Advertisement

Bulletin of Volcanology

, 78:53 | Cite as

High spatio-temporal resolution observations of crater lake temperatures at Kawah Ijen volcano, East Java, Indonesia

  • Jennifer L. Lewicki
  • Corentin Caudron
  • Vincent J. van Hinsberg
  • George E. Hilley
Research Article

Abstract

The crater lake of Kawah Ijen volcano, East Java, Indonesia, has displayed large and rapid changes in temperature at point locations during periods of unrest, but measurement techniques employed to date have not resolved how the lake’s thermal regime has evolved over both space and time. We applied a novel approach for mapping and monitoring variations in crater lake apparent surface (“skin”) temperatures at high spatial (∼32 cm) and temporal (every 2 min) resolution at Kawah Ijen on 18 September 2014. We used a ground-based FLIR T650sc camera with digital and thermal infrared (TIR) sensors from the crater rim to collect (1) a set of visible imagery around the crater during the daytime and (2) a time series of co-located visible and TIR imagery at one location from pre-dawn to daytime. We processed daytime visible imagery with the Structure-from-Motion photogrammetric method to create a digital elevation model onto which the time series of TIR imagery was orthorectified and georeferenced. Lake apparent skin temperatures typically ranged from ∼21 to 33 °C. At two locations, apparent skin temperatures were ∼4 and 7 °C less than in situ lake temperature measurements at 1.5 and 5-m depth, respectively. These differences, as well as the large spatio-temporal variations observed in skin temperatures, were likely largely associated with atmospheric effects such as the evaporative cooling of the lake surface and infrared absorption by water vapor and SO2. Calculations based on orthorectified TIR imagery thus yielded underestimates of volcanic heat fluxes into the lake, whereas volcanic heat fluxes estimated based on in situ temperature measurements (68 to 111 MW) were likely more representative of Kawah Ijen in a quiescent state. The ground-based imaging technique should provide a valuable tool to continuously monitor crater lake temperatures and contribute insight into the spatio-temporal evolution of these temperatures associated with volcanic activity.

Keywords

Thermal infrared camera Volcanic lake Structure-from-Motion Heat flux Kawah Ijen 

Notes

Acknowledgments

We thank R.G. Vaughan and two anonymous reviewers for the constructive reviews of this manuscript and the Center for Volcanology and Geologic Hazard Mitigation of Indonesia’s Geological Agency for support in the field. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the US Government.

Supplementary material

445_2016_1049_MOESM1_ESM.mov (19.9 mb)
ESM 1 (MOV 20387 kb)

References

  1. Adams E, Cosler D, Helfrich K (1990) Evaporation from heated water bodies: predicting combined force plus free convection. Water Resour Res 26:423–435CrossRefGoogle Scholar
  2. Brown GC, Rymer H, Stevenson D (1991) Volcano monitoring by microgravity and energy budget analysis. J Geol Soc Lond 213:247–262Google Scholar
  3. Caudron C, Syahbana DK, Lecocq T, Van Hinsberg V, McCausland W, Triantafyllou A, Camelbeeck T, Bernard A, Surono (2015a) Kawah Ijen volcanic activity: a review. Bull Volcanol 77: doi: 10.1017/s00445-014-0885-8
  4. Caudron C, Lecocq T, Syahbana DK, McCausland W, Watlet A, Camelbeeck T, Bernard A, Surono (2015b) Stress and mass changes at a “wet” volcano: example during the 2011–2012 volcanic unrest at Kawah Ijen volcano (Indonesia). J Geophys Res Solid Earth 120: doi: 10.1002/2014JB011590
  5. Caudron C, Mauri G, Williams-Jones G, Lecocq T, Syahbana DK, De Plaen R, Peiffer L, Bernard A, Saracco G (2016) New insights into the Kawah Ijen hydrothermal system from geophysical data. Geol Soc Lond Special Pub doi: 10.1144/SP437.4
  6. Chiodini G, Vilardo G, Augusti V, Granieri D, Caliro S, Minopoli C, Terranova C (2007) Thermal monitoring of hydrothermal activity by permanent infrared automatic stations: Results obtained at Solfatara di Pozzuoli, Campi Flegrei (Italy). J Geophys Res 112, B12206. doi: 10.1029/2007JB005140 CrossRefGoogle Scholar
  7. Fonstad MA, Dietrich JT, Courville BC, Jensen JL, Carbonneau PE (2013) Topographic structure from motion: a new development in photogrammetric measurement. Earth Surface Processes Landforms 38:421–430. doi: 10.1002/esp.3366 CrossRefGoogle Scholar
  8. Gunawan H, Caudron C, Pallister J, Primulyana S, Christenson B, McCausland W, Van Hinsberg V, Lewicki JL, Rouwet D, Kelly P, Kern C, Werner C, Johnson JB, Utami SB, Syahbana DK, Saing U, Purwanto SBH, Sealing C, Martinez Cruz M, Maryanto S, Bani P, Laurin A, Schmid A, Bradley K, Nandaka I, Hendrasto M (2016) New insights into Kawah Ijen’s volcanic system from the wet volcano workshop experiment. In: Ohba T, Capaccioni B, Caudron C (eds) Special issue geochemistry and geophysics of active volcanic lakes., Geological Society, Special Publications, doi: 10.1144/SP437.7
  9. Haar L, Gallagher JS, Kelt GS (1984) NBS/NRC steam tables. Hemisphere, New York, p 320Google Scholar
  10. Hernández PA, Pérez NM, Varekamp JC, Henriquez B, Hernández A, Barrancos J, Padrón E, Calvo D, Melián G (2007) Crater lake temperature changes of the 2005 eruption of Santa Ana volcano, El Salvador, Central America. Pure Appl Geophys 164:1–16. doi: 10.1007/s00024-007-0275-7 CrossRefGoogle Scholar
  11. Hurst AW, Bibby HM, Scott BJ, McGuiness MJ (1991) The heat source of Ruapehu Crater Lake; deductions from the energy and mass balances. J Volcanol Geotherm Res 46:1–20CrossRefGoogle Scholar
  12. Hurst T, Christenson B, Cole-Baker J (2012) Use of a weather buoy to derive improved heat and mass balance parameters for Ruapehu Crater Lake. J Volcanol Geotherm Res 235–236:23–28. doi: 10.1016/j.volgeores.2012.05.004 CrossRefGoogle Scholar
  13. Lewis A, Hilley GE, Lewicki JL (2015) Integrated thermal infrared imaging and structure-from-motion photogrammetry to map apparent temperature and radiant hydrothermal heat flux at Mammoth Mountain, CA USA. J Volcanol Geotherm Res 303:16–24. doi: 10.1016/j.volgeores.2015.07.025 CrossRefGoogle Scholar
  14. Linacre E (1992) Climate data and resources. A reference and guide, Routledge, LondonCrossRefGoogle Scholar
  15. Mastin LG, Witter JB (2000) The hazards of eruptions through lakes and seawater. J Volcanol Geotherm Res 97:195–214CrossRefGoogle Scholar
  16. Oppenheimer C (1997) Remote sensing of the colour and temperature of volcanic lakes. Remote Sensing 18:5–37CrossRefGoogle Scholar
  17. Pasternack GB, Varekamp JC (1997) Volcanic lake systematics I. Physical constraints. Bull Volcanol 58:528–538CrossRefGoogle Scholar
  18. Patrick MR, Orr T, Antolik L, Lee L, Kamibayashi K (2014) Continuous monitoring of Hawaiian volcanoes with thermal cameras. J Appl Volcanol 3:1CrossRefGoogle Scholar
  19. Robie RA, Hemingway BS, Fisher J (1979) Thermodynamic properties of minerals and related substances at 298.15 K and 1 bar pressure and at higher temperatures. US Geol Surv Bull 1452:456Google Scholar
  20. Rowe GL, Brantley SL, Fernandez M, Fernandez JF, Borgia A, Barquero J (1992) Fluid-volcano interaction in an active stratovolcano: the crater lake system of Poás volcano, Costa Rica. J Volcanol Geotherm Res 49:23–51CrossRefGoogle Scholar
  21. Ryan PJ, Harleman DRF, Stolzenbach KD (1974) Surface heat loss from cooling ponds. Water Resour Res 10:930–938CrossRefGoogle Scholar
  22. Salisbury JW, D’Aria DM (1992) Emissivity of terrestrial materials in the 8–14 μm atmospheric window. Remote Sensing Env 42:83–106CrossRefGoogle Scholar
  23. Sansivero F, Scarpato G, Vilardo G (2013) The automated infrared thermal imaging system for the continuous long-term monitoring of the surface temperature of the Vesuvius crater. Annals Geophys 56:S0454. doi: 10.4401/ag-6460 Google Scholar
  24. Sartori E (2000) A critical review on equations employed for the calculation of the evaporation rate from free water surfaces. Solar Energy 68:77–89CrossRefGoogle Scholar
  25. Spampinato L, Calvari S, Oppenheimer C, Coschi E (2011) Volcano surveillance using infrared cameras. Earth-Sci Reviews 106:63–91. doi: 10.1016/jearscirev.2011.01.003
  26. Trunk L, Bernard A (2008) Investigating crater lake warming using ASTER thermal imagery: case studies at Ruapehu, Poás, Kawah Ijen, and Copahué volcanoes. J Volcanol Geotherm Res 178:259–270. doi: 10.1016/j.jvolgeores.2008.06.020 CrossRefGoogle Scholar
  27. Vandemeulebrouck J, Sabroux J-C, Halbwachs M, Surono N, Poussielgue J, Grangeon J, Tabbagh J (2000) Hydroacoustic noise precursors of the 1990 eruption of Kelut Volcano, Indonesia. J Volcanol Geotherm Res 97:443–456CrossRefGoogle Scholar
  28. Varekamp JC, Ouimette AP, Herman SW, Bermúdez A, Delpino D (2001) Hydrothermal element fluxes from Copahué, Argentina: a “beehive” volcano in turmoil. Geology 29:1059–1062CrossRefGoogle Scholar
  29. Westoby MJ, Brasington J, Glasser NF, Hambry MJ, Reynolds JM (2012) ‘Structure-from-Motion’ photogrammetry: a low-cost, effective tool for geoscience applications. J Geomorphology 179:300–314. doi: 10.1016/j.geomorph.2012.08.021 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg (outside the USA) 2016

Authors and Affiliations

  • Jennifer L. Lewicki
    • 1
  • Corentin Caudron
    • 2
  • Vincent J. van Hinsberg
    • 3
  • George E. Hilley
    • 4
  1. 1.U.S. Geological SurveyMenlo ParkUSA
  2. 2.Bullard LaboratoriesUniversity of CambridgeCambridgeUK
  3. 3.Department of Earth and Planetary SciencesMcGill UniversityMontrealCanada
  4. 4.Department of Geological and Environmental SciencesStanford UniversityStanfordUSA

Personalised recommendations