Advertisement

Abrupt transition from fractional crystallization to magma mixing at Gorely volcano (Kamchatka) after caldera collapse

  • Maxim Gavrilenko
  • Alexey Ozerov
  • Philip R. Kyle
  • Michael J. Carr
  • Alex Nikulin
  • Christopher Vidito
  • Leonid Danyushevsky
Research Article

Abstract

A series of large caldera-forming eruptions (361–38 ka) transformed Gorely volcano, southern Kamchatka Peninsula, from a shield-type system dominated by fractional crystallization processes to a composite volcanic center, exhibiting geochemical evidence of magma mixing. Old Gorely, an early shield volcano (700–361 ka), was followed by Young Gorely eruptions. Calc-alkaline high magnesium basalt to rhyolite lavas have been erupted from Gorely volcano since the Pleistocene. Fractional crystallization dominated evolution of the Old Gorely magmas, whereas magma mixing is more prominent in the Young Gorely eruptive products. The role of recharge-evacuation processes in Gorely magma evolution is negligible (a closed magmatic system); however, crustal rock assimilation plays a significant role for the evolved magmas. Most Gorely magmas differentiate in a shallow magmatic system at pressures up to 300 MPa, ∼3 wt% H2O, and oxygen fugacity of ∼QFM + 1.5 log units. Magma temperatures of 1123–1218 °C were measured using aluminum distribution between olivine and spinel in Old and Young Gorely basalts. The crystallization sequence of major minerals for Old Gorely was as follows: olivine and spinel (Ol + Sp) for mafic compositions (more than 5 wt% of MgO); clinopyroxene and plagioclase crystallized at ∼5 wt% of MgO (Ol + Cpx + Plag) and magnetite at ∼3.5 wt% of MgO (Ol + Cpx + Plag + Mt). We show that the shallow magma chamber evolution of Old Gorely occurs under conditions of decompression and degassing. We find that the caldera-forming eruption(s) modified the magma plumbing geometry. This led to a change in the dominant magma evolution process from fractional crystallization to magma mixing. We further suggest that disruption of the magma chamber and accompanying change in differentiation process have the potential to transform a shield volcanic system to that of composite cone on a global scale.

Keywords

Magma mixing Fractional crystallization Magma plumbing system reorganization Caldera Gorely volcano Kamchatka Volcano morphology 

Notes

Acknowledgments

We thank Natalia Kononkova for her help with olivine and pyroxene microprobe analyses at Vernadsky Institute of Geochemistry and Analytical Chemistry (Russia). Additionally, we want to thank participants of the NSF PIRE project, particularly John Eichelberger and Pavel Izbekov, for their help in microprobe and whole-rock analyses at the University of Alaska Fairbanks.

MG acknowledges support from International Fulbright Science and Technology, from Graduate School of Rutgers University, New Brunswick, and personally Prof. Claude Herzberg. PRK acknowledges support from the NSF Division of Polar Programs. MG and AN acknowledge support from NSF grant EAR-1015422. MG acknowledges support from the Far East Branch of the Russian Academy of Sciences grants “12-III-A-08-166” and “15-I-1-025.” AO acknowledges support from the Far East Branch of the Russian Academy of Sciences, grant “15-I-2-069” and Russian Foundation of Basic Research, grant “15-05-05502”.

We are especially grateful to Maxim Portnyagin, Angela Seligman, Ilya Bindeman, and three anonymous reviewers for the critical reviews and to Michelle Coombs for the editorial work.

Supplementary material

445_2016_1038_MOESM1_ESM.pdf (27.4 mb)
Fig. S1 (PDF 28007 kb)
445_2016_1038_MOESM2_ESM.pdf (1 mb)
Fig. S2 (PDF 1063 kb)
445_2016_1038_MOESM3_ESM.pdf (419 kb)
Fig. S3 (PDF 419 kb)
445_2016_1038_MOESM4_ESM.xls (78 kb)
Table S1 (XLS 78 kb)
445_2016_1038_MOESM5_ESM.xls (63 kb)
Table S2 (XLS 63 kb)
445_2016_1038_MOESM6_ESM.xls (71 kb)
Table S3 (XLS 71 kb)
445_2016_1038_MOESM7_ESM.xls (136 kb)
Table S4 (XLS 135 kb)
445_2016_1038_MOESM8_ESM.xls (156 kb)
Table S5 (XLS 156 kb)
445_2016_1038_MOESM9_ESM.xls (133 kb)
Table S6 (XLS 133 kb)
445_2016_1038_MOESM10_ESM.xls (64 kb)
Table S7 (XLS 64.5 kb)
445_2016_1038_MOESM11_ESM.xls (1.1 mb)
Table S8 (XLS 1133 kb)

References

  1. Aiuppa A, Giudice G, Liuzzo M, Tamburello G, Allard P, Calabrese S, Chaplygin I, McGonigle AJS, Taran Y (2012) First volatile inventory for Gorely volcano, Kamchatka. Geophys Res Lett 39(6), L06307. doi: 10.1029/2012GL051177 CrossRefGoogle Scholar
  2. Almeev RR, Holtz F, Koepke J, Parat F, Botcharnikov RE (2007) The effect of H2O on olivine crystallization in MORB: experimental calibration at 200 MPa. Am Mineral 92(4):670–674. doi: 10.2138/am.2007.2484 CrossRefGoogle Scholar
  3. Almeev RR, Kimura JI, Ariskin AA, Ozerov AY (2013) Decoding crystal fractionation in calc-alkaline magmas from the Bezymianny volcano (Kamchatka, Russia) using mineral and bulk rock compositions. J Volcanol Geotherm Res 263:141–171. doi: 10.1016/j.jvolgeores.2013.01.003 CrossRefGoogle Scholar
  4. Amelung F, Day S (2002) InSAR observations of the 1995 Fogo, Cape Verde, eruption: implications for the effects of collapse events upon island volcanoes. Geophys Res Lett 29(12):47–41–47–44. doi: 10.1029/2001GL013760 CrossRefGoogle Scholar
  5. Andersen DJ, Lindsley DH (1988) Internally consistent solution models for Fe-Mg-Mn-Ti oxides; Fe-Ti oxides. Am Mineral 73(7–8):714–726Google Scholar
  6. Anderson AT (1976) Magma mixing: petrological process and volcanological tool. J Volcanol Geotherm Res 1(1):3–33. doi: 10.1016/0377-0273(76)90016-0 CrossRefGoogle Scholar
  7. Annen C, Blundy JD, Sparks RSJ (2006) The genesis of intermediate and silicic magmas in deep crustal hot zones. J Petrol 47(3):505–539. doi: 10.1093/petrology/egi084 CrossRefGoogle Scholar
  8. Arculus RJ (2003) Use and abuse of the terms calcalkaline and calcalkalic. J Petrol 44(5):929–935. doi: 10.1093/petrology/44.5.929 CrossRefGoogle Scholar
  9. Ariskin AA, Barmina GS (1999) An empirical model for the calculation of spinel-melt equilibria in mafic igneous systems at atmospheric pressure: 2. Fe-Ti oxides. Contrib Mineral Petrol 134(2–3):251–263. doi: 10.1007/s004100050482 CrossRefGoogle Scholar
  10. Ariskin AA, Barmina GS, Ozerov AY, Nielsen RL (1995) Genesis of high-alumina basalts from Klyuchevskoi volcano. Petrology 3(5):449–472Google Scholar
  11. Atherton MP, Petford N (1993) Generation of sodium-rich magmas from newly underplated basaltic crust. Nature 362(6416):144–146. doi: 10.1038/362144a0 CrossRefGoogle Scholar
  12. Auer S, Bindeman I, Wallace P, Ponomareva V, Portnyagin M (2009) The origin of hydrous, high-δ18O voluminous volcanism: diverse oxygen isotope values and high magmatic water contents within the volcanic record of Klyuchevskoy volcano, Kamchatka, Russia. Contrib Mineral Petrol 157(2):209–230. doi: 10.1007/s00410-008-0330-0 CrossRefGoogle Scholar
  13. Avdeiko GP, Savelyev DP, Palueva AA, Popruzhenko SV (2007) Evolution of the Kurile-Kamchatkan volcanic arcs and dynamics of the Kamchatka-Aleutian Junction. In: Volcanism and subduction: the Kamchatka region. American Geophysical Union, p 3755. doi: 10.1029/172GM04
  14. Baboshina VA, Tereschenkov AA, Kharakhinov VV (1984) Deep structure of the Sea of Okhotsk according to geophysical data, overview information. Vsesouzniy Nauchno‐Issledovatelskiy Institute (VNII) Gazprom 3:41 (in Russian)Google Scholar
  15. Ballhaus C, Berry RF, Green DH (1990) Oxygen fugacity controls in the Earth’s upper mantle. Nature 348(6300):437–440. doi: 10.1038/348437a0 CrossRefGoogle Scholar
  16. Batanova VG, Sobolev AV, Kuzmin DV (2015) Trace element analysis of olivine: high precision analytical method for JEOL JXA-8230 electron probe microanalyser. Chem Geol 419:149–157. doi: 10.1016/j.chemgeo.2015.10.042 CrossRefGoogle Scholar
  17. Belousov A (1996) Deposits of the 30 March 1956 directed blast at Bezymianny volcano, Kamchatka, Russia. Bull Volcanol 57(8):649–662. doi: 10.1007/s004450050118 CrossRefGoogle Scholar
  18. Bindeman IN, Simakin AG (2014) Rhyolites—hard to produce, but easy to recycle and sequester: integrating microgeochemical observations and numerical models. Geosphere 10(5):930–957. doi: 10.1130/ges00969.1 CrossRefGoogle Scholar
  19. Bindeman IN, Davis AM, Drake MJ (1998) Ion microprobe study of plagioclase-basalt partition experiments at natural concentration levels of trace elements. Geochim Cosmochim Acta 62(7):1175–1193. doi: 10.1016/S0016-7037(98)00047-7 CrossRefGoogle Scholar
  20. Bindeman IN, Leonov VL, Izbekov PE, Ponomareva VV, Watts KE, Shipley NK, Perepelov AB, Bazanova LI, Jicha BR, Singer BS, Schmitt AK, Portnyagin MV, Chen CH (2010) Large-volume silicic volcanism in Kamchatka: Ar–Ar and U–Pb ages, isotopic, and geochemical characteristics of major pre-Holocene caldera-forming eruptions. J Volcanol Geotherm Res 189(1–2):57–80. doi: 10.1016/j.jvolgeores.2009.10.009 CrossRefGoogle Scholar
  21. Bird P (2003) An updated digital model of plate boundaries. Geochem Geophys Geosyst 4(3):1027. doi: 10.1029/2001GC000252 CrossRefGoogle Scholar
  22. Bohrson WA, Spera FJ (2001) Energy-constrained open-system magmatic processes II: application of energy-constrained assimilation–fractional crystallization (EC-AFC) model to magmatic systems. J Petrol 42(5):1019–1041. doi: 10.1093/petrology/42.5.1019 CrossRefGoogle Scholar
  23. Braitseva OA, Melekestsev IV, Ponomareva VV, Sulerzhitsky LD (1995) Ages of calderas, large explosive craters and active volcanoes in the Kuril-Kamchatka region, Russia. Bull Volcanol 57(6):383–402. doi: 10.1007/BF00300984 Google Scholar
  24. Branney M, Acocella V (2015) Chapter 16—Calderas. In: Sigurdsson H (ed) The encyclopedia of volcanoes, 2nd edn. Academic, Amsterdam, pp 299–315. doi: 10.1016/B978-0-12-385938-9.00016-X CrossRefGoogle Scholar
  25. Brophy J (2008) A study of rare earth element (REE)–SiO2 variations in felsic liquids generated by basalt fractionation and amphibolite melting: a potential test for discriminating between the two different processes. Contrib Mineral Petrol 156(3):337–357. doi: 10.1007/s00410-008-0289-x CrossRefGoogle Scholar
  26. Buddington AF, Lindsley DH (1964) Iron-titanium oxide minerals and synthetic equivalents. J Petrol 5(2):310–357. doi: 10.1093/petrology/5.2.310 CrossRefGoogle Scholar
  27. Budnikov BA (1988) The eruption of Gorely volcano in April 1986. J Volcanol Seismol 4:99–103 (in Russian)Google Scholar
  28. Bulin NK (1977) Deep structure of Kamchatka and Kuril Islands from seismic data. Soviet Geol 5:140–148 (in Russian)Google Scholar
  29. Chappell BW, White AJR (2001) Two contrasting granite types: 25 years later. Aust J Earth Sci 48(4):489–499. doi: 10.1046/j.1440-0952.2001.00882.x CrossRefGoogle Scholar
  30. Chashchin AA, Martynov YA (2011) Petrology of Gorely and Mutnovsky volcanoes rocks (Southern Kamchatka). Dalnauka, Vladivostok, p 270 (in Russian)Google Scholar
  31. Chashchin AA, Martynov YA, Perepelov AB, Ekimova NI, Vladimirova TP (2011) Physical and chemical conditions of the formation and evolution of late pleistocene-holocene magmas of the Gorely and Mutnovsky volcanoes, southern Kamchatka. Russ J Pac Geol 5(4):348–367. doi: 10.1134/S1819714011040038 CrossRefGoogle Scholar
  32. Churikova T, Dorendorf F, Worner G (2001) Sources and fluids in the mantle wedge below Kamchatka, evidence from across-arc geochemical variation. J Petrol 42(8):1567–1593. doi: 10.1093/petrology/42.8.1567 CrossRefGoogle Scholar
  33. Danyushevsky LV (2001) The effect of small amounts of H2O on crystallisation of mid-ocean ridge and backarc basin magmas. J Volcanol Geotherm Res 110(3–4):265–280. doi: 10.1016/S0377-0273(01)00213-X CrossRefGoogle Scholar
  34. Danyushevsky LV, Plechov P (2011) Petrolog3: integrated software for modeling crystallization processes. Geochem Geophys Geosyst 12(7), Q07021. doi: 10.1029/2011GC003516 CrossRefGoogle Scholar
  35. Danyushevsky LV, Sobolev AV, Dmitriev LV (1996) Estimation of the pressure of crystallization and H2O content of MORB and BABB glasses: calibration of an empirical technique. Mineral Petrol 57(3–4):185–204. doi: 10.1007/BF01162358 CrossRefGoogle Scholar
  36. Davidson J, de Silva S (2000) Composite volcanoes. In: Sigurdsson H (ed) The encyclopedia of volcanoes. Academic Press, p 663–682Google Scholar
  37. DeMets C, Gordon RG, Argus DF, Stein S (1990) Current plate motions. Geophys J Int 101(2):425–478. doi: 10.1111/j.1365-246X.1990.tb06579.x CrossRefGoogle Scholar
  38. DePaolo DJ (1981) Trace element and isotopic effects of combined wallrock assimilation and fractional crystallization. Earth Planet Sci Lett 53(2):189–202. doi: 10.1016/0012-821X(81)90153-9 CrossRefGoogle Scholar
  39. Donovan JJ (2012) Probe for EPMA: acquisition, automation and analysis, Enterpriseth edn. Probe Software, Inc., EugeneGoogle Scholar
  40. Duggen S, Portnyagin M, Baker J, Ulfbeck D, Hoernle K, Garbe-Schönberg D, Grassineau N (2007) Drastic shift in lava geochemistry in the volcanic-front to rear-arc region of the Southern Kamchatkan subduction zone: evidence for the transition from slab surface dehydration to sediment melting. Geochim Cosmochim Acta 71(2):452–480. doi: 10.1016/j.gca.2006.09.018 CrossRefGoogle Scholar
  41. Eichelberger JC (1978) Andesitic volcanism and crustal evolution. Nature 275(5675):21–27. doi: 10.1038/275021a0 CrossRefGoogle Scholar
  42. Eichelberger JC (1980) Vesiculation of mafic magma during replenishment of silicic magma reservoirs. Nature 288(5790):446–450. doi: 10.1038/288446a0 CrossRefGoogle Scholar
  43. Fedotov SA, Masurenkov YP (eds) (1991) Active volcanoes of Kamchatka. Nauka, MoscowGoogle Scholar
  44. Feig S, Koepke J, Snow J (2006) Effect of water on tholeiitic basalt phase equilibria: an experimental study under oxidizing conditions. Contrib Mineral Petrol 152(5):611–638. doi: 10.1007/s00410-006-0123-2 CrossRefGoogle Scholar
  45. Ford CE, Russel DG, Graven JA, Fisk MR (1983) Olivine-liquid equilibria: temperature, pressure and composition dependence of the crystal/liquid cation partition coefficients for Mg, Fe2+, Ca and Mn. J Petrol 24(3):256–266. doi: 10.1093/petrology/24.3.256 CrossRefGoogle Scholar
  46. Gavrilenko M, Herzberg C, Vidito C, Carr MJ, Tenner TJ, Ozerov AY (2016) A preliminary olivine geohygrometer and its application to subduction zone magmatism. J Petrol. (in review)Google Scholar
  47. Gill JB (1981) Orogenic andesites and plate tectonics. Springer-Verlag. doi: 10.1007/978-3-642-68012-0
  48. Ginibre C, Wörner G (2007) Variable parent magmas and recharge regimes of the Parinacota magma system (N. Chile) revealed by Fe, Mg and Sr zoning in plagioclase. Lithos 98(1–4):118–140. doi: 10.1016/j.lithos.2007.03.004 CrossRefGoogle Scholar
  49. Gorbach NV, Portnyagin MV (2011) Geology and petrology of the lava complex of Young Shiveluch Volcano, Kamchatka. Petrology 19(2):134–166. doi: 10.1134/s0869591111020068 CrossRefGoogle Scholar
  50. Gorbach N, Portnyagin M, Tembrel I (2013) Volcanic structure and composition of Old Shiveluch volcano, Kamchatka. J Volcanol Geotherm Res 263:193–208. doi: 10.1016/j.jvolgeores.2012.12.012 CrossRefGoogle Scholar
  51. Gorbatov A, Kostoglodov V, Suárez G, Gordeev E (1997) Seismicity and structure of the Kamchatka subduction zone. J Geophys Res: Solid Earth 102(B8):17883–17898. doi: 10.1029/96JB03491 CrossRefGoogle Scholar
  52. Gorbatov A, Domínguez J, Suárez G, Kostoglodov V, Zhao D, Gordeev E (1999) Tomographic imaging of the P-wave velocity structure beneath the Kamchatka peninsula. Geophys J Int 137(2):269–279. doi: 10.1046/j.1365-246X.1999.t01-1-00801.x CrossRefGoogle Scholar
  53. Grove T, Elkins-Tanton L, Parman S, Chatterjee N, Müntener O, Gaetani G (2003) Fractional crystallization and mantle-melting controls on calc-alkaline differentiation trends. Contrib Mineral Petrol 145(5):515–533. doi: 10.1007/s00410-003-0448-z CrossRefGoogle Scholar
  54. Gudmundsson A (2011) Deflection of dykes into sills at discontinuities and magma-chamber formation. Tectonophysics 500(1–4):50–64. doi: 10.1016/j.tecto.2009.10.015 CrossRefGoogle Scholar
  55. Herzberg C, Vidito C, Starkey N (2016) Nickel—cobalt contents of olivine record origins of mantle peridotite and related rocks. Am Mineral. (accepted, in press)Google Scholar
  56. Hildreth W, Moorbath S (1988) Crustal contributions to arc magmatism in the Andes of Central Chile. Contrib Mineral Petrol 98(4):455–489. doi: 10.1007/BF00372365 CrossRefGoogle Scholar
  57. Ishikawa T, Tera F, Nakazawa T (2001) Boron isotope and trace element systematics of the three volcanic zones in the Kamchatka arc. Geochim Cosmochim Acta 65(24):4523–4537. doi: 10.1016/S0016-7037(01)00765-7 CrossRefGoogle Scholar
  58. Ivanov BV, Droznin VA, Vakin EA, Ivanov VV, Ovsyannikov AA, Razina AA (1988) Eruption of Gorely volcano in 1985. J Volcanol Seismol 4:93–98 (in Russian)Google Scholar
  59. Iwasaki T, Levin V, Nikulin A, Iidaka T (2013) Constraints on the Moho in Japan and Kamchatka. Tectonophysics 609:184–201. doi: 10.1016/j.tecto.2012.11.023 CrossRefGoogle Scholar
  60. Izbekov P, Gardner JE, Eichelberger JC (2004) Comagmatic granophyre and dacite from Karymsky volcanic center, Kamchatka: experimental constraints for magma storage conditions. J Volcanol Geotherm Res 131(1–2):1–18. doi: 10.1016/S0377-0273(03)00312-3 CrossRefGoogle Scholar
  61. Jarosewich E, Nelen JA, Norberg JA (1980) Reference samples for electron microprobe analysis. Geostand Newslett 4(1):43–47. doi: 10.1111/j.1751-908X.1980.tb00273.x CrossRefGoogle Scholar
  62. Kelley KA, Cottrell E (2009) Water and the oxidation state of subduction zone magmas. Science 325(5940):605–607. doi: 10.1126/science.1174156 CrossRefGoogle Scholar
  63. Kinzler RJ, Grove TL, Recca SI (1990) An experimental study on the effect of temperature and melt composition on the partitioning of nickel between olivine and silicate melt. Geochimica Et Cosmochimica Acta 54(5):1255–1265. doi: 10.1016/0016-7037(90)90151-a CrossRefGoogle Scholar
  64. Kirsanov IT (1964) State of the volcanoes Gorely and Mutnovsky for the period from October 1959 to October 1960. Bull Volcano Station 35:34–43 (in Russian)Google Scholar
  65. Kirsanov IT (1985) Gorely volcano, its geological structure, the last eruptions, and composition of the products. In: (1985) Volcanic activity, its mechanism, the link with geodynamics, eruptions and earthquakes forecast, Petropavlovsk-Kamchatsky, p 32–33. (in Russian)Google Scholar
  66. Kirsanov IT, Fedorov MV (1964) Ignimbrites of Gorely volcano. In: (1964) Problems of volcanism. Proceedings of the II USSR Volcanological Meeting. Petropavlovsk-Kamchatsky, p 45–47. (in Russian)Google Scholar
  67. Kirsanov IT, Melekescev IV (1991) Gorely volcano. In: Fedotov SA, Masurenkov YP (eds) Active volcanoes of Kamchatka. Nauka, Moscow, pp 294–317Google Scholar
  68. Kirsanov IT, Ozerov AY (1983) The products composition and energetic effect of the Gorely volcano eruption in 1980–1981. J Volcanol Seismol 1:25–42 (in Russian)Google Scholar
  69. Kirsanov IT, Ogorodov NV, Chirkov AM (1964) State Mutnovsky and Gorely volcanoes between November 1960 and June 1961. Bull Volcano Station 36:39–47 (in Russian)Google Scholar
  70. Kress VC, Carmichael ISE (1988) Stoichiometry of the iron oxidation reaction in silicate melts. Am Mineral 73(11–12):1267–1274Google Scholar
  71. Kulakov VS (1936) Volcanic observations in Kamchatka. Priroda 10:53–54 (in Russian)Google Scholar
  72. Langmuir CH, Vocke RD Jr, Hanson GN, Hart SR (1978) A general mixing equation with applications to Icelandic basalts. Earth Planet Sci Lett 37(3):380–392. doi: 10.1016/0012-821X(78)90053-5 CrossRefGoogle Scholar
  73. Le Bas MJ, Le Maitre RW, Streckeisen A, Zanettin B (1986) A chemical classification of volcanic rocks based on the total alkali-silica diagram. J Petrol 27(3):745–750. doi: 10.1093/petrology/27.3.745 CrossRefGoogle Scholar
  74. Le Maitre RW, Bateman P, Dudek A, Keller J, Lameyre J, Le Bas MJ, Sabine PA, Schmid R, Sorensen H, Streckeisen A, Woolley AR, Zanettin B (1989) A classification of igneous rocks and glossary of terms: recommendations of the international Union Of Geological Sciences Subcommission on the Systematics of Igneous Rocks. Blackwell Scientific, OxfordGoogle Scholar
  75. Lee C-TA, Luffi P, Plank T, Dalton H, Leeman WP (2009) Constraints on the depths and temperatures of basaltic magma generation on Earth and other terrestrial planets using new thermobarometers for mafic magmas. Earth Planet Sci Lett 279(1–2):20–33. doi: 10.1016/j.epsl.2008.12.020 CrossRefGoogle Scholar
  76. Lee C-TA, Luffi P, Chin EJ, Bouchet R, Dasgupta R, Morton DM, Le Roux V, Q-z Y, Jin D (2012) Copper systematics in arc magmas and implications for crust-mantle differentiation. Science 336(6077):64–68. doi: 10.1126/science.1217313 CrossRefGoogle Scholar
  77. Lee C-TA, Lee TC, Wu C-T (2014) Modeling the compositional evolution of recharging, evacuating, and fractionating (REFC) magma chambers: implications for differentiation of arc magmas. Geochim Cosmochim Acta 143:8–22. doi: 10.1016/j.gca.2013.08.009 CrossRefGoogle Scholar
  78. Lees JM (1992) The magma system of Mount St. Helens: non-linear high-resolution P-wave tomography. J Volcanol Geotherm Res 53(1–4):103–116. doi: 10.1016/0377-0273(92)90077-Q CrossRefGoogle Scholar
  79. Levin V, Park J, Brandon M, Lees J, Peyton V, Gordeev E, Ozerov A (2002) Crust and upper mantle of Kamchatka from teleseismic receiver functions. Tectonophysics 358(1–4):233–265. doi: 10.1016/s0040-1951(02)00426-2 CrossRefGoogle Scholar
  80. Levin V, Droznina S, Gavrilenko M, Carr MJ, Senyukov S (2014) Seismically active subcrustal magma source of the Klyuchevskoy volcano in Kamchatka, Russia. Geology 42(11):983–986. doi: 10.1130/g35972.1 CrossRefGoogle Scholar
  81. Lipman PW (1997) Subsidence of ash-flow calderas: relation to caldera size and magma-chamber geometry. Bull Volcanol 59(3):198–218. doi: 10.1007/s004450050186 CrossRefGoogle Scholar
  82. Longpré M-A, Troll VR, Walter TR, Hansteen TH (2009) Volcanic and geochemical evolution of the Teno massif, Tenerife, Canary Islands: some repercussions of giant landslides on ocean island magmatism. Geochem Geophys Geosyst 10(12). doi: 10.1029/2009GC002892
  83. Manconi A, Longpré M-A, Walter TR, Troll VR, Hansteen TH (2009) The effects of flank collapses on volcano plumbing systems. Geology 37(12):1099–1102. doi: 10.1130/g30104a.1 CrossRefGoogle Scholar
  84. Menand T (2008) The mechanics and dynamics of sills in layered elastic rocks and their implications for the growth of laccoliths and other igneous complexes. Earth Planet Sci Lett 267(1–2):93–99. doi: 10.1016/j.epsl.2007.11.043 CrossRefGoogle Scholar
  85. Mironov NL, Portnyagin MV (2011) H2O and CO2 in parental magmas of Kliuchevskoi volcano inferred from study of melt and fluid inclusions in olivine. Russ Geol Geophys 52(11):1353–1367. doi: 10.1016/j.rgg.2011.10.007 CrossRefGoogle Scholar
  86. Mironov N, Portnyagin M, Botcharnikov R, Gurenko A, Hoernle K, Holtz F (2015) Quantification of the CO2 budget and H2O–CO2 systematics in subduction-zone magmas through the experimental hydration of melt inclusions in olivine at high H2O pressure. Earth Planet Sci Lett 425:1–11. doi: 10.1016/j.epsl.2015.05.043 CrossRefGoogle Scholar
  87. Miyashiro A (1974) Volcanic rock series in island arcs and active continental margins. Am J Sci 274(4):321–355. doi: 10.2475/ajs.274.4.321 CrossRefGoogle Scholar
  88. Morimoto N, Fabries J, Ferguson AK, Ginzburg IV, Ross M, Seifert FA, Zussman J, Aoki K, Gottardi G (1988) Nomenclature of pyroxenes. Am Mineral 73(9–10):1123–1133Google Scholar
  89. Müller RD, Sdrolias M, Gaina C, Roest WR (2008) Age, spreading rates, and spreading asymmetry of the world’s ocean crust. Geochem Geophys Geosyst 9(4). doi: 10.1029/2007GC001743
  90. Nikulin A, Levin V, Carr M, Herzberg C, West M (2012) Evidence for two upper mantle sources driving volcanism in Central Kamchatka. Earth Planet Sci Lett 321–322:14–19. doi: 10.1016/j.epsl.2011.12.039 CrossRefGoogle Scholar
  91. Norman MD, Pearson NJ, Sharma A, Griffin WL (1996) Quantitative analysis of trace elements in geological materials by laser ablation ICPMS: instrumental operating conditions and calibration values of NIST glasses. Geostand Newslett 20(2):247–261. doi: 10.1111/j.1751-908X.1996.tb00186.x CrossRefGoogle Scholar
  92. Novograblenov PT (1932) Catalogue of volcanoes of Kamchatka. News of the state geographical society 64(1):88–99. (in Russian)Google Scholar
  93. Oldenburg CM, Spera FJ, Yuen DA, Sewell G (1989) Dynamic mixing in magma bodies: theory, simulations, and implications. J Geophys Res: Solid Earth 94(B7):9215–9236. doi: 10.1029/JB094iB07p09215 CrossRefGoogle Scholar
  94. O’Neill HS, Jenner FE (2012) The global pattern of trace-element distributions in ocean floor basalts. Nature 491(7426):698–704. doi: 10.1038/nature11678 CrossRefGoogle Scholar
  95. Orihashi Y, Hirata T (2003) Rapid quantitative analysis of Y and REE abundances in XRF glass bead for selected GSJ reference rock standards using Nd-YAG 266 nm UV laser ablation ICP-MS. Geochem J 37(3):401–412. doi: 10.2343/geochemj.37.401 CrossRefGoogle Scholar
  96. Ozerov AY (2000) The evolution of high-alumina basalts of the Klyuchevskoy volcano, Kamchatka, Russia, based on microprobe analyses of mineral inclusions. J Volcanol Geotherm Res 95(1–4):65–79. doi: 10.1016/s0377-0273(99)00118-3 CrossRefGoogle Scholar
  97. Perugini D, Poli G (2012) The mixing of magmas in plutonic and volcanic environments: analogies and differences. Lithos 153:261–277. doi: 10.1016/j.lithos.2012.02.002 CrossRefGoogle Scholar
  98. Petford N, Atherton M (1996) Na-rich partial melts from newly underplated basaltic crust: the Cordillera Blanca Batholith, Peru. J Petrol 37(6):1491–1521. doi: 10.1093/petrology/37.6.1491 CrossRefGoogle Scholar
  99. Pinel V, Jaupart C (2000) The effect of edifice load on magma ascent beneath a volcano. Philosophical transactions of the Royal Society of London A: mathematical. Phys Eng Sci 358(1770):1515–1532. doi: 10.1098/rsta.2000.0601 CrossRefGoogle Scholar
  100. Pinel V, Jaupart C (2003) Magma chamber behavior beneath a volcanic edifice. J Geophys Res: Solid Earth 108(B2). doi: 10.1029/2002JB001751
  101. Pinel V, Jaupart C (2005) Some consequences of volcanic edifice destruction for eruption conditions. J Volcanol Geotherm Res 145(1–2):68–80. doi: 10.1016/j.jvolgeores.2005.01.012 CrossRefGoogle Scholar
  102. Plank T, Kelley KA, Zimmer MM, Hauri EH, Wallace PJ (2013) Why do mafic arc magmas contain ∼4 wt% water on average? Earth Planet Sci Lett 364:168–179. doi: 10.1016/j.epsl.2012.11.044 CrossRefGoogle Scholar
  103. Portnyagin M, Bindeman I, Hoernle K, Hauff F (2007) Geochemistry of primitive lavas of the Central Kamchatka depression: magma generation at the edge of the pacific plate. In: Volcanism and subduction: the Kamchatka region. American Geophysical Union, p 199–239. doi: 10.1029/172GM16
  104. Portnyagin M, Hoernle K, Plechov P, Mironov N, Khubunaya S (2007b) Constraints on mantle melting and composition and nature of slab components in volcanic arcs from volatiles (H2O, S, Cl, F) and trace elements in melt inclusions from the Kamchatka Arc. Earth Planet Sci Lett 255(1–2):53–69. doi: 10.1016/j.epsl.2006.12.005 CrossRefGoogle Scholar
  105. Portnyagin M, Duggen S, Hauff F, Mironov N, Bindeman I, Thirlwall M, Hoernle K (2015) Geochemistry of the late Holocene rocks from the Tolbachik volcanic field, Kamchatka: quantitative modelling of subduction-related open magmatic systems. J Volcanol Geotherm Res 307:133–155. doi: 10.1016/j.jvolgeores.2015.08.015 CrossRefGoogle Scholar
  106. Presley TK, Sinton JM, Pringle M (1997) Postshield volcanism and catastrophic mass wasting of the Waianae Volcano, Oahu, Hawaii. Bull Volcanol 58(8):597–616. doi: 10.1007/s004450050165 CrossRefGoogle Scholar
  107. Rapp RP, Watson EB (1995) Dehydration melting of metabasalt at 8–32 kbar: implications for continental growth and crust-mantle recycling. J Petrol 36(4):891–931. doi: 10.1093/petrology/36.4.891 CrossRefGoogle Scholar
  108. Righter K, Leeman WP, Hervig RL (2006) Partitioning of Ni, Co and V between spinel-structured oxides and silicate melts: importance of spinel composition. Chem Geol 227(1–2):1–25. doi: 10.1016/j.chemgeo.2005.05.011 CrossRefGoogle Scholar
  109. Rogers N (2015) Chapter 4—the composition and origin of magmas. In: Sigurdsson H (ed) The encyclopedia of volcanoes, 2nd edn. Academic, Amsterdam, pp 93–112. doi: 10.1016/B978-0-12-385938-9.00004-3 CrossRefGoogle Scholar
  110. Ruprecht P, Plank T (2013) Feeding andesitic eruptions with a high-speed connection from the mantle. Nature 500(7460):68–72. doi: 10.1038/nature12342 CrossRefGoogle Scholar
  111. Ruscitto DM, Wallace PJ, Johnson ER, Kent AJR, Bindeman IN (2010) Volatile contents of mafic magmas from cinder cones in the Central Oregon High Cascades: implications for magma formation and mantle conditions in a hot arc. Earth Planet Sci Lett 298(1–2):153–161. doi: 10.1016/j.epsl.2010.07.037 CrossRefGoogle Scholar
  112. Ruscitto DM, Wallace PJ, Cooper LB, Plank T (2012) Global variations in H2O/Ce: 2. Relationships to arc magma geochemistry and volatile fluxes. Geochem Geophys Geosyst 13(3):Q03025. doi: 10.1029/2011GC003887 CrossRefGoogle Scholar
  113. Ryan WBF, Carbotte SM, Coplan JO, O’Hara S, Melkonian A, Arko R, Weissel RA, Ferrini V, Goodwillie A, Nitsche F, Bonczkowski J, Zemsky R (2009) Global multi-resolution topography synthesis. Geochem Geophys Geosyst 10(3):Q03014. doi: 10.1029/2008GC002332 CrossRefGoogle Scholar
  114. Sakuyama M (1979) Evidence of magma mixing: petrological study of Shirouma-Oike calc-alkaline andesite volcano, Japan. J Volcanol Geotherm Res 5(1–2):179–208. doi: 10.1016/0377-0273(79)90040-4 CrossRefGoogle Scholar
  115. Scandone R, Malone SD (1985) Magma supply, magma discharge and readjustment of the feeding system of Mount St. Helens during 1980. J Volcanol Geotherm Res 23(3):239–262. doi: 10.1016/0377-0273(85)90036-8 CrossRefGoogle Scholar
  116. Seligman A, Bindeman I, Jicha B, Ellis B, Ponomareva V, Leonov V (2014) Multi-cyclic and isotopically diverse silicic magma generation in an arc volcano: Gorely Eruptive Center, Kamchatka, Russia. J Petrol 55(8):1561–1594. doi: 10.1093/petrology/egu034 CrossRefGoogle Scholar
  117. Selyangin OB (1993) New data on Mutnovsky volcano: structure, evolution and prediction. J Volcanol Seismol 1:17–35 (in Russian)Google Scholar
  118. Selyangin OB (2009) Wonderful world of Mutnovsky and Gorely volcanoes: volcanologic and traveller’s guide. Hold. komp. “Novaya kniga”, Petropavlovsk-Kamchatsky, p 108Google Scholar
  119. Selyangin OB, Ponomareva VV (1999) Gorelovsky volcanic center, Southern Kamchatka: structure and evolution. J Volcanol Seismol 2:3–23 (in Russian)Google Scholar
  120. Shipman JS, Izbekov P, Gavrilenko MG (2011), Petrologic insights into magma system response to edifice collapse, Abstract V21E-2540 presented at 2011 Fall Meeting, AGU, San FranciscoGoogle Scholar
  121. Sigmundsson F, Hreinsdottir S, Hooper A, Arnadottir T, Pedersen R, Roberts MJ, Oskarsson N, Auriac A, Decriem J, Einarsson P, Geirsson H, Hensch M, Ofeigsson BG, Sturkell E, Sveinbjornsson H, Feigl KL (2010) Intrusion triggering of the 2010 Eyjafjallajokull explosive eruption. Nature 468(7322):426–430. doi: 10.1038/nature09558 CrossRefGoogle Scholar
  122. Simakin AG, Bindeman IN (2012) Remelting in caldera and rift environments and the genesis of hot, “recycled” rhyolites. Earth Planet Sci Lett 337–338:224–235. doi: 10.1016/j.epsl.2012.04.011 CrossRefGoogle Scholar
  123. Smith DR, Leeman WP (1987) Petrogenesis of Mount St. Helens dacitic magmas. J Geophys Res: Solid Earth 92(B10):10313–10334. doi: 10.1029/JB092iB10p10313 CrossRefGoogle Scholar
  124. Sobolev AV, Hofmann AW, Kuzmin DV, Yaxley GM, Arndt NT, Chung S-L, Danyushevsky LV, Elliott T, Frey FA, Garcia MO, Gurenko AA, Kamenetsky VS, Kerr AC, Krivolutskaya NA, Matvienkov VV, Nikogosian IK, Rocholl A, Sigurdsson IA, Sushchevskaya NM, Teklay M (2007) The amount of recycled crust in sources of mantle-derived melts. Science 316(5823):412–417. doi: 10.1126/science.1138113 CrossRefGoogle Scholar
  125. Spera FJ, Bohrson WA (2001) Energy-constrained open-system magmatic processes I: general model and energy-constrained assimilation and Fractional Crystallization (EC-AFC) formulation. J Petrol 42(5):999–1018. doi: 10.1093/petrology/42.5.999 CrossRefGoogle Scholar
  126. Steblov GM, Kogan MG, King RW, Scholz CH, Bürgmann R, Frolov DI (2003) Imprint of the North American plate in Siberia revealed by GPS. Geophys Res Lett 30(18):1924. doi: 10.1029/2003GL017805 CrossRefGoogle Scholar
  127. Stern RJ (2002) Subduction zones. Rev Geophys 40(4):1012. doi: 10.1029/2001RG000108 CrossRefGoogle Scholar
  128. Straub SM, LaGatta AB, Martin-Del Pozzo AL, Langmuir CH (2008) Evidence from high-Ni olivines for a hybridized peridotite/pyroxenite source for orogenic andesites from the central Mexican Volcanic Belt. Geochem Geophys Geosyst 9(3):Q03007. doi: 10.1029/2007GC001583 CrossRefGoogle Scholar
  129. Sun S-s, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geol Soc Lond, Spec Publ 42(1):313–345. doi: 10.1144/gsl.sp.1989.042.01.19 CrossRefGoogle Scholar
  130. Svyatlovsky AE (1956) South Bystrinsky range on the Kamchatka Peninsula. Proc Lab Volcanol (12):110–190. (in Russian)Google Scholar
  131. Tepper J, Nelson B, Bergantz G, Irving A (1993) Petrology of the Chilliwack batholith, North Cascades, Washington: generation of calc-alkaline granitoids by melting of mafic lower crust with variable water fugacity. Contrib Mineral Petrol 113(3):333–351. doi: 10.1007/BF00286926 CrossRefGoogle Scholar
  132. Tibaldi A (2004) Major changes in volcano behaviour after a sector collapse: insights from Stromboli, Italy. Terra Nov. 16(1):2–8. doi: 10.1046/j.1365-3121.2003.00517.x
  133. Tolstykh ML, Naumov VB, Gavrilenko MG, Ozerov AY, Kononkova NN (2012) Chemical composition, volatile components, and trace elements in the melts of the Gorely volcanic center, southern Kamchatka: evidence from inclusions in minerals. Geochem Int 50(6):522–550. doi: 10.1134/S0016702912060079 CrossRefGoogle Scholar
  134. Toplis MJ (2005) The thermodynamics of iron and magnesium partitioning between olivine and liquid: criteria for assessing and predicting equilibrium in natural and experimental systems. Contrib Mineral Petrol 149(1):22–39. doi: 10.1007/s00410-004-0629-4 CrossRefGoogle Scholar
  135. Vidito C, Herzberg C, Gazel E, Geist D, Harpp K (2013) Lithological structure of the Galápagos Plume. Geochem Geophys Geosyst 14(10):4214–4240. doi: 10.1002/ggge.20270 CrossRefGoogle Scholar
  136. Vlodavets VI (1957) Gorely ridge. Bulletin of volcano stations (25):68–70. (in Russian)Google Scholar
  137. Volynets ON, Babanskii AD, Gol’tsman YV (2000) Variations in isotopic and trace-element composition of lavas from volcanoes of the Northern group, Kamchatka, in relation to specific features of subduction. Geochem Int 38(10):974–989Google Scholar
  138. Volynets A, Churikova T, Wörner G, Gordeychik B, Layer P (2010) Mafic Late Miocene–Quaternary volcanic rocks in the Kamchatka back arc region: implications for subduction geometry and slab history at the Pacific–Aleutian junction. Contrib Mineral Petrol 159(5):659–687. doi: 10.1007/s00410-009-0447-9 CrossRefGoogle Scholar
  139. Wallace PJ (2005) Volatiles in subduction zone magmas: concentrations and fluxes based on melt inclusion and volcanic gas data. J Volcanol Geotherm Res 140(1–3):217–240. doi: 10.1016/j.jvolgeores.2004.07.023 CrossRefGoogle Scholar
  140. Wan Z, Coogan LA, Canil D (2008) Experimental calibration of aluminum partitioning between olivine and spinel as a geothermometer. Am Mineral 93(7):1142–1147. doi: 10.2138/am.2008.2758 CrossRefGoogle Scholar
  141. Yu Z, Robinson P, McGoldrick P (2001) An evaluation of methods for the chemical decomposition of geological materials for trace element determination using ICP-MS. Geostand Newslett 25(2–3):199–217. doi: 10.1111/j.1751-908X.2001.tb00596.x CrossRefGoogle Scholar
  142. Zavaritsky AN, Piip BI, Gorshkov GS (1954) The study of volcanoes of Kamchatka. Proc Lab Volcanol (8):18–57. (in Russian)Google Scholar
  143. Zimmer MM, Plank T, Hauri EH, Yogodzinski GM, Stelling P, Larsen J, Singer B, Jicha B, Mandeville C, Nye CJ (2010) The role of water in generating the calc-alkaline trend: new volatile data for Aleutian magmas and a new tholeiitic index. J Petrol 51(12):2411–2444. doi: 10.1093/petrology/egq062 CrossRefGoogle Scholar
  144. Zlobin TK, Gureev RG, Zlobina LM (2005) Deep structure of southwestern Kamchatka from the data of the earthquake converted wave method. Russ J Pac Geol 24(1):14–24 (in Russian)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Maxim Gavrilenko
    • 1
    • 2
  • Alexey Ozerov
    • 2
  • Philip R. Kyle
    • 3
  • Michael J. Carr
    • 1
  • Alex Nikulin
    • 4
  • Christopher Vidito
    • 1
  • Leonid Danyushevsky
    • 5
  1. 1.Department of Earth and Planetary SciencesRutgers UniversityPiscatawayUSA
  2. 2.Institute of Volcanology and SeismologyPetropavlovsk-KamchatskyRussia
  3. 3.Department of Earth and Environmental ScienceNew Mexico Institute of Mining and TechnologySocorroUSA
  4. 4.Department of Geological Sciences and Environmental StudiesBinghamton University, The State University of New YorkBinghamtonUSA
  5. 5.CODES and Earth SciencesUniversity of TasmaniaHobartAustralia

Personalised recommendations