Bulletin of Volcanology

, 78:66 | Cite as

Dispersal of key subplinian–Plinian tephras from Hekla volcano, Iceland: implications for eruption source parameters

  • Maria H. Janebo
  • Thorvaldur Thordarson
  • Bruce F. Houghton
  • Costanza Bonadonna
  • Gudrun Larsen
  • Rebecca J. Carey
Research Article


Hekla is the most active silicic volcano in Iceland, with 18 subplinian–Plinian eruptions since AD 1104. In the period 1970 to 2000, the frequency of such eruptions increased to once every decade. Hekla is currently inflated to above the levels observed prior to the most recent eruptions in 1991 and 2000. The next eruption could pose a hazard to air traffic between North America and Europe because explosive eruptions of Hekla, independent of size, typically start with a subplinian or Plinian phase that produces a sustained ash plume. We present an overview of five of the largest historical Hekla eruptions (taking place in 1104, 1158, 1300, 1693, and 1766). These eruptions cover a compositional range of rhyolite to andesite, previously estimated Volcanic Explosivity Index (VEI) values of 4–5 and are characterised by contrasting wind dispersal (dispersal axes NW–NE). New isopach maps show both greater deposit thicknesses in the proximal region and wider dispersal than previously inferred, resulting in different volume estimates (minimal values ranging between 0.18 and 0.91 km3). New isopleth maps were also compiled and resulted in inferred plume heights of about 13–25 km. These changes in the estimated values of volume and mass eruption rates have large implications on the forecasting and impacts of future Hekla eruptions.


Hekla volcano Isopach maps Tephra dispersal Eruptive volume Mass eruption rate Plinian eruptions 



This research was funded by the National Science Foundation grant EAR12-20596. The authors are grateful to Wim Degruyter for developing a dedicated and simple script for the calculation of MER. Special thanks to Kristine Curran, Carolyn Parcheta, Samantha Weaver, Jonas Gudnason, William Moreland, Catherine Gallagher and Jodi Fox for assistance with field work. The manuscript was significantly enhanced by insightful reviews by M. Nathenson and an anonymous reviewer, and comments from D. Swanson, S. Fagents and editor J. Fierstein.

Supplementary material

445_2016_1059_MOESM1_ESM.pdf (998 kb)
ESM 1 (PDF 998 kb)
445_2016_1059_MOESM2_ESM.pdf (439 kb)
ESM 2 (PDF 439 kb)
445_2016_1059_MOESM3_ESM.pdf (28 kb)
ESM 3 (PDF 28 kb)
445_2016_1059_MOESM4_ESM.pdf (17 kb)
ESM 4 (PDF 17 kb)
445_2016_1059_MOESM5_ESM.pdf (33 kb)
ESM 5 (PDF 33 kb)


  1. Beckett FM, Witham CS, Hort MC, Stevenson JA, Bonadonna C, Millington SC (2015) Sensitivity of dispersion model forecasts of volcanic ash clouds to the physical characteristics of the particles. J Geophys Res-Atmos. doi: 10.1002/2015JD023609 Google Scholar
  2. Biass S, Bagheri G, Aeberhard WH, Bonadonna C (2014a) TError: towards a better quantification of the uncertainty propagated during the characterization of tephra deposits. Statistics in Volcanology 1:1–27. doi: 10.5038/2163-338X.1.2 CrossRefGoogle Scholar
  3. Biass S, Scaini C, Bonadonna C, Folch A, Smith K, Höskuldsson A (2014b) A multi-scale risk assessment for tephra fallout and airborne concentration from multiple Icelandic volcanoes- part 1: hazard assessment. Nat Hazard Earth Sys 14:2265–2287. doi: 10.5194/nhess-14-2265-2014 CrossRefGoogle Scholar
  4. Bonadonna C, Costa A (2012) Estimating the volume of tephra deposits: a new simple strategy. Geology 40:415–418. doi: 10.1130/G32769.1 CrossRefGoogle Scholar
  5. Bonadonna C, Costa A (2013) Plume height, volume, and classification of explosive volcanic eruptions based on the Weibull function. B Volcanol 75:742. doi: 10.1007/s00445-013-0742-1 CrossRefGoogle Scholar
  6. Bonadonna C, Houghton BF (2005) Total grain-size distribution and volume of tephra-fall deposits. B Volcanol 67:441–456. doi: 10.1007/s00445-004-0386-2 CrossRefGoogle Scholar
  7. Bonadonna C, Phillips JC (2003) Sedimentation from strong volcanic plumes. J Geophys Res-Sol Ea 108:2340–2368. doi: 10.1029/2002JB002034 CrossRefGoogle Scholar
  8. Bonadonna C, Ernst GGJ, Sparks RSJ (1998) Thickness variations and volume estimates of tephra fall deposits: the importance of particle Reynolds number. J Volcanol Geoth Res 81:173–187. doi: 10.1016/S0377-0273(98)00007-9 CrossRefGoogle Scholar
  9. Bonadonna C, Folch A, Loughlin S, Puempel H (2012) Future developments in modelling and monitoring of volcanic ash clouds: outcomes from the first IAVCEI-WMO workshop on Ash Dispersal Forecast and Civil Aviation (Geneva, Switzerland, 18–20 October 2010), Short Scientific Communication, Bulletin of Volcanology (
  10. Bonadonna C, Biass S, Costa A (2015a) Physical characterization of explosive volcanic eruptions based on tephra deposits: propagation of uncertainties and sensitivity analysis. J Volcanol Geoth Res 296:80–100. doi: 10.1016/j.jvolgeores.2015.03.009 CrossRefGoogle Scholar
  11. Bonadonna C, Pistolesi M, Cioni R, Degruyter W, Elissondo M, Baumann V (2015b) Dynamics of wind-affected volcanic plumes: the example of the 2011 Cordón Caulle eruption, Chile. J Geophys Res-Sol Ea 120:2242–2261. doi: 10.1002/2014JB011478 CrossRefGoogle Scholar
  12. Burden RE, Chen L, Phillips JC (2013) A statistical method for determining the volume of volcanic fall deposits. B Volcanol 75:707. doi: 10.1007/s00445-013-0707-4 CrossRefGoogle Scholar
  13. Carey S, Sigurdsson H (1989) The intensity of plinian eruptions. B Volcanol 51:28–40. doi: 10.1007/BF01086759 CrossRefGoogle Scholar
  14. Carey S, Sparks RSJ (1986) Quantitative models for the fallout and dispersal of tephra from volcanic eruption columns. B Volcanol 48:109–125. doi: 10.1007/BF01046546 CrossRefGoogle Scholar
  15. Carey RJ, Houghton BF, Thordarson T (2009) Tephra dispersal and eruption dynamics of wet and dry phases of the 1875 eruption of Askja volcano, Iceland. B Volcanol 72:259–278. doi: 10.1007/s00445-009-0317-3 CrossRefGoogle Scholar
  16. Cioni R, Longo A, Macedonio G, Santacroce R, Sbrana A, Sulpizio R, Andronico D (2003) Assessing pyroclastic fall hazard through field data and numerical simulations: example from Vesuvius. J Geophys Res-Sol Ea 108:2063. doi: 10.1029/2001JB000642 CrossRefGoogle Scholar
  17. Cooke MC, Francis PN, Millington S, Saunders R, Witham C (2014) Detection of the Grímsvötn 2011 volcanic eruption plumes using infrared satellite measurements. Atmos Sci Lett 15:321–327. doi: 10.1002/asl2.506 Google Scholar
  18. Degruyter W, Bonadonna C (2012) Improving on mass flow rate estimates of volcanic eruptions. Geophys Res Lett 39:L16308. doi: 10.1029/2012GL052566 CrossRefGoogle Scholar
  19. Dugmore AJ, Church MJ, Mairs K-A, McGovern TH, Perdikaris S, Vesteinsson O (2007) Abandoned farms, volcanic impacts, and woodland management: revisiting Þjórsárdalur, the “Pompeii of Iceland. Arctic Anthropol 44:1–11. doi: 10.1353/arc.2011.0021 CrossRefGoogle Scholar
  20. Fierstein J, Nathenson M (1992) Another look at the calculation of fallout tephra volumes. B Volcanol 54:156–167. doi: 10.1007/BF00278005 CrossRefGoogle Scholar
  21. Folch A, Sulpizio R (2010) Evaluating long-range volcanic ash hazard using supercomputing facilities: application to Somma-Vesuvius (Italy), and consequences for civil aviation over the Central Mediterranean area. B Volcanol 72:1039–1059. doi: 10.1007/s00445-010-0386-3 CrossRefGoogle Scholar
  22. Gronvold K, Larsen G, Einarsson P, Thorarinsson S, Saemundsson K (1983) The Hekla eruption 1980–1981. B Volcanol 46:349–363. doi: 10.1007/BF02597770 CrossRefGoogle Scholar
  23. Gudmundsson A, Oskarsson N, Gronvold K, Saemundsson K, Sigurdsson O, Stefansson R, Gislason SR, Einarsson P, Brandsdottir B, Larsen G, Johannesson H, Thordarson T (1992) The 1991 eruption of Hekla, Iceland. B Volcanol 54:238–246. doi: 10.1007/BF00278391 Google Scholar
  24. Gudmundsson MT, Höskuldsson A, Larsen G, Thordarson T, Oladottir BA, Oddsson B, Gudnason J, Högnadottir T, Stevenson JA, Houghton BF, McGarvie D, Sigurdardottir GM (2012) The may 2011 eruption of Grímsvötn. Geophys Res Abstr 14:EGU2012–EG12119Google Scholar
  25. Höskuldsson Á, Óskarsson N, Pedersen R, Grönvold K, Vogfjörd K, Ólafsdottir R (2007) The millennium eruption of Hekla in February 2000. B Volcanol 70:169–182. doi: 10.1007/s00445-007-0128-3 CrossRefGoogle Scholar
  26. Houghton BF, Swanson DA, Rausch J, Carey RJ, Fagents SA, Orr TR (2013) Pushing the Volcanic Explosivity Index to its limit and beyond: constraints from exceptionally weak explosive eruptions at Kilauea in 2008. Geology 41:627–630. doi: 10.1130/G34146.1
  27. Jenkins S, McAneney J, Magill C, Blong R (2012) Regional ash fall hazard II: Asia-Pacific modelling results and implications. B Volcanol 74:1713–1727. doi: 10.1007/s00445-012-0628-7 CrossRefGoogle Scholar
  28. Klawonn M, Houghton BF, Swanson DA, Fagents SA, Wessel P, Wolfe CJ (2014a) Constraining explosive volcanism: subjective choices during estimates of eruption magnitude. B Volcanol 76:793. doi: 10.1007/s00445-013-0793-3 CrossRefGoogle Scholar
  29. Klawonn M, Houghton BF, Swanson DA, Fagents SA, Wessel P, Wolfe CJ (2014b) From field data to volumes: constraining uncertainties in pyroclastic eruption parameters. B Volcanol 76:839. doi: 10.1007/s00445-014-0839-1 CrossRefGoogle Scholar
  30. Larsen G (1992) Gjóskulagid úr Heklugosinu 1158 (The tephra layer from the 1158 AD eruption of Hekla). Jardfrædafélag Islands, Vorrádstefna, Yfirlit og Ágrip. Geoscience Society of Iceland, Reykjavík, pp 25–27Google Scholar
  31. Larsen G, Thorarinsson S (1977) H4 and other acid Hekla tephra layers. Jokull 27:28–46Google Scholar
  32. Larsen G, Dugmore A, Newton A (1999) Geochemistry of historical-age silicic tephras in Iceland. The Holocene 9:463–471. doi: 10.1191/095968399669624108 CrossRefGoogle Scholar
  33. Le Pennec J-L, Ruiz GA, Ramón P, Palacios E, Mothes P, Yepes H (2012) Impact of tephra falls on Andean communities: the influences of eruption size and weather conditions during the 1999–2001 activity of Tungurahua volcano, Ecuador. J Volcanol Geoth Res 217–218:91–103. doi: 10.1016/j.jvolgeores.2011.06.011 CrossRefGoogle Scholar
  34. Mastin LG, Guffanti M, Ewert JE, Spiegel J (2009a) Preliminary spreadsheet of eruption source parameters for volcanoes of the world. U.S. Geological Survey Open-File Report 2009–1133, v. 1.2Google Scholar
  35. Mastin LG, Guffanti M, Servranckx R, Webley P, Barsotti S, Dean K, Durant A, Ewert JW, Neri A, Rose WI, Schneider D, Siebert L, Stunder B, Swanson G, Tupper A, Volentik A, Waythomas CF (2009b) A multidisciplinary effort to assign realistic source parameters to models of volcanic ash-cloud transport and dispersion during eruptions. J Volcanol Geoth Res 186:10–21. doi: 10.1016/j.jvolgeores.2009.01.008 CrossRefGoogle Scholar
  36. Petersen GN, Bjornsson H, Arason P, von Löwis S (2012) Two weather radar time series of the altitude of the volcanic plume during the May 2011 eruption of Grímsvötn, Iceland. Earth System Science Data 4:121–127. doi: 10.5194/essd-4-121-2012 CrossRefGoogle Scholar
  37. Pyle DM (1989) The thickness, volume and grainsize of tephra fall deposits. B Volcanol 51:1–15. doi: 10.1007/BF01086757 CrossRefGoogle Scholar
  38. Pyle DM (1995) Assessment of the minimum volume of tephra fall deposits. J Volcanol Geoth Res 69:379–382. doi: 10.1016/0377-0273(95)00038-0 CrossRefGoogle Scholar
  39. Scaini C, Biass S, Galderisi A, Bonadonna C, Folch A, Smith K, Höskuldsson A (2014) A multi-scale risk assessment for tephra fallout and airborne concentration from multiple Icelandic volcanoes—part 2: vulnerability and impact. Nat Hazard Earth Sys 14:2289–2312. doi: 10.5194/nhess-14-2289-2014 CrossRefGoogle Scholar
  40. Sturkell E, Ágústsson K, Linde AT, Sacks SI, Einarsson P, Sigmundsson F, Geirsson H, Pedersen R, LaFemina PC, Ólafsson H (2013) New insights into volcanic activity from strain and other deformation data for the Hekla 2000 eruption. J Volcanol Geoth Res 256:78–86. doi: 10.1016/j.jvolgeores.2013.02.001 CrossRefGoogle Scholar
  41. Thorarinsson S (1954) The tephra-fall from Hekla on March 29, 1947. In: Einarsson T, Kjartansson G, Thorarinsson S (eds) The eruption of Hekla 1947–1948. Societas Scientiarum Islandica, Reykjavík, pp. 1–68Google Scholar
  42. Thorarinsson S (1967) The eruptions of Hekla in historical times: a tephrochronological study. In: Einarsson T, Kjartansson G, Thorarinsson S (eds) The eruption of Hekla 1947–1948. Societas Scientiarum Islandica, Reykjavík, pp. 1–177Google Scholar
  43. Thordarson T, Höskuldsson Á (2008) Postglacial volcanism in Iceland. Jokull 58:197–228Google Scholar
  44. Thordarson T, Larsen G (2007) Volcanism in Iceland in historical time: volcano types, eruption styles and eruptive history. J Geodyn 43:118–152. doi: 10.1016/j.jog.2006.09.005 CrossRefGoogle Scholar
  45. Walker GL (1973) Explosive volcanic eruptions—a new classification scheme. Geol Rundsch 62:431–446. doi: 10.1007/BF01840108 CrossRefGoogle Scholar
  46. Wilson L, Walker GPL (1987) Explosive volcanic eruptions—VI. Ejecta dispersal in Plinian eruptions: the control of eruption conditions and atmospheric properties. Geophys J Roy Astr S 89:657–679. doi: 10.1111/j.1365-246X.1987.tb05186.x CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Maria H. Janebo
    • 1
    • 2
  • Thorvaldur Thordarson
    • 3
  • Bruce F. Houghton
    • 1
  • Costanza Bonadonna
    • 4
  • Gudrun Larsen
    • 5
  • Rebecca J. Carey
    • 6
  1. 1.Department of Geology and Geophysics, SOESTUniversity of Hawai‘i at MānoaHonoluluUSA
  2. 2.Nordic Volcanological Center, Institute of Earth SciencesUniversity of IcelandReykjavikIceland
  3. 3.Faculty of Earth SciencesUniversity of IcelandReykjavikIceland
  4. 4.Section of Earth and Environmental SciencesUniversity of GenevaGenevaSwitzerland
  5. 5.Institute of Earth SciencesUniversity of IcelandReykjavikIceland
  6. 6.School of Earth ScienceUniversity of TasmaniaHobartAustralia

Personalised recommendations