Evidence from cosmic ray exposure (CRE) dating for the existence of a pre-Minoan caldera on Santorini, Greece

  • C. D. AthanassasEmail author
  • D. L. Bourlès
  • R. Braucher
  • T. H. Druitt
  • P. Nomikou
  • L. Léanni
Research Article


Cosmic ray exposure (CRE) dating was performed on the caldera cliffs of Santorini with the aim of detecting cliff segments predating the Minoan eruption (17th century BCE). The methodology involved the determination of in situ-produced cosmogenic 36Cl concentration in basaltic-to-rhyodacitic whole rocks cropping out in the cliffs. After the samples were processed following the chemical protocol of 36Cl preparation for silicate rocks, 36Cl concentrations were measured by accelerator mass spectrometry (AMS). Important challenges during the implementation procedure were related to large amounts of radiogenic 36Cl, complex modeling of inherited 36Cl, and dominance of the thermal and epithermal (low-energy) neutron capture production pathway. Nevertheless, quantitative assessments on the basis of the contribution of the low-energy neutron capture pathway percent to the total production rate validated the calculated CRE dates. Current CRE ages demonstrate that an ancient caldera existed on pre-Minoan Santorini, occupying at least the northern half of the modern-day caldera.


In situ cosmogenic 36Cl Caldera Paleogeography Minoan eruption 



This work is a contribution to the Labex OT-Med (no. ANR-11-LABX-0061) funded by FMSH, the European Commission’s Action Marie Curie COFUND Programme, and the French Government «Investissements d’Avenir» program of the French National Research Agency (ANR) through the A*MIDEX project (no. ANR-11-IDEX-0001-02) and the Frenand Braudel-IFER fellowship. M. Arnold, G. Aumaître, and K. Keddadouche are thanked for their valuable assistance during 36Cl measurements at the ASTER AMS national facility (CEREGE, Aix-en-Provence) which is supported by the INSU/CNRS, the ANR through the “Projets thématiques d’excellence” program for the “Equipements d’excellence” ASTER-CEREGE action, IRD, and CEA. This is a Laboratory of Excellence ClerVolc contribution. Authors thank Darryl Granger (Purdue University, USA) for constructive discussion, as well as an anonymous reviewer. The authors are thankful to Vaggelis Nomikos, resident of Santorini, for sailing them across the caldera for sample collection.


  1. Anadón P, Canet C, Friedrich W (2013) Aragonite stromatolitic buildups from Santorini (Aegean Sea, Greece): geochemical and palaeontological constraints of the caldera palaeoenvironment prior to the Minoan eruption (ca 3600 year bp). Sedimentology 60:1128–1155CrossRefGoogle Scholar
  2. Benedetti L, Finkel R, Papanastassiou D, King G, Armijo R, Ryerson FJ, Farber D, Flerit F (2002) Postglacial slip history of the Sparta fault (Greece) determined by Cl-36 cosmogenic dating: evidence for non-periodic earthquakes. Geophys Res Lett 29:8701–8704CrossRefGoogle Scholar
  3. Blard PH, Lavé J, Pik R, Quidelleur X, Bourlés D, Kieffer G (2005) Fossil cosmogenic 3He record from K–Ar dated basaltic flows of Mount Etna volcano (Sicily, 38 °N): evaluation of a new paleoaltimeter. Earth Planet Sci Lett 236:613–631CrossRefGoogle Scholar
  4. Bond A, Sparks RSJ (1976) The Minoan eruption of Santorini, Greece. J Geol Soc Lond 132:1–16CrossRefGoogle Scholar
  5. Braucher R, Del Castillo P, Siame L, Hidy AJ, Bourlès DL (2009) Determination of both exposure time and denudation rate from an in situ-produced 10Be depth profile: a mathematical proof of uniqueness. Model sensitivity and applications to natural cases. Quat Geochronol 4:56–67CrossRefGoogle Scholar
  6. Braucher R, Merchel S, Borgomano J, Bourlès DL (2011) Production of cosmogenic radionuclides at great depth: a multi element approach. Earth Planet Sci Lett 309:1–9CrossRefGoogle Scholar
  7. Budetta G, Condarelli D, Fytikas M, Kolios N, Pascale G, Rapolla A, Pinna E (1984) Geophysical prospecting on the Santorini Islands. Bull Volcanol 47:447–465CrossRefGoogle Scholar
  8. Cadoux A, Scaillet B, Druitt TH, Deloule E (2014) Magma storage conditions of large Plinian eruptions of Santorini volcano (Greece). J Petrol 55:1129–1171CrossRefGoogle Scholar
  9. Croff Bell KL, Carey SN, Nomikou P, Sigurdsson H, Sakellariou D (2013) Submarine evidence of a debris avalanche deposit on the eastern slope of Santorini volcano, Greece. Tectonophysics 597–598:147–160CrossRefGoogle Scholar
  10. Davis RJ, Schaeffer OA (1955) Chlorine-36 in nature. Ann N Y Acad Sci 62:105–122CrossRefGoogle Scholar
  11. Doumas C (1990) Archaeological observations at Akrotiri relating to the volcanic destruction. In: Hardy DA et al. (eds) Thera and the Aegean World III/3, p 48–50Google Scholar
  12. Druitt TH (2014) New insights into the initiation and venting of the Bronze-Age eruption of Santorini (Greece), from component analysis. Bull Volcanol 76:794. doi: 10.1007/s00445-014-0794-x CrossRefGoogle Scholar
  13. Druitt TH, Francaviglia V (1990) An ancient caldera cliff line at Phira, and its significance for the topography and geology of pre-Minoan Santorini. In: Hardy DA et al (eds) Thera and the Aegean world III/2, p 362–376Google Scholar
  14. Druitt TH, Francaviglia V (1992) Caldera formation on Santorini and the physiography of the islands in the late Bronze Age. Bull Volcanol 54:484–493CrossRefGoogle Scholar
  15. Druitt TH, Edwards L, Mellors R, Pyle DM, Sparks RSJ, Lanphere M, Davies M, Barriero B (1999) Santorini volcano. Geol Soc Lond Mem 19, 165ppGoogle Scholar
  16. Dunai T (2010) Cosmogenic nuclides: principles, concepts and applications in the earth surface sciences. Cambridge University Press, 187ppGoogle Scholar
  17. Dunai T, Stuart FM (2009) Reporting of cosmogenic nuclide data for exposure age and erosion rate determinations. Quat Geochronol 4:437–440CrossRefGoogle Scholar
  18. Eriksen U, Friedrich WL, Buchardt B, Tauber H and Thomsen MS (1990) The Stronghyle caldera: geological, palaeotological and stable isotope evidence from radiocarbon dated stromatolites from Santorini. In: Hardy DA et al (eds) Thera and the Aegean World III/2, p 139–150Google Scholar
  19. Fabbro GN, Druitt TH, Scaillet S (2013) Evolution of the crustal magma plumbing system during the build-up to the 22-ka caldera-forming eruption of Santorini (Greece). Bull Volcanol 75:767. doi: 10.1007/s00445-013-0767-5 CrossRefGoogle Scholar
  20. Fabryka-Martin JT (1988) Production of radionuclides in the earth and their hydrogeologic significance, with emphasis on chlorine-36 and iodine-129. pp 400 Ph.D. thesis, University of Arizona, USAGoogle Scholar
  21. Fifield LK, Ophel TR, Allan GL, Bird JR, Davie RF (1990) Accelerator mass spectrometry at the Australian National University’s 14UD accelerator: experience and developments. Nucl Instrum Meth Phys Res Sect B52:233–237CrossRefGoogle Scholar
  22. Friedrich WL, Eriksen U, Tauber H, Heinemeier J, Rud N, Thomsen MS, Buchardt B (1988) Existence of a water-filled caldera prior to the Minoan eruption of Santorini, Greece. Naturwissenschaften 75:567–569CrossRefGoogle Scholar
  23. Friedrich WL, Kromer B, Friedrich M, Heinemeier J, Pfeiffer T, Talamo S (2006) Santorini eruption radiocarbon dated to 1627–1600 B.C. Science 312:548CrossRefGoogle Scholar
  24. Fytikas M, Karydakis G, Kavourdis T, Kolios N and Vougioukalakis G (1990) Geothermal research on Santorini. In: Hardy DA et al. (eds) Thera and the Aegean World III/2,241–249Google Scholar
  25. Gertisser R, Preece K, Keller J (2009) The Plinian Lower Pumice 2 eruption, Santorini, Greece: magma evolution and volatile behaviour. J. Volcanol. Geotherm Res 186:387–406Google Scholar
  26. Gosse JC, Phillips FM (2001) Terrestrial in situ cosmogenic nuclides: theory and application. Quat Sci Rev 20:1475–1560CrossRefGoogle Scholar
  27. Heiken G, McCoy F (1984) Caldera development during the Minoan eruption, Thira, Cyclades, Greece. J Geophys Res 89(B10):8841–8862CrossRefGoogle Scholar
  28. Johnston EN, Sparks RSJ, Phillips JC, Carey S (2014) Revised estimates for the volume of the Late Bronze Age Minoan eruption, Santorini, Greece. J Geol Soc Lond 171:583–590CrossRefGoogle Scholar
  29. Johnston EN, Sparks RSJ, Nomikou P, Livanos I, Carey S, Phillips JC, Sigurdsson H (2015) Stratigraphic relations of Santorini’s intracaldera fill and implications for the rate of post-caldera volcanism. J Geol Soc. doi: 10.1144/jgs2013-114 Google Scholar
  30. Lagios E, Sakkas V, Novali F, Belotti F, Feretti A, Vlachou K, Dietrich V (2013) SqueeSAR™ and GPS ground deformation monitoring of Santorini Volcano (1992–2012): tectonic implications. Tectonophysics 594:38–59CrossRefGoogle Scholar
  31. Lal D (1991) Cosmic ray labeling of erosion surfaces: in situ nuclide production rates and erosion models. Earth Planet Sci Lett 104:424–439CrossRefGoogle Scholar
  32. Licciardi JM, Denoncourt CL, Finkel RC (2008) Cosmogenic 36Cl production rates from Ca spallation in Iceland. Earth Planet Sci Lett 267:365–377CrossRefGoogle Scholar
  33. Marinatos S (1939) The volcanic destruction of Minoan Crete. Antiquity 13:425–439CrossRefGoogle Scholar
  34. Marrero SM, Phillips FM, Caffee MW, Gosse JC (2016) CRONUS-Earth cosmogenic 36Cl calibration. Quat Geochronol 31:199–219CrossRefGoogle Scholar
  35. Nomikou P, Carey S, Papanikolaou D, Croff Bell K, Sakellariou D, Alexandri M, Bejelou K (2012) Submarine volcanoes of the Kolumbo volcanic zone NE of Santorini Caldera, Greece. Glob Planet Chang 90–91:135–151. doi: 10.1016/j.gloplacha.2012.01.001 CrossRefGoogle Scholar
  36. Nomikou P, Papanikolaou D, Alexandri M, Sakellariou D, Rousakis G (2013) Submarine volcanoes along the Aegean volcanic arc. Tectonophysics 19:123–146CrossRefGoogle Scholar
  37. Nomikou P, Parks MM, Papanikolaou D, Pyle D, Mather TA, Carey S, Watts AB, Paulatto M, Kalnins ML, Livanos I, Bejelou K, Simou E, Perros I (2014) The emergence and growth of a submarine volcano: the Kameni islands, Santorini (Greece). Geogr Res (J Inst Aust Geogr) 1–2:8–18Google Scholar
  38. Papageorgiou E, Tzanis A, Sotiropoulos P, Lagios E (2010) DGPS and magnetotelluric constraints on the contemporary tectonics of the Santorini volcanic complex, Greece. Bulletin of the Geological Society of Greece XLLIII, p 344–356Google Scholar
  39. Perissoratis C (1990) Marine geological research on Santorini: preliminary results. In Hardy DA et al. (eds) Thera and the Aegean World III/2, p 305–311Google Scholar
  40. Perissoratis C (1995) The Santorini volcanic complex and its relation to the stratigraphy and structure of the Aegean arc, Greece. Mar Geol 128:37–58CrossRefGoogle Scholar
  41. Phillips FM (2003) Cosmogenic 36Cl ages of quaternary basalt flows in the Mojave Desert, California, USA. Geomorphology 53:199–208CrossRefGoogle Scholar
  42. Phillips FM, Stone WD, Fabryka-Martin J (2001). An improved approach to calculating low-energy cosmic-ray neutron fluxes near the land/atmosphere interface. Chemical Geology 175:689–701Google Scholar
  43. Phillips FM, Leavy BD, Jannik NO, Elmore D, Kubik PW (1986) The accumulation of cosmogenic chlorine-36 in rocks. A method for surface exposure dating. Science 231:41–43CrossRefGoogle Scholar
  44. Phillips FM, Argento DC, Balco G, Caffee MW, Clem J, Dunai TJ, Finkel R, Goehering B, Gosse JC, Hudson AM, Jull AJT, Kelly MA, Kurz M, Lal D, Lifton N, Marrero SM, Nishiizumi K, Reedy RC, Schaefer J, Stone JOH, Swanson T, Zreda MG (2016) The CRONUS-Earth project: a synthesis. Quat Geochronol 31:119–154CrossRefGoogle Scholar
  45. Pyle DM, Elliott JR (2006) Quantitative morphology, recent evolution, and future activity of the Kameni Islands volcano, Santorini, Greece. Geosphere 2:253–268. doi: 10.1130/GES00028.1 CrossRefGoogle Scholar
  46. Sanchez G, Rolland Y, Corsini M, Braucher R, Bourlès D, Arnold M, Aumaître G (2010) Relationships between tectonics, slope instability and climate change: cosmic ray exposure dating of active faults, landslides and glacial surfaces in the SW Alps. Geomorphology 117:1–13CrossRefGoogle Scholar
  47. Schimmelpfennig I, Benedetti L, Finkel R, Pik R, Blard PH, Bourlès D, Burnard P, Williams A (2009) Sources of in situ 36Cl in basaltic rocks. Implications for calibration of production rates. Quat Geochronol 4:441–461CrossRefGoogle Scholar
  48. Schimmelpfennig I, Benedetti L, Garreta V, Pik R, Blard PH, Burnard P, Bourlès D, Finkel R, Ammon K, Dunai T (2011) Calibration of cosmogenic 36Cl production rates from Ca and K spallation in lava flows from Mt. Etna (38°N, Italy) and Payun. Matru (36°S, Argentina). Geochim Cosmochim Acta 75:2611–2632CrossRefGoogle Scholar
  49. Schimmelpfennig I, Schaefer JM, Putnam AE, Koffman T, Benedetti L, Ivy-Ochs S, Team ASTER, Schlüchter C (2014) 36Cl production rate from K-spallation in the European Alps (Chironico landslide, Switzerland). J Quat Sci 29:407–413CrossRefGoogle Scholar
  50. Sharma P, Kubik PW, Fehn U, Gove HE, Nishiizumi K, Elmore D (1990) Development of 36Cl standards for AMS. Nucl Instrum Methods Phys Res, Sect B 52:410–415CrossRefGoogle Scholar
  51. Shepard MK, Arvidson RE, Caffee M, Finkel R, Harris L (1995) Cosmogenic exposure ages of basalt flows: Lunar Crater volcanic field, Nevada. Geology 23:21–24CrossRefGoogle Scholar
  52. Sigurdsson H, Carey S, Alexandri M, Vougioukalakis G, Croff K, Roman C, Sakellariou D, Anagnostou C, Rousakis G, Ioakim C, Gogou A, Ballas D, Misaridis T, Nomikou P (2006) Marine investigations of Greece’s Santorini volcanic field. Eos 87(34):337–339CrossRefGoogle Scholar
  53. Stone JO (2000) Air pressure and cosmogenic isotope production. J Geophys Res 105/B10:23753–23759CrossRefGoogle Scholar
  54. Stone JO, Allan GL, Fifield LK, Cresswell RG (1996) Cosmogenic chlorine-36 from calcium spallation. Geochim Cosmochim Acta 60:679–692CrossRefGoogle Scholar
  55. Stone JOH, Evans JM, Fifield LK, Allan GL, Cresswell RG (1998) Cosmogenic chlorine-36 production in calcite by muons. Geochim Cosmochim Acta 62:433–454CrossRefGoogle Scholar
  56. Vogt S, Elmore D, Sharma P, Dunne A (1996) The 36Cl/36Cl method for determining exposure time and erosion rates of surfaces. Radiocarbon 38:122Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • C. D. Athanassas
    • 1
    Email author
  • D. L. Bourlès
    • 1
  • R. Braucher
    • 1
  • T. H. Druitt
    • 2
  • P. Nomikou
    • 3
  • L. Léanni
    • 1
  1. 1.Aix-Marseille Université, CNRS-IRD-Collège de France, UM 34 CEREGE, Technopôle de l’Environnement Arbois-MéditerranéeAix-en-ProvenceFrance
  2. 2.Laboratoire Magmas et VolcansUniversité Blaise Pascal-CNRS-IRD, OPGCClermont FerrandFrance
  3. 3.Faculty of Geology and the GeoenvironmentUniversity of AthensAthensGreece

Personalised recommendations