Advertisement

Bulletin of Volcanology

, 78:69 | Cite as

Short-lived eruptive episodes during the construction of a Na-alkalic basaltic field (Perşani Mountains, SE Transylvania, Romania)

  • Ioan SeghediEmail author
  • Răzvan-Gabriel Popa
  • Cristian G. Panaiotu
  • Alexandru Szakács
  • Zoltán Pécskay
Research Article

Abstract

The Perşani Mts. basaltic field covers >176 km2 (~22 × 8 km) and is one of the youngest and biggest monogenetic volcanic fields in Southeastern Europe. It consists of 21 monogenetic volcanic centers, most of which were built on a basement of Miocene rhyolitic tuffs and Mesozoic sedimentary rocks. 40Ar/39Ar dating shows that the eruptions took place in five episodes: 1220, 1142, 1060, 800, and 683 ka. An additional undated episode at 1060–800 ka has been identified using volcanological observations. Initial phreatomagmatic activity was commonly followed by explosive Strombolian/Hawaiian phases that deposited agglutinated spatter around the vents along with massive-to-bedded unconsolidated scoria and lapilli. Some volcanoes lack evidence for magmatic explosive activity, while others lack evidence for the initial phreatomagmatic phase. During most eruptions, the final activity was the effusion of lava flows that in some cases deformed (or partially destroyed) the volcanic edifices. The erupted volumes varied greatly from one episode to other, without showing any pattern: the highest volumes are recorded in deposits from the third pulse (1060 ka). The volcanoes are located close to faults and always on their footwall blocks, and it is inferred that the regional tectonic stress regime controlled both the timing and spacing of volcanic activity in the volcanic field.

Keywords

Perşani Mountains Monogenetic Na-alkalic volcanoes Phreatomagmatic Tectonic control 

Notes

Acknowledgments

This work was supported by a grant of the Ministry of Education and Scientific Research, CNCS-UEFISCDI, project number PN-II-IDPCE-2012-4-0137. Constructive reviews provided by Alessandro Tibaldi and Gábor Kereszturi helped to improve our manuscript. Thorough editorial handling by Richard J. Brown and James White is appreciated.

Supplementary material

445_2016_1063_MOESM1_ESM.docx (20 kb)
ESM 1 (DOCX 20.2 kb)

References

  1. Channell JET, Hodell DA, Singer BS, Xuan C (2010) Reconciling astrochronological and 40Ar/39Ar ages for the Matuyama–Brunhes boundary and late Matuyama chron. Geochem Geophys Geosyst 11. doi: 10.1029/2010GC003203Q0AA12
  2. Cimarelli C, Di Traglia F, de Rita D, Gimeno Torrente D, Fernandez Turiel J-L (2013) Space–time evolution of monogenetic volcanism in the mafic Garrotxa volcanic field (NE Iberian Peninsula. Bull Volcanol 75:758CrossRefGoogle Scholar
  3. Connor CB, Conway FM (2000) Basaltic volcanic fields. In: Sigurdsson H, Houghton BF, McNutt SR, Rymer H, Stix J (eds) Encyclopedia of volcanoes. Academic Press, San Diego, pp. 331–343Google Scholar
  4. Downes H, Seghedi I, Szakács A, Dobosi G, James DE, Vaselli O, Rigby IJ, Ingram GA, Rex D, Pécskay Z (1995) Petrology and geochemistry of the late Tertiary/Quaternary mafic alkaline volcanism in Romania. Lithos 35:65–81CrossRefGoogle Scholar
  5. Falus G, Tommasi A, Ingrin J, Szabó C (2008) Deformation and seismic anisotropy of the lithospheric mantle in the southeastern Carpathians inferred from the study of mantle xenoliths. Earth Planet Sci Lett 272:50–64CrossRefGoogle Scholar
  6. Fisher RV, Schmincke H-U (1984) Pyroclastic rocks. Springer-Verlag, Berlin, p. 472CrossRefGoogle Scholar
  7. Gaffney ES, Damjanac B, Valentine GA (2007) Localization of volcanic activity: 2. Effects of pre-existing structure. Earth Planet Sci Lett 263(3–4):323–338CrossRefGoogle Scholar
  8. Ghenea C, Bandrabur T, Mihăilă N, Rădulescu C, Samson P, Rădan S (1981) Pliocene and Pleistocene deposits in the Braşov Depression. In: Guidebook for the field excursion 1–8 June 1981, Subcommission for European Quaternary Stratigraphy. Published by the Institute of Geology and Geophysics, p. 55Google Scholar
  9. Hambach U, Orleanu M, Rogenhagen J, Schnepp E (1994) Paleomagnetism of Pleistocene volcanics from the Perşani Mountains, East Carpathians (Romania). Rom J Tectonics Reg Geol 75:20–24Google Scholar
  10. Harangi S, Sági T., Seghedi I, Ntaflos T (2013) A combined whole-rock and mineral-scale investigation to reveal the origin of the basaltic magmas of the Perşani monogenetic volcanic field, Romania, Eastern-Central Europe. Lithos 180–181:43–57Google Scholar
  11. Harangi S, Jankovics MÉ, Sági T, Kiss B, Lukács R, Soós I (2014) Origin and geodynamic relationships of the late Miocene to Quaternary alkaline basalt volcanism in the Pannonian basin, Eastern–Central Europe. Int J Earth Sci (Geol Rundsch). doi: 10.1007/s00531-014-1105-7 Google Scholar
  12. Hauer F, Stache G (1863) Geologie Siebenbȕrgens. Wilhelm Braunmȕler, Wien, p. 637Google Scholar
  13. Herbich Fr (1878) Das Szeklerland. Jahrb. Der Kgl. Und geol. Aust, V, BudapestGoogle Scholar
  14. Kereszturi G, Németh K (2012) Monogenetic basaltic volcanoes: genetic classification, growth, geomorphology and degradation. In: Németh, K. (ed) Updates in volcanology—new advances in understanding volcanic systems, chapter 1, pp. 3–88Google Scholar
  15. Kereszturi G, Németh K, Csillag G, Balogh K, Kovács J (2011) The role of external environmental factors in changing eruption styles of monogenetic volcanoes in a Mio/Pleistocene continental volcanic field in western Hungary. J Volcanol Geotherm Res 201(1–4):227–240CrossRefGoogle Scholar
  16. Koch A (1900) Die Tertiärbildungen des Beckens der Siebenburgischen Landesteile. Neogen teile, BudapestGoogle Scholar
  17. Laţiu V (1928) Contribution to the petrographic study of the basalt with quartz xenolith from Racoşul de Jos. An Inst Geol Rom XIII:1–22, Bucharest (In Romanian)Google Scholar
  18. Le Corvec N, Spörli KB, Rowland J, Lindsay J (2013) Spatial distributionand alignments of volcanic centers: clues to the formation of monogenetic volcanic fields. Earth-Sci Rev 124:96–114CrossRefGoogle Scholar
  19. Lexa J, Seghedi I, Németh K, Szakács A, Konečný V, Pécskay Z, et al. (2010) Neogene-Quaternary volcanic forms in the Carpathian-Pannonian Region: a review. Cent Eur. J Geosci 2(3):207–270Google Scholar
  20. Lorenz V, Kurszlaukis S (2007) Root zone processes in the phreatomagmatic pipe emplacement model and consequences for the evolution of maar–diatreme volcanoes. J Volcanol Geotherm Res 159:4–32CrossRefGoogle Scholar
  21. Lustrino M, Wilson M (2007) The circum-Mediterranean anorogenic Cenozoic igneous province. Earth Sci Rev 81:1–65CrossRefGoogle Scholar
  22. Maccaferri F, Acocella V, Rivalta E (2015) How differential load induced by normal fault scarps controls the distribution of monogenetic volcanism. Geophys Res Lett. doi: 10.1002/2015GL065638 Google Scholar
  23. Martí J, Planaguma L, Geyer A, Canal E, Pedrazzi D (2011) Complex interaction between Strombolian and phreatomagmatic eruptions in the Quaternary monogenetic volcanism of the Catalan Volcanic Zone (NE of Spain. J Volcanol Geotherm Res 201(1–4):178–193CrossRefGoogle Scholar
  24. Martin U, Németh K (2004) Mio-Pliocene phreatomagmatic volcanism in the Western Pannonian Basin. Budapest, Geological Institute of Hungary, p. 193Google Scholar
  25. Matenco L, Bertotti G, Leever K, Cloetingh S, Schmid SM, Tărăpoancă M, Dinu C (2007) Large-scale deformation in a locked collisional boundary: interplay between subsidence and uplift, intraplate stress, and inherited lithospheric structure in the late stage of the SE Carpathians evolution. Tectonics 26 . doi: 10.1029/2006TC001951TC4011
  26. Matenco L, Krézsek C, Merten S, Schmid S, Cloetingh S, Andriessen P (2010) Characteristics of collisional orogens with low topographic build-up: an example from the Carpathians. Terra Nov. 22:155–165Google Scholar
  27. Mihăilă N, Kreuzer H (1981) Contribution to the knowledge of basaltic volcanics from Perşani. Terra 4:37–47 (in Romanian)Google Scholar
  28. Mihăilă N, Peltz S (1977) Contribution to the knowledge of Heghies volcano (Racoşul de Jos—Munţii Perşani). DS Inst Geol LXIII 5:60–83 Bucharest (in Romanian)Google Scholar
  29. Mihăilă N, Peltz S, Wonner F (1972) New data concerning the Quaternary deposits and basaltic volcanism from the Hoghiz-Veneţia. St Tehn Ec, H4:69–93, Bucharest (In Romanian)Google Scholar
  30. Németh K (2012) An overview of the monogenetic volcanic fields of the Western Pannonian Basin: their field characteristics and outlook for future research from a global perspective. In: Stoppa F (ed) Updates in volcanology—a comprehensive approach to volcanological problems. In-Tech:27–52Google Scholar
  31. Németh K, Martin U (1999) Late Miocene paleo-geomorphology of the Bakony-Balaton Highland Volcanic Field (Hungary) using physical volcanology data. Z Geomorphol 43(4):417–438Google Scholar
  32. Németh K, Martin U (2007) Shallow sill and dyke complex in western Hungary as a possible feeding system of phreatomagmatic volcanoes in “soft-rock” environment. J Volcanol Geotherm Res 159(1–3):138–152CrossRefGoogle Scholar
  33. Panaiotu CG, Pécskay Z, Hambach U, Seghedi I, Panaiotu CC, Itaya CET, Orleanu M, Szakács A (2004) Short-lived Quaternary volcanism in the Perşani Mountains (Romania) revealed by combined K–Ar and paleomagnetic data. Geol Carpathica 55:333–339Google Scholar
  34. Panaiotu CG, Vişan M, Ţugui A, Seghedi I, Panaiotu AG (2013) Palaeomagnetism of the South Harghita volcanic rocks of the East Carpathians: implications for tectonic rotations and palaeosecular variation in the past 5 Ma. Geophys J Int 189:369–382CrossRefGoogle Scholar
  35. Panaiotu CG, Dimofte D, Necula C, Dumitru A, Seghedi I, Popa R-G (2016) Revised paleosecular variation from Quaternary lava flows from the east Carpathians. Romania. Reports in Physics 68(1):416–424Google Scholar
  36. Popescu I (1970) Geological map 1:50000, sheet Perşani 94b, L-35-75b, Geological Institute of RomaniaGoogle Scholar
  37. Popescu I, Mihăilă N, Peltz S, Ţicleanu N, Andreescu I (1976) Geological map 1:50000, sheet Racoş 78d, L-35-63d, Geological Institute of RomaniaGoogle Scholar
  38. Preda D (1940). Les basaltes du versant du oust de Monts Perşani. DS Inst Geol Roum XXIV: 90–98, BucharestGoogle Scholar
  39. Rivalta E, Taisne B, Bunger AP, Katz RF (2015) A review of mechanical models of dike propagation: schools of thought, results and future directions. Tectonophysics 638:1–42CrossRefGoogle Scholar
  40. Săndulescu M (1984) Geotectonics of Romania. Ed Tehnică, Bucureşti, p. 366 (in Romanian)Google Scholar
  41. Schmid S, Bernoulli D, Fügenschuh B, Matenco L, Schefer S, Schuster R, Tischler M, Ustaszewski K (2008) The Alpine–Carpathian–Dinaridic orogenic system: correlation and evolution of tectonic units. Swiss J Geosci 101:139–183CrossRefGoogle Scholar
  42. Seghedi I, Szakács A (1994) Upper Pliocene to Quaternary basaltic volcanism in the Perşani Mountains, Romania. Rom. J Petrol 76:101–107Google Scholar
  43. Seghedi I, Downes H, Szakács A, Mason PRD, Thirlwall MF, Roşu E, Pécskay Z, Marton E, Panaiotu C (2004) Neogene-Quaternary magmatism and geodynamics in the Carpathian–Pannonian region: a synthesis. Lithos 72:117–146CrossRefGoogle Scholar
  44. Seghedi I, Matenco L, Downes H, Mason PRD, Szakács A, Pécskay Z (2011) Tectonic significance of changes in post-subduction Pliocene-Quaternary magmatism in the south east part of the Carpathian–Pannonian region. Tectonophysics 502:146–157CrossRefGoogle Scholar
  45. Singer BS (2013) A Quaternary geomagnetic instability time scale. Quat Geochronol 21:29–52CrossRefGoogle Scholar
  46. Szakács A, Seghedi I, Pécskay Z (1993) Pecularities of South Harghita Mts. as terminal segment of the Carpathian Neogene to Quaternary volcanic chain. Rev Roum de Géol 37:21–36Google Scholar
  47. Tadini A, Bonali FL, Corazzato C, Cortés JA, Tibaldi A, Valentine GA (2014) Spatial distribution and structural analysis of vents in the Lunar Crater Volcanic Field (Nevada, USA. Bull Volcanol 76:877. doi: 10.1007/s00445-014-0877-8 CrossRefGoogle Scholar
  48. Tibaldi A, Mariotto FP (2015) Structural geology of active tectonic areas and volcanic regions. Lulu Press, Inc, p. 203Google Scholar
  49. Valentine GA (2012) Shallow plumbing systems for small-volume basaltic volcanoes, 2: evidence from crustal xenoliths at scoria cones and maars. J Volcanol Geotherm Res:223–224 47–63Google Scholar
  50. Valentine GA, Gregg TKP (2008) Continental basaltic volcanoes-processes and problems. J Volcanol Geotherm Res 177:857–873CrossRefGoogle Scholar
  51. Valentine G, Perry F (2007) Tectonically controlled, time-predictable basaltic volcanism from lithospheric mantle source. Earth Planet Sci Lett 261:201–216CrossRefGoogle Scholar
  52. Vaselli O, Downes H, Thirlwall MF, Dobosi G, Coradossi N, Seghedi I, Szakács A, Vannucci R (1995) Ultramafic xenoliths in Plio-Pleistocene alkali basalts from the Eastern Transylvanian basin: depleted mantle enriched by vein metasomatism. J Petrol 36:23–55CrossRefGoogle Scholar
  53. Vergniolle S, Mangan M (2000) Hawaiian and Strombolian eruptions. In: Sigurdsson H, Houghton B, McNutt S, Rymer H, Stix J (eds) Encyclopedia of volcanoes. Academic Press, New York, pp. 447–461Google Scholar
  54. Wachner H (1915) Bericht uber die im Sommer des Jahre 1915 im Persani Gebirge ausgefuhrten geologichen Aufnauhmen. Jahresber D.K. und Geol. D.K., pp. 268–285Google Scholar
  55. White JDL (1996) Impure coolants and interaction dynamics of phreatomagmatic eruptions. J Volcanol Geotherm Res 74:15.5–1170CrossRefGoogle Scholar
  56. White JDL, Houghton BF (2006) Primary volcaniclastic rocks. Geology 34(8):677–680CrossRefGoogle Scholar
  57. Zagożdżon PP (2003) Sunburn in the tertiary basalts of Silesia (SW Poland). Geolines 15:188–193Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Ioan Seghedi
    • 1
    Email author
  • Răzvan-Gabriel Popa
    • 2
    • 1
  • Cristian G. Panaiotu
    • 3
  • Alexandru Szakács
    • 4
    • 1
  • Zoltán Pécskay
    • 5
  1. 1.Institute of GeodynamicsRomanian AcademyBucharestRomania
  2. 2.Institute of Geochemistry and PetrologyETH ZürichZürichSwitzerland
  3. 3.Paleomagnetic LaboratoryUniversity of BucharestBucharestRomania
  4. 4.Department of Environmental SciencesSapientia UniversityCluj-NapocaRomania
  5. 5.Institute of Nuclear Research of Hungarian Academy of SciencesDebrecenHungary

Personalised recommendations