Advertisement

Reconstruction of total grain size distribution of the climactic phase of a long-lasting eruption: the example of the 2008–2013 Chaitén eruption

  • Fabrizio AlfanoEmail author
  • Costanza Bonadonna
  • Sebastian Watt
  • Chuck Connor
  • Alain Volentik
  • David M. Pyle
Research Article

Abstract

The 2008–2013 eruption of Chaitén Volcano (Chile) was a long-lasting eruption whose climactic phase (May 6, 2008) produced a sub-Plinian plume, with height ranging between 14 and 20 km that dispersed to the NE, reaching the Atlantic coast of Argentina. The erupted material was mainly of lithic origin (∼77 wt%), resulting in a unimodal total grain size distribution (TGSD) dominated by coarse ash (77 wt%), with Mdϕ of 2.7 and σϕ of 2.4. Lapilli clasts (>2 mm) dominate the proximal deposit within ~20 km of the vent, while coarse (63 μm–2 mm) and fine ash (<63 μm) sedimented as far as 800 km from vent, generating mostly poly-modal grain size distributions across the entire deposit. Given that most of the mass is sedimented in proximal areas, results show that possible contributions of later explosive events to the thickness of the distal deposit where layers are less distinguishable (>400 km) do not significantly affect the determination of the TGSD. In contrast, gaps in data sampling in the medial deposit (in particular the gap between 50 and 350 km from vent that coincides with shifts in sedimentation regimes) have large impacts on estimates of TGSD. Particle number distribution for this deposit is characterized by a high power-law exponent (3.0) following a trend very similar to the vesicle size distribution in the juvenile pyroclasts. Although this could be taken to indicate a bubble-driven fragmentation process, we suggest that fragmentation was more likely the result of a shear-driven process because of the predominance of non-vesicular products (lithics and obsidians) and the large fraction of coarse ash in the TGSD.

Keywords

Long lasting explosive eruptions Tephra fall deposit Total grain size distribution Magmatic fragmentation 

Notes

Acknowledgments

Sebastien Biass is thanked for the implementation of the Voronoi tessellation script to describe the weight of individual polygons (https://vhub.org/resources/329). We thank Raffaello Cioni, Danilo M. Palladino and the Associate Editor (Jacopo Taddeucci) for their comments and suggestions that helped greatly to improve the manuscript.

Supplementary material

445_2016_1040_MOESM1_ESM.pdf (860 kb)
ESM 1 (PDF 859 kb)
445_2016_1040_MOESM2_ESM.xlsx (34 kb)
ESM 2 (XLSX 33 kb)

References

  1. Alfano F, Bonadonna C, Delmelle P, Costantini L (2011a) Insights on tephra settling velocity from morphological observations. J Volcanol Geotherm Res 208:86–98. doi: 10.1016/j.jvolgeores.2011.09.013 CrossRefGoogle Scholar
  2. Alfano F, Bonadonna C, Volentik ACM et al (2011b) Tephra stratigraphy and eruptive volume of the May, 2008, Chaitén eruption, Chile. Bull Volcanol 73:613–630. doi: 10.1007/s00445-010-0428-x CrossRefGoogle Scholar
  3. Alfano F, Bonadonna C, Gurioli L (2012) Insights into eruption dynamics from textural analysis: the case of the May, 2008, Chaitén eruption. Bull Volcanol 74:2095–2108. doi: 10.1007/s00445-012-0648-3 CrossRefGoogle Scholar
  4. Amigo Á, Lara LE, Smith VC (2013) Holocene record of large explosive eruptions from Chaitén and Michinmahuida volcanoes, Chile. Andean Geol 40:227–248. doi: 10.5027/andgeoV40n2-a Google Scholar
  5. Biass S, Bonadonna C (2014) TOTGS: total grainsize distribution of tephra fallout. https://vhub.org/resources/3297.
  6. Bonadonna C, Costa A (2012) Estimating the volume of tephra deposits: a new simple strategy. Geology 40:415–418. doi: 10.1130/G32769.1 CrossRefGoogle Scholar
  7. Bonadonna C, Houghton BF (2005) Total grain-size distribution and volume of tephra-fall deposits. Bull Volcanol 67:441–456. doi: 10.1007/s00445-004-0386-2 CrossRefGoogle Scholar
  8. Bonadonna C, Phillips JC (2003) Sedimentation from strong volcanic plumes. J Geophys Res Solid Earth 108:2340. doi: 10.1029/2002JB002034 CrossRefGoogle Scholar
  9. Bonadonna C, Macedonio G, Sparks RSJ (2002) Numerical modelling of tephra fallout associated with dome collapses and Vulcanian explosions: application to hazard assessment on Montserrat. Geol Soc London Mem 21:517–537. doi: 10.1144/GSL.MEM.2002.021.01.23 CrossRefGoogle Scholar
  10. Bonadonna C, Connor CB, Houghton BF, Connor L, Byrne M, Laing A, Hincks TK (2005) Probabilistic modeling of tephra dispersal: hazard assessment of a multiphase rhyolitic eruption at Tarawera, New Zealand. J Geophys Res B Solid Earth 110:1–21. doi: 10.1029/2003JB002896 Google Scholar
  11. Bonadonna C, Genco R, Gouhier M, Pistolesi M, Cioni R, Alfano F, Hoskuldsson A, Ripepe M (2011) Tephra sedimentation during the 2010 Eyjafjallajkull eruption (Iceland) from deposit, radar, and satellite observations. J Geophys Res Solid Earth 116, B12202. doi: 10.1029/2011JB008462 CrossRefGoogle Scholar
  12. Bonadonna C, Cioni R, Pistolesi M, Connor C, Scollo S, Pioli L, Rosi M (2013) Determination of the largest clast sizes of tephra deposits for the characterization of explosive eruptions: a study of the IAVCEI commission on tephra hazard modelling. Bull Volcanol 75:1–15. doi: 10.1007/s00445-012-0680-3 Google Scholar
  13. Bonadonna C, Cioni R, Pistolesi M, Elissondo M, Baumann V (2015) Sedimentation of long-lasting wind-affected volcanic plumes: the example of the 2011 rhyolitic Cordón Caulle eruption, Chile. Bull Volcanol 77:1–19. doi: 10.1007/s00445-015-0900-8 CrossRefGoogle Scholar
  14. Brown RJ, Branney MJ, Maher C, Dávila-Harris P (2010) Origin of accretionary lapilli within ground-hugging density currents: evidence from pyroclastic couplets on Tenerife. Geol Soc Am Bull 122:305–320. doi: 10.1130/B26449.1 CrossRefGoogle Scholar
  15. Carazzo G, Jellinek AM (2013) Particle sedimentation and diffusive convection in volcanic ash-clouds. J Geophys Res Solid Earth 118:1420–1437. doi: 10.1002/jgrb.50155 CrossRefGoogle Scholar
  16. Carey S, Sparks RSJ (1986) Quantitative models of the fallout and dispersal of tephra from volcanic eruption columns. Bull Volcanol 48:109–125. doi: 10.1007/BF01046546 CrossRefGoogle Scholar
  17. Carey SN, Sigurdsson H (1982) Influence of particle aggregation on deposition of distal tephra from the May 18, 1980, eruption of Mount St. Helens volcano. J Geophys Res 87:7061. doi: 10.1029/JB087iB08p07061 CrossRefGoogle Scholar
  18. Carn SA, Paluster JS, Lara L, Ewert JW, Watt S, Prata AJ, Thomas RJ, Villarosa G (2009) The unexpected awakening of Chaitén Volcano, Chile. Eos (Washington DC) 90:205–206. doi: 10.1029/2009EO240001 Google Scholar
  19. Cas RAF, Wright JV (1988) Volcanic successions: modern and ancient. Allen and Unwin, London. doi:  10.1007/978-94-009-3167-1
  20. Cashman KV, Mangan MT (1994) Physical aspects of magmatic degassing; II, constraints on vesiculation processes from textural studies of eruptive products. Rev Min Geochem 30:447–478Google Scholar
  21. Castro JM, Dingwell DB (2009) Rapid ascent of rhyolitic magma at Chaitén Volcano, Chile. Nature 461:780–783. doi: 10.1038/nature08458 CrossRefGoogle Scholar
  22. Castro JM, Cordonnier B, Tuffen H, Mark J, Tobinf MJ, Puskarf L, Marting MC, Bechtelg HA (2012) The role of melt-fracture degassing in defusing explosive rhyolite eruptions at volcán Chaitén. Earth Planet Sci Lett 333–334:63–69. doi: 10.1016/j.epsl.2012.04.024 CrossRefGoogle Scholar
  23. Castro JM, Schipper CI, Mueller SP, Militzer AS, Amigo A, Parejas CS, Jacob D (2013) Storage and eruption of near-liquidus rhyolite magma at Cordón Caulle, Chile. Bull Volcanol 75:1–17. doi: 10.1007/s00445-013-0702-9 CrossRefGoogle Scholar
  24. Costa A, Pioli L, Bonadonna C (2016) Assessing tephra total grain-size distribution: insights from field data analysis. Earth Planet Sci Lett 443:90–107. doi: 10.1016/j.epsl.2016.02.040 CrossRefGoogle Scholar
  25. Costantini L, Houghton BF, Bonadonna C (2010) Constraints on eruption dynamics of basaltic explosive activity derived from chemical and microtextural study: the example of the Fontana Lapilli Plinian eruption, Nicaragua. J Volcanol Geotherm Res 189:207–224. doi: 10.1016/j.jvolgeores.2009.11.008 CrossRefGoogle Scholar
  26. Dufek J, Manga M, Patel A (2012) Granular disruption during explosive volcanic eruptions. Nat Geosci 5:561–564. doi: 10.1038/ngeo1524 CrossRefGoogle Scholar
  27. Durant AJ (2015) Research focus: toward a realistic formulation of fine-ash lifetime in volcanic clouds. Geologija 43:271–272. doi: 10.1130/focus032015.1 CrossRefGoogle Scholar
  28. Durant AJ, Rose WI, Sarna-Wojcicki AM, Carey S, Volentik ACM (2009) Hydrometeor-enhanced tephra sedimentation: constraints from the 18 May 1980 eruption of Mount St. Helens. J Geophys Res 114:1–21. doi: 10.1029/2008JB005756 CrossRefGoogle Scholar
  29. Durant AJ, Villarosa G, Rose WI, Delmelle P, Prata AJ, Viramonte JG (2012) Long-range volcanic ash transport and fallout during the 2008 eruption of Chaitén Volcano, Chile. Phys Chem Earth 45–46:50–64. doi: 10.1016/j.pce.2011.09.004 CrossRefGoogle Scholar
  30. Eychenne J, Le Pennec JL (2012) Sigmoidal particle density distribution in a subplinian scoria fall deposit. Bull Volcanol 74:2243–2249. doi: 10.1007/s00445-012-0671-4 CrossRefGoogle Scholar
  31. Eychenne J, Le Pennec JL, Troncoso L et al (2012) Causes and consequences of bimodal grain-size distribution of tephra fall deposited during the August 2006 Tungurahua eruption (Ecuador). Bull Volcanol 74:187–205. doi: 10.1007/s00445-011-0517-5 CrossRefGoogle Scholar
  32. Eychenne J, Cashman K, Rust A, Durant A (2015) Impact of the lateral blast on the spatial pattern and grain size characteristics of the 18 May 1980 Mount St. Helens fallout deposit J Geophys Res Solid Earth 120:6018–6038. doi: 10.1002/2015JB012116 CrossRefGoogle Scholar
  33. Folch A (2012) A review of tephra transport and dispersal models: evolution, current status, and future perspectives. J Volcanol Geotherm Res 235–236:96–115. doi: 10.1016/j.jvolgeores.2012.05.020 CrossRefGoogle Scholar
  34. Folch A, Jorba O, Viramonte J (2008) Volcanic ash forecast—application to the May 2008 Chaitén eruption. Nat Hazards Earth Syst Sci 8:927–940. doi: 10.5194/nhess-8-927-2008 CrossRefGoogle Scholar
  35. Genareau K, Proussevitch A, Durant AJ, Mulukutla GK, Sahagian DL (2012) Sizing up the bubbles that produce very fine ash during explosive volcanic eruptions. Geophys Res Lett 39:1–6. doi: 10.1029/2012GL052471 CrossRefGoogle Scholar
  36. Genareau K, Mulukutla GK, Proussevitch A, Durant AJ, Rose WI, Sahagian DL (2013) The size range of bubbles that produce ash during explosive volcanic eruptions. J Appl Volcanol 2:4. doi: 10.1186/2191-5040-2-4 CrossRefGoogle Scholar
  37. Houghton BF, Wilson CJN (1989) A vesicularity index for pyroclastic deposits. Bull Volcanol 51:451–462. doi: 10.1007/BF01078811 CrossRefGoogle Scholar
  38. Inman D (1952) Measures for describing the size distribution of sediments. J Sediment Petrol 125–145. doi:  10.1306/D42694DB-2B26-11D7-8648000102C1865D
  39. Jay J, Costa F, Pritchard M, Lara L, Singer B, Herrin J (2014) Locating magma reservoirs using InSAR and petrology before and during the 2011–2012 Cordón Caulle silicic eruption. Earth Planet Sci Lett 395:254–266. doi: 10.1016/j.epsl.2014.03.046 CrossRefGoogle Scholar
  40. Kaminski E, Jaupart C (1998) The size distribution of pyroclasts and the fragmentation sequence in explosive volcanic eruptions. J Geophys Res 103:29759. doi: 10.1029/98JB02795 CrossRefGoogle Scholar
  41. Kueppers U, Perugini D, Dingwell DB (2006a) Explosive energy during volcanic eruptions from fractal analysis of pyroclasts. Earth Planet Sci Lett 248:800–807. doi: 10.1016/j.epsl.2006.06.033 CrossRefGoogle Scholar
  42. Kueppers U, Scheu B, Spieler O, Dingwell DB (2006b) Fragmentation efficiency of explosive volcanic eruptions: a study of experimentally generated pyroclasts. J Volcanol Geotherm Res 153:125–135. doi: 10.1016/j.jvolgeores.2005.08.006 CrossRefGoogle Scholar
  43. Lara LE (2009) La erupcion 2008 del volcan Chaiten, Chile: informe preliminar. Andean Geol 36:125–129. doi: 10.5027/556 Google Scholar
  44. Lara LE, Moreno R, Amigo Á, Hoblitt RP, Pierson TC (2013) Late Holocene history of Chaitén Volcano: new evidence for a 17th century eruption. Andean Geol 40:249–261. doi: 10.5027/andgeoV40n2-a04 Google Scholar
  45. Major JJ, Pierson TC, Hoblitt RP, Moreno H (2013) Pyroclastic density currents associated with the 2008–2009 eruption of Chaitén Volcano (Chile): forest disturbances, deposits, and dynamics. Andean Geol 40:324–358. doi: 10.5027/andgeoV40n2-a09 Google Scholar
  46. Manzella I, Bonadonna C, Phillips JC, Monnard H (2015) The role of gravitational instabilities in deposition of volcanic ash. Geologija. doi: 10.1130/G36252.1 Google Scholar
  47. Martin RS, Watt SFL, Pyle DM, Mather TA, Matthews NE, Georg RB, Day JA, Fairhead T, Witt MLI, Quayle BM (2009) Environmental effects of ashfall in Argentina from the 2008 Chaitén volcanic eruption. J Volcanol Geotherm Res 184:462–472. doi: 10.1016/j.jvolgeores.2009.04.010 CrossRefGoogle Scholar
  48. Mastin LG, Guffanti M, Servranckx R, Webley P, Barsotti S, Dean K, Durant AJ, Ewert JW, Neri A, Rose WI, Schneider D, Siebert L, Stunder B, Swanson G, Tupper A, Volentik ACM, Waythomas CF (2009) A multidisciplinary effort to assign realistic source parameters to models of volcanic ash-cloud transport and dispersion during eruptions. J Volcanol Geotherm Res 186:10–21. doi: 10.1016/j.jvolgeores.2009.01.008 CrossRefGoogle Scholar
  49. Osores MS, Folch A, Collini E, Villarosa G, Durant AJ, Pujol G, Viramonte GJ (2013) Validation of the FALL3D model for the 2008 Chaitén eruption using field and satellite data. Andean Geol 40:262–276. doi: 10.5027/andgeoV40n2-a05 Google Scholar
  50. Perugini D, Kueppers U (2012) Fractal analysis of experimentally generated pyroclasts: a tool for volcanic hazard assessment. Acta Geophys 60:682–698. doi: 10.2478/s11600-012-0019-7 CrossRefGoogle Scholar
  51. Pierson TC, Major JJ, Amigo Á, Moreno H (2013) Acute sedimentation response to rainfall following the explosive phase of the 2008–2009 eruption of Chaitén volcano, Chile. Bull Volcanol 75:1–17. doi: 10.1007/s00445-013-0723-4 CrossRefGoogle Scholar
  52. Pyle DM (1989) The thickness, volume and grainsize of tephra fall deposits. Bull Volcanol 51:1–15. doi: 10.1007/BF01086757 CrossRefGoogle Scholar
  53. Rust AC, Cashman KV (2011) Permeability controls on expansion and size distributions of pyroclasts. J Geophys Res Solid Earth 116:1–17. doi: 10.1029/2011JB008494 CrossRefGoogle Scholar
  54. Tsunematsu K, Bonadonna C (2015) Grain-size features of two large eruptions from Cotopaxi volcano (Ecuador) and implications for the calculation of the total grain-size distribution. Bull Volcanol 77:1–12. doi: 10.1007/s00445-015-0949-4 CrossRefGoogle Scholar
  55. Turcotte DL (1986) Fractals and fragmentation. J Geophys Res Solid Earth 91:1921–1926. doi: 10.1029/JB091iB02p01921 CrossRefGoogle Scholar
  56. Volentik ACM, Bonadonna C, Connor CB, Connor L, Rosi M (2010) Modeling tephra dispersal in absence of wind: insights from the climactic phase of the 2450BP Plinian eruption of Pululagua Volcano (Ecuador). J Volcanol Geotherm Res 193:117–136. doi: 10.1016/j.jvolgeores.2010.03.011 CrossRefGoogle Scholar
  57. Walker GPL (1971) Grain-size characteristics of pyroclastic deposits. J Geol 79:696–714. doi: 10.2307/30065501 CrossRefGoogle Scholar
  58. Watt SFL, Pyle DM, Mather T, Martin RS, Matthews NE (2009) Fallout and distribution of volcanic ash over Argentina following the May 2008 explosive eruption of Chaitén, Chile. J Geophys Res Solid Earth 114:1–11. doi: 10.1029/2008JB006219 Google Scholar
  59. Watt SFL, Pyle DM, Naranjo J, Rosqvist G, Mella M, Mather TA, Moreno H (2011) Holocene tephrochronology of the Hualaihue region (Andean southern volcanic zone, ∼42° S), southern Chile. Quat Int 246:324–343. doi: 10.1016/j.quaint.2011.05.029 CrossRefGoogle Scholar
  60. Watt SFL, Gilbert JS, Folch A, Phillips JC, Cai XM (2015) An example of enhanced tephra deposition driven by topographically induced atmospheric turbulence. Bull Volcanol 77:1–14. doi: 10.1007/s00445-015-0927-x CrossRefGoogle Scholar
  61. Wicks C, de la Llera JC, Lara LE, Lowenstern J (2011) The role of dyking and fault control in the rapid onset of eruption at Chaitén Volcano, Chile. Nature 478:374–377. doi: 10.1038/nature10541 CrossRefGoogle Scholar
  62. Wilson TM, Stewart C, Sword-Daniels V, Leonard GS, Johnston DM, Cole JW, Wardman J, Wilson G, Barnard ST (2012) Volcanic ash impacts on critical infrastructure. Phys Chem Earth Parts A/B/C 45–46:5–23. doi: 10.1016/j.pce.2011.06.006 CrossRefGoogle Scholar
  63. Wohletz K, Sheridan M, Brown W (1989) Particle size distribution and the sequential fragmentation/transport theory applied to volcanic ash. J Geophys Res 94:15–703. doi: 10.1029/JB094iB11p15703 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Fabrizio Alfano
    • 1
    Email author
  • Costanza Bonadonna
    • 2
  • Sebastian Watt
    • 3
  • Chuck Connor
    • 4
  • Alain Volentik
    • 4
  • David M. Pyle
    • 5
  1. 1.School of Earth and Space explorationArizona State UniversityTempeUSA
  2. 2.Department of Earth SciencesUniversity of GenevaGenevaSwitzerland
  3. 3.School of Geography, Earth and Environmental SciencesUniversity of BirminghamBirminghamUK
  4. 4.University of South FloridaTampaUSA
  5. 5.Department of Earth SciencesUniversity of OxfordOxfordUK

Personalised recommendations