Field and experimental constraints on the rheology of arc basaltic lavas: the January 2014 Eruption of Pacaya (Guatemala)

Research Article


We estimated the rheology of an active basaltic lava flow in the field, and compared it with experimental measurements carried out in the laboratory. In the field we mapped, sampled, and recorded videos of the 2014 flow on the southern flank of Pacaya, Guatemala. Velocimetry data extracted from videos allowed us to determine that lava traveled at ∼2.8 m/s on the steep ∼45° slope 50 m from the vent, while 550 m further downflow it was moving at only ∼0.3 m/s on a ∼4° slope. Estimates of effective viscosity based on Jeffreys’ equation increased from ∼7600 Pa s near the vent to ∼28,000 Pa s downflow. In the laboratory, we measured the viscosity of a representative lava composition using a concentric cylinder viscometer, at five different temperatures between 1234 and 1199 °C, with crystallinity increasing from 0.1 to 40 vol%. The rheological data were best fit by power law equations, with the flow index decreasing as crystal fraction increased, and no detectable yield strength. Although field-based estimates are based on lava characterized by a lower temperature, higher crystal and bubble fraction, and with a more complex petrographic texture, field estimates and laboratory measurements are mutually consistent and both indicate shear-thinning behavior. The complementary field and laboratory data sets allowed us to isolate the effects of different factors in determining the rheological evolution of the 2014 Pacaya flows. We assess the contributions of cooling, crystallization, and changing ground slope to the 3.7-fold increase in effective viscosity observed in the field over 550 m, and conclude that decreasing slope is the single most important factor over that distance. It follows that the complex relations between slope, flow velocity, and non-Newtonian lava rheology need to be incorporated into models of lava flow emplacement.


Viscosity Rheology Morphology Lava flow Pacaya 


  1. Armstrong JT (1995) CITZAF: a package of correction programs for the quantitative electron microbeam X-ray analysis of thick polished materials, thin films, and particles. Microbeam Anal 4:177–200Google Scholar
  2. Avard G, Whittington AG (2012) Rheology of arc dacite lavas: experimental determination at low strain rates. Bull Volcanol 74(5):1039–1056. doi:10.1007/s00445-012-0584-2 CrossRefGoogle Scholar
  3. Bardintzeff JM, Deniel C (1992) Magmatic evolution of Pacaya and Cerro Chiquito volcanological complex, Guatemala. Bull Volcanol 54(4):267–283. doi:10.1007/BF00301482 CrossRefGoogle Scholar
  4. Barnes HA (1999) The yield stress—a review or ‘παντα ρει’—everything flows? J Nonnewt Fluid Mech 81(1):133–178. doi:10.1016/S0377-0257(98)00094-9 CrossRefGoogle Scholar
  5. Bollasina AJ (2014) The May 2010 eruption of Pacaya volcano, Guatemala: An experimental study of subliquidus magma rheology. M.S. Thesis, University of MissouriGoogle Scholar
  6. Cimarelli C, Costa A, Mueller S, Mader HM (2011) Rheology of magmas with bimodal crystal size and shape distributions: Insights from analog experiments. Geochem Geophys Geosyst 12(7). doi:10.1029/2011GC003606
  7. Costa A, Caricchi L, Bagdassarov N (2009) A model for the rheology of particle-bearing suspensions and partially molten rocks. Geochem Geophy Geosy 10(3). doi:10.1029/2008GC002138
  8. Dingwell DB (1995) Viscosity and Anelasticity of Melts. Mineral Physics & Crystallography: A Handbook of Physical Constants 209–217. doi:10.1029/RF002p0209
  9. Dingwell DB, Virgo D (1988) Viscosities of melts in the Na2O-FeO-Fe2O3-SiO2 system and factors controlling relative viscosities of fully polymerized silicate melts. Geochim Cosmochim Acta 52(2):395–403. doi:10.1016/0016-7037(88)90095-6 CrossRefGoogle Scholar
  10. Eggers AA (1971) The geology and petrology of the Amatitlán quadrangle, Guatemala. Dissertation, Dartmouth CollegeGoogle Scholar
  11. Faroughi SA, Huber C (2014) Crowding-based rheological model for suspensions of rigid bimodal-sized particles with interfering size ratios. Phys Rev E 90(5):052303. doi:10.1103/PhysRevE.90.052303 CrossRefGoogle Scholar
  12. Faroughi SA, Huber C (2015) A generalized equation for rheology of emulsions and suspensions of deformable particles subjected to simple shear at low Reynolds number. Rheol Acta 54(2):85–108. doi:10.1007/s00397-014-0825-8 CrossRefGoogle Scholar
  13. Fink JH, Zimbelman JR (1986) Rheology of the 1983 Royal Gardens basalt flows, Kilauea volcano, Hawaii. Bull Volcanol 48(2–3):87–96. doi:10.1007/BF01046544 CrossRefGoogle Scholar
  14. Gauthier F (1973) Field and laboratory studies of the rheology of Mount Etna lava. Philos Trans R Soc A 274(1238):83–98. doi:10.1098/rsta.1973.0028 CrossRefGoogle Scholar
  15. Getson JM, Whittington AG (2007) Liquid and magma viscosity in the anorthite-forsterite-diopside-quartz system and implications for the viscosity-temperature paths of cooling magmas. J Geophys Res-Sol Ea (1978–2012), 112(B10). doi:10.1029/2006JB004812
  16. Ghiorso MS, Sack RO (1995) Chemical mass transfer in magmatic processes IV. A revised and internally consistent thermodynamic model for the interpolation and extrapolation of liquid–solid equilibria in magmatic systems at elevated temperatures and pressures. Contrib Mineral Petrol 119(2–3):197–212. doi:10.1007/BF00307281 CrossRefGoogle Scholar
  17. Giordano D, Russell JK, Dingwell DB (2008) Viscosity of magmatic liquids: a model. Earth Planet Sci Lett 271(1):123–134. doi:10.1016/j.epsl.2008.03.038 CrossRefGoogle Scholar
  18. Griffiths RW (2000) The dynamics of lava flows. Annu Rev Fluid Mech 32(1):477–518. doi:10.1146/annurev.fluid.32.1.477 CrossRefGoogle Scholar
  19. Hon K, Gansecki C, Kauahikaua J (2003) The transition from `a`ā to pāhoehoe crust on flows emplaced during the Pu`u `Ō`ō-Kūpaianaha eruption. In: Heliker C, Swanson DA, Takahashi TJ (eds) The Pu`u `Ō`ō-Kūpaianaha eruption of Kilauea Volcano, Hawai`i: the first 20 years, vol 1676, U S Geol Surv Prof Pap., pp 63–87Google Scholar
  20. Hui H, Zhang Y (2007) Toward a general viscosity equation for natural anhydrous and hydrous silicate melts. Geochim Cosmochim Acta 71(2):403–416. doi:10.1016/j.gca.2006.09.003 CrossRefGoogle Scholar
  21. Hulme G (1974) The interpretation of lava flow morphology. Geophys J Int 39(2):361–383. doi:10.1111/j.1365-246X.1974.tb05460.x CrossRefGoogle Scholar
  22. Ishibashi H (2009) Non-Newtonian behavior of plagioclase-bearing basaltic magma: subliquidus viscosity measurement of the 1707 basalt of Fuji volcano, Japan. J Volcanol Geotherm Res 181(1):78–88. doi:10.1016/j.jvolgeores.2009.01.004 CrossRefGoogle Scholar
  23. Ishibashi H, Sato H (2007) Viscosity measurements of subliquidus magmas: alkali olivine basalt from the Higashi-Matsuura district, Southwest Japan. J Volcanol Geotherm Res 160(3):223–238. doi:10.1016/j.jvolgeores.2006.10.001 CrossRefGoogle Scholar
  24. Ishibashi H, Sato H (2010) Bingham fluid behavior of plagioclase-bearing basaltic magma: reanalyses of laboratory viscosity measurements for Fuji 1707 basalt. J Mineral Petrol Sci 105(6):334–339. doi:10.2465/jmps.100611 CrossRefGoogle Scholar
  25. Jeffreys H (1925) The flow of water in an inclined channel of rectangular section. Philos Mag 49:793–807. doi:10.1080/14786442508634662 CrossRefGoogle Scholar
  26. Lev E, James MR (2014) The influence of cross-sectional channel geometry on rheology and flux estimates for active lava flows. Bull Volcanol 76:1–15. doi:10.1007/s00445-014-0829-3 CrossRefGoogle Scholar
  27. Lev E, Spiegelman M, Wysocki RJ, Karson JA (2012) Investigating lava flow rheology using video analysis and numerical flow models. J Volcanol Geotherm Res 247:62–73. doi:10.1016/j.jvolgeores.2012.08.002 CrossRefGoogle Scholar
  28. Llewellin EW, Manga M (2005) Bubble suspension rheology and implications for conduit flow. J Volcanol Geotherm Res 143(1):205–217. doi:10.1016/j.jvolgeores.2004.09.018 CrossRefGoogle Scholar
  29. Mader HM, Llewellin EW, Mueller SP (2013) The rheology of two-phase magmas: a review and analysis. J Volcanol Geotherm Res 257:135–158. doi:10.1016/j.jvolgeores.2013.02.014 CrossRefGoogle Scholar
  30. Manga M, Loewenberg M (2001) Viscosity of magmas containing highly deformable bubbles. J Volcanol Geotherm Res 105(1):19–24. doi:10.1016/S0377-0273(00)00239-0 CrossRefGoogle Scholar
  31. Manga M, Castro J, Cashman KV, Loewenberg M (1998) Rheology of bubble-bearing magmas. J Volcanol Geotherm Res 87(1):15–28. doi:10.1016/S0377-0273(98)00091-2 CrossRefGoogle Scholar
  32. Marsh BD (1981) On the crystallinity, probability of occurrence, and rheology of lava and magma. Contrib Mineral Petrol 78(1):85–98. doi:10.1007/BF00371146 CrossRefGoogle Scholar
  33. Matías Gomez RO (2009) Volcanological Map of the 1961–2009 eruption of Volcan de Pacaya, Guatemala. Dissertation, Michigan Technological UniversityGoogle Scholar
  34. Moitra P, Gonnermann HM (2015) Effects of crystal shape-and size-modality on magma rheology. Geochem Geophys Geosyst 16(1):1–26. doi:10.1002/2014GC005554 CrossRefGoogle Scholar
  35. Moore HJ, Arthur DWG, Schaber GG (1978) Yield strengths of flows on the Earth, Mars, and Moon. P Lunar Planet Sci C 9:3351–3378Google Scholar
  36. Morgan HA, Harris AJ, Gurioli L (2013) Lava discharge rate estimates from thermal infrared satellite data for Pacaya Volcano during 2004–2010. J Volcanol Geotherm Res 264:1–11. doi:10.3390/rs8010073 CrossRefGoogle Scholar
  37. Mueller S, Llewellin EW, Mader HM (2010) The rheology of suspensions of solid particles. P Roy Soc A Math Phys 466(2116):1201–1228. doi:10.1098/rspa.2009.0445 CrossRefGoogle Scholar
  38. Mueller S, Llewellin EW, Mader HM (2011) The effect of particle shape on suspension viscosity and implications for magmatic flows. Geophys Res Lett 38(13). doi:10.1029/2011GL047167
  39. Pal R (2003) Rheological behavior of bubble-bearing magmas. Earth Planet Sci Lett 207(1):165–179. doi:10.1016/S0012-821X(02)01104-4 CrossRefGoogle Scholar
  40. Peterson DW, Tilling RI (1980) Transition of basaltic lava from pahoehoe to aa, Kilauea Volcano, Hawaii: field observations and key factors. J Volcanol Geotherm Res 7(3):271–293. doi:10.1016/0377-0273(80)90033-5 CrossRefGoogle Scholar
  41. Phan-Thien N, Pham DC (1997) Differential multiphase models for polydispersed suspensions and particulate solids. J Non-Newton Fluid 72(2):305–318. doi:10.1016/S0377-0257(97)90002-1 CrossRefGoogle Scholar
  42. Pinkerton H, Norton G (1995) Rheological properties of basaltic lavas at sub-liquidus temperatures: laboratory and field measurements on lavas from Mount Etna. J Volcanol Geotherm Res 68(4):307–323. doi:10.1016/0377-0273(95)00018-7 CrossRefGoogle Scholar
  43. Pinkerton H, Stevenson RJ (1992) Methods of determining the rheological properties of magmas at sub-liquidus temperatures. J Volcanol Geotherm Res 53(1):47–66. doi:10.1016/0377-0273(92)90073-M CrossRefGoogle Scholar
  44. Robert G (2014) The effects of volatiles on the viscosity and heat capacity of calc-alkaline basaltic and basaltic andesite liquids. Dissertation, University of Missouri-ColumbiaGoogle Scholar
  45. Robert B, Harris A, Gurioli L, Médard E, Sehlke A, Whittington AG (2014) Textural and rheological evolution of basalt flowing down a lava channel. Bull Volcanol 76(6):1–21. doi:10.1007/s00445-014-0824-8 CrossRefGoogle Scholar
  46. Roscoe R (1952) The viscosity of suspensions of rigid spheres. Br J Appl Phys 3(8):267CrossRefGoogle Scholar
  47. Rose WI, Palma JL, Wolf RE, Gomez RO (2013) A 50 yr eruption of a basaltic composite cone: Pacaya, Guatemala. Geol Soc Am 498:1–21. doi:10.1088/0508-3443/3/8/306 Google Scholar
  48. Rust AC, Manga M (2002) Bubble shapes and orientations in low Re simple shear flow. J Colloid Interf Sci 249(2):476–480. doi:10.1006/jcis.2002.8292 CrossRefGoogle Scholar
  49. Ryerson FJ, Weed HC, Piwinskii AJ (1988) Rheology of subliquidus magmas: 1. Picritic compositions. J Geophys Res-Sol Ea (1978–2012) 93(B4):3421–3436. doi:10.1029/JB093iB04p03421 CrossRefGoogle Scholar
  50. Schaefer LN, Oommen T, Corazzato C, Tibaldi A, Escobar-Wolf R, Rose WI (2013) An integrated field-numerical approach to assess slope stability hazards at volcanoes: the example of Pacaya, Guatemala. Bull Volcanol 75(6):1–18. doi:10.1007/s00445-013-0720-7 CrossRefGoogle Scholar
  51. Schuessler JA, Botcharnikov RE, Behrens H, Misiti V, Freda C (2008) Amorphous materials: properties, structure, and durability: oxidation state of iron in hydrous phono-tephritic melts. Am Mineral 93(10):1493–1504. doi:10.2138/am.2008.2795 CrossRefGoogle Scholar
  52. Sehlke A, Whittington AG, Robert B, Harris A, Gurioli L, Médard E (2014) Pahoehoe to aa transition of Hawaiian lavas: an experimental study. Bull Volcanol 76(11):1–20. doi:10.1007/s00445-014-0876-9 CrossRefGoogle Scholar
  53. Shaw HR, Wright TL, Peck DL, Okamura R (1968) The viscosity of basaltic magma; an analysis of field measurements in Makaopuhi lava lake, Hawaii. Am J Sci 266(4):225–264. doi:10.2475/ajs.266.4.225 CrossRefGoogle Scholar
  54. Sparks RSJ, Pinkerton H, Hulme G (1976) Classification and formation of lava levees on Mount Etna, Sicily. Geology 4(5):269–271. doi:10.1130/0091-7613(1976)4<269:CAFOLL>2.0.CO;2 CrossRefGoogle Scholar
  55. Spera FJ (2000) Physical properties of magmas. In: Sigurdsson H, Houghton BF, McNutt SR, Rymer H, Stix J, McBirney AR (eds) Encyclopedia of volcanoes. Academic Press, San Diego, pp 171–190Google Scholar
  56. Truby JM, Mueller SP, Llewellin EW, Mader HM (2015) The rheology of three-phase suspensions at low bubble capillary number. Proc Roy Soc Lond A Mat 471(2173):20140557. doi:10.1098/rspa.2014.0557 CrossRefGoogle Scholar
  57. Vallance JW, Siebert L, Rose WI, Girón JR, Banks NG (1995) Edifice collapse and related hazards in Guatemala. J Volcanol Geotherm Res 66(1):337–355. doi:10.1016/0377-0273(94)00076-S CrossRefGoogle Scholar
  58. Vogel H (1921) The law of the relation between the viscosity of liquids and the temperature. Z Phys 22:645–646Google Scholar
  59. Webb SL, Dingwell DB (1990) The onset of non-Newtonian rheology of silicate melts. Phys Chem Miner 17(2):25–132. doi:10.1007/BF00199663 CrossRefGoogle Scholar
  60. Whittington AG, Hellwig BM, Behrens H, Joachim B, Stechern A, Vetere F (2009) The viscosity of hydrous dacitic liquids: implications for the rheology of evolving silicic magmas. Bull Volcanol 71(2):185–199. doi:10.1007/s00445-008-0217-y CrossRefGoogle Scholar
  61. Wilson AD (1960) The micro-determination of ferrous iron in silicate minerals by a volumetric and a colorimetric method. Analyst 85(1016):823–827. doi:10.1039/AN9608500823 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • A. Soldati
    • 1
  • A. Sehlke
    • 1
    • 2
  • G. Chigna
    • 3
  • A. Whittington
    • 1
  1. 1.Department of Geological SciencesUniversity of MissouriColumbiaUSA
  2. 2.NASA Ames Research CenterMoffett FieldUSA
  3. 3.Instituto Nacional de Sismología, Vulcanología, Meterología e HidrologíaGuatemala CityGuatemala

Personalised recommendations