlation of mid-Holocene tephra markers. The Holocene 21:629–639CrossRefGoogle Scholar
  13. Hamada M, Laporte D, Cluzel N, Koga KT, Kawamoto T (2010) Simulating bubble number density of rhyolitic pumices from Plinian eruptions: constraints from fast decompression experiments. B Volcanol 72:735–746CrossRefGoogle Scholar
  14. Hammer JE, Cashman KV, Hoblitt RP, Newman S (1999) Degassing and microlite crystallization during pre-climactic events of the 1991 eruption of Mt. Pinatubo, Philippines. B Volcanol 60:355–380CrossRefGoogle Scholar
  15. Höskuldsson Á, Óskarsson N, Pedersen R, Grönvold K, Vogfjörð K, Ólafsdóttir R (2007) The millennium eruption of Hekla in February 2000. B Volcanol 70:169–182CrossRefGoogle Scholar
  16. Houghton BF, Wilson CJN (1989) A vesicularity index for pyroclastic deposits. B Volcanol 51:451–462CrossRefGoogle Scholar
  17. Houghton BF, Carey RJ, Cashman KV, Wilson CJN, Hobden BJ, Hammer JE (2010) Diverse patterns of ascent, degassing, and eruption of rhyolite magma during the 1.8 ka Taupo eruption, New Zealand: evidence from clast vesicularity. J Volcanol Geoth Res 195:31–47CrossRefGoogle Scholar
  18. Inman DL (1952) Measures for describing the size distribution of sediments. J Sediment Petrol 22:125–145Google Scholar
  19. Janebo MH, Thordarson T, Houghton BF, Bonadonna C, Larsen G, Carey RJ (2016) Dispersal of key subplinian–Plinian tephras from Hekla volcano, Iceland: implications for eruption source parameters. B Volcanol 78:66. doi: 10.1007/s00445-016-1059-7
  20. Kenney BM, Wadsworth FB, Vasseur J, Schipper CI, Jellinek AM, von Aulock FW, Hess K-U, Russell JK, Lavallée Y, Nichols ARL, Dingwell DB (2016) Surface tension driven processes densify and retain permeability in magma and lava. Earth Planet Sc Lett 433:116–124CrossRefGoogle Scholar
  21. Klug C, Cashman KV (1994) Vesiculation of May 18, 1980, Mount St. Helens magma. Geology 22:468–472CrossRefGoogle Scholar
  22. Klug C, Cashman KV, Bacon CR (2002) Structure and physical characteristics of pumice from the climactic eruption of Mount Mazama (Crater Lake), Oregon. B Volcanol 64:486–501CrossRefGoogle Scholar
  23. Larsen G (1992) Gjóskulagid úr Heklugosinu 1158 (the tephra layer from the 1158 AD eruption of Hekla). Jardfrædafélag Islands, Vorrádstefna, Yfirlit og Ágrip Reykjavik: Geoscience Society of Iceland 25–27Google Scholar
  24. Larsen G (2002) A brief overview of eruptions from ice-covered and ice-capped volcanic systems in Iceland during the past 11 centuries: frequency, periodicity and implications. Geol Soc Lond, Spec Publ 202:81–90CrossRefGoogle Scholar
  25. Larsen G, Eiríksson J (2008a) Holocene tephra archives and tephrochronology in Iceland—a brief overview. Jokull 58:229–250Google Scholar
  26. Larsen G, Eiríksson J (2008b) Late Quaternary terrestrial tephrochronology of Iceland—frequency of explosive eruptions, type and volume of tephra deposits. J Quat Sci 23:109–120CrossRefGoogle Scholar
  27. Larsen JF, Gardner JE (2000) Experimental constraints on bubble interactions in rhyolite melts: implications for vesicle size distributions. Earth Planet Sc Lett 180:201–214CrossRefGoogle Scholar
  28. Larsen G, Thorarinsson S (1977) H4 and other acid Hekla tephra layers. Jokull 27:28–46Google Scholar
  29. Larsen G, Vilmundardóttir EG (1992) Hekla tephra layers from the period 2900–1800 BP: H-x, H-y and H-z. The 20th Nordic Geological Winter Meeting, Abstracts 106, Reykjavík, Iceland.Google Scholar
  30. Larsen G, Dugmore A, Newton A (1999) Geochemistry of historical-age silicic tephras in Iceland. The Holocene 9:463–471CrossRefGoogle Scholar
  31. Lirer L, Pescatore T, Booth B, Walker GPL (1973) Two Plinian pumice-fall deposits from Somma-Vesuvius, Italy. Geol Soc Am Bull 84:759–772CrossRefGoogle Scholar
  32. Mangan M, Sisson T (2000) Delayed, disequilibrium degassing in rhyolite magma: decompression experiments and implications for explosive volcanism. Earth Planet Sc Lett 183:441–455CrossRefGoogle Scholar
  33. Mangan MT, Cashman KV, Newman S (1993) Vesiculation of basaltic magma during eruption. Geology 21:157–160CrossRefGoogle Scholar
  34. Mangan M, Mastin L, Sisson T (2004a) Gas evolution in eruptive conduits: combining insights from high temperature and pressure decompression experiments with steady-state flow modeling. J Volcanol Geoth Res 129:23–36CrossRefGoogle Scholar
  35. Mangan MT, Sisson TW, Hankins WB (2004b) Decompression experiments identify kinetic controls on explosive silicic eruptions. Geophys Res Lett. doi: 10.1029/2004GL019509 Google Scholar
  36. Mourtada-Bonnefoi CC, Laporte D (1999) Experimental study of homogeneous bubble nucleation in rhyolitic magmas. Geophys Res Lett 26:3505–3508CrossRefGoogle Scholar
  37. Mourtada-Bonnefoi CC, Laporte D (2002) Homogeneous bubble nucleation in rhyolitic magmas: an experimental study of the effect of H2O and CO2. J Geophys Res. doi: 10.1029/2001JB000290 Google Scholar
  38. Mourtada-Bonnefoi CC, Laporte D (2004) Kinetics of bubble nucleation in a rhyolitic melt: an experimental study of the effect of ascent rate. Earth Planet Sc Lett 218:521–537CrossRefGoogle Scholar
  39. Mueller S, Melnik O, Spieler O, Scheu B, Dingwell DB (2005) Permeability and degassing of dome lavas undergoing rapid decompression: an experimental determination. B Volcanol 67:526–538CrossRefGoogle Scholar
  40. Polacci M, Papale P, Rosi M (2001) Textural heterogeneities in pumices from the climactic eruption of Mount Pinatubo, 15 June 1991, and implications for magma ascent dynamics. B Volcanol 63:83–97CrossRefGoogle Scholar
  41. Róbertsdóttir BG, Larsen G, Eiríksson J (2002) A new detailed stratigraphical and geochemical record of 30 tephra layers from the Hekla volcanic system, Iceland, 2980–850 cal. BP. The 25th Nordic Geological Winter Meeting, Abstracts 178, Reykjavik, Iceland.Google Scholar
  42. Rust AC, Cashman KV, Wallace PJ (2004) Magma degassing buffered by vapor flow through brecciated conduit margins. Geology 32:349–352CrossRefGoogle Scholar
  43. Sahagian DL, Proussevitch A (1998) 3D particle size distributions from 2D observations: stereology for natural application. J Volcanol Geoth Res 84:173–196CrossRefGoogle Scholar
  44. Sarda P, Graham D (1990) Mid-ocean ridge popping rocks: implications for degassing at ridge crests. Earth Planet Sc Lett 97:268–289CrossRefGoogle Scholar
  45. Schneider CA, Rasband WS, Eliceiri KW (2012) NIH image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675CrossRefGoogle Scholar
  46. Shea T, Houghton BF, Gurioli L, Cashman KV, Hammer JE, Hobden BJ (2010) Textural studies of vesicles in volcanic rocks: an integrated methodology. J Volcanol Geoth Res 190:271–289CrossRefGoogle Scholar
  47. Sigmarsson O, Condomines M, Fourcade S (1992) A detailed Th, Sr and O isotope study of Hekla: differentiation processes in an Icelandic volcano. Contrib Mineral Petr 112:20–34CrossRefGoogle Scholar
  48. Simakin AG, Armienti P, Epel’baum MB (1999) Coupled degassing and crystallization: experimental study at continuous pressure drop, with application to volcanic bombs. B Volcanol 61:275–287CrossRefGoogle Scholar
  49. Thorarinsson S (1967) The eruptions of Hekla in historical times: a tephrochronological study. In: Einarsson T, Kjartansson G, Thorarinsson S (eds) The eruption of Hekla 1947–1948. Societas Scientiarum Islandica I, Leiftur, Reykjavík, pp. 1–177Google Scholar
  50. Thordarson T, Höskuldsson Á (2008) Postglacial volcanism in Iceland. Jokull 58:197–228Google Scholar
  51. Thordarson T, Larsen G (2007) Volcanism in Iceland in historical time: volcano types, eruption styles and eruptive history. J Geodyn 43:118–152CrossRefGoogle Scholar
  52. Toramaru A (1995) Numerical study of nucleation and growth of bubbles in viscous magmas. J Geophys Res-Sol Ea 100:1913–1931CrossRefGoogle Scholar
  53. Toramaru A (2006) BND (bubble number density) decompression rate meter for explosive volcanic eruptions. J Volcanol Geoth Res 154:303–316CrossRefGoogle Scholar
  54. Wright HMN, Folkes CB, Cas RAF, Cashman KV (2011) Heterogeneous pumice populations in the 2.08-Ma Cerro Galán Ignimbrite: implications for magma recharge and ascent preceding a large-volume silicic eruption. B Volcanol 73:1512–1533Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Maria H. Janebo
    • 1
    • 2
  • Bruce F. Houghton
    • 1
  • Thorvaldur Thordarson
    • 3
  • Gudrun Larsen
    • 4
  1. 1.Department of Geology and Geophysics, SOESTUniversity of Hawai’i at MānoaHonoluluUSA
  2. 2.Nordic Volcanological Center, Institute of Earth SciencesUniversity of IcelandReykjavikIceland
  3. 3.Faculty of Earth SciencesUniversity of IcelandReykjavikIceland
  4. 4.Institute of Earth SciencesUniversity of IcelandReykjavikIceland

Personalised recommendations