Bulletin of Volcanology

, 78:22 | Cite as

Stress-induced comenditic trachyte effusion triggered by trachybasalt intrusion: multidisciplinary study of the AD 1761 eruption at Terceira Island (Azores)

  • A. Pimentel
  • V. Zanon
  • L. V. de Groot
  • A. Hipólito
  • A. Di Chiara
  • S. Self
Research Article

Abstract

The AD 1761 eruption on Terceira was the only historical subaerial event on the island and one of the last recorded in the Azores. The eruption occurred along the fissure zone that crosses the island and produced a trachybasalt lava flow and scoria cones. Small comenditic trachyte lava domes (known as Mistérios Negros) were also thought by some to have formed simultaneously on the eastern flank of Santa Bárbara Volcano. Following a multidisciplinary approach, we combined geological mapping, paleomagnetic, petrographic, mineral and whole-rock geochemical and structural analyses to study this eruption. The paleomagnetic dating method compared geomagnetic vectors (directions and intensities) recorded by both the AD 1761 lava flow and Mistérios Negros domes and revealed that the two events were indeed coeval. Based on new data and interpretation of historical records, we have accordingly reconstructed the AD 1761 eruptive dynamics and distinguished three phases: (1) a precursory phase characterized by decreased degassing in the fumarolic field of Pico Alto Volcano and a gradual increase of seismic activity, which marked the intrusion of trachybasalt magma; (2) a first eruptive phase that started with phreatic explosions on the eastern flank of Santa Bárbara Volcano, followed by the inconspicuous effusion of comenditic trachyte (66 wt% SiO2), forming a WNW-ESE-oriented chain of lava domes; and (3) a second eruptive phase on the central part of the fissure zone, where a Hawaiian to Strombolian-style eruption formed small scoria cones (E-W to ENE-WSW-oriented) and a trachybasalt lava flow (50 wt% SiO2) which buried 27 houses in Biscoitos village. Petrological analyses show that the two batches of magma were emitted independently without evidence of interaction. We envisage that the dome-forming event was triggered by local stress changes induced by intrusion of the trachybasalt dyke along the fissure zone, which created tensile stress conditions that promoted ascent of comenditic trachyte magma stored beneath Santa Bárbara Volcano.

Keywords

Bimodal volcanism Paleomagnetic dating Stress changes Fissure zone Dyke intrusion Terceira (Azores) 

Notes

Acknowledgments

This work was partially supported by LVdG’s grant from the Netherlands Research Centre for Integrated Solid Earth Sciences (ISES) and VZ’s project PLUSYS (Plumbing Systems of Azorean Volcanoes PTDC/CTE-GIX/098836/2008) from the Portuguese Fundação para a Ciência e Tecnologia (FCT). Caron Vossen is acknowledged for the paleomagnetic analyses as part of her BSc thesis. Cor Langereis, Madelon Smink and Janneke de Laat are gratefully mentioned for their help in the field. Javier Pavón-Carrasco is acknowledged for helping with the ‘archeo_dating’ program. Ana Mendes is also acknowledged for thin-section preparation and Andrea Risplendente for assistance during microprobe analyses. AP was financially supported by CIVISA/CVARG. VZ was supported by a grant from the Fundo Regional para a Ciência (FRC 03.1.7.2007.1 PROEMPREGO Operational Program and Regional Government of the Azores). AH was supported by a PhD grant from the Fundação para a Ciência e Tecnologia (FCT SFRH/BD/73664/2010). The authors gratefully acknowledge V. Acocella, M. Porreca and an anonymous reviewer for comments that significantly improved the quality of the manuscript.

Supplementary material

445_2016_1015_MOESM1_ESM.xls (199 kb)
ESM 1 (XLS 199 kb)
445_2016_1015_MOESM2_ESM.pdf (196 kb)
ESM 2 (PDF 196 kb)

References

  1. Acocella V (2014) Structural control on magmatism along divergent and convergent plate boundaries: overview, model, problems. Earth-Sci Rev 136:226–288CrossRefGoogle Scholar
  2. Acocella V, Funiciello R (1999) The interaction between regional and local tectonics during resurgent doming: the case of the island of Ischia, Italy. J Volcanol Geotherm Res 88:109–123CrossRefGoogle Scholar
  3. Acocella V, Neri M (2009) Dike propagation in volcanic edifices: overview and possible developments. Tectonophysics 471:67–77CrossRefGoogle Scholar
  4. Acocella V, Porreca M, Neri M, Massimi E, Mattei M (2006) Propagation of dikes at Vesuvio (Italy) and the effect of Mt. Somma. Geophys Res Lett 33, L08301Google Scholar
  5. Acrúcio das Neves J (1826) Annos de 1760–1761. Terramoto e erupções na ilha Terceira. In: Canto E (ed) (1882) Arquivo dos Açores, Vol IV. Reprint 1981. Universidade dos Açores, Ponta DelgadaGoogle Scholar
  6. Anderson AT (1976) Magma mixing: petrological process and volcanological tool. J Volcanol Geotherm Res 1:3–33CrossRefGoogle Scholar
  7. Beier C, Haase KM, Abouchami W, Krienitz M-S, Hauff F (2008) Magma genesis by rifting of oceanic lithosphere above anomalous mantle: Terceira Rift, Azores. Geochem Geophys Geosyst 9, Q12013Google Scholar
  8. Blake S (1990) Viscoplastic models of lava domes. In: Fink JH (ed) Lava flows and domes: emplacement mechanisms and hazard implications. IAVCEI Proceedings in Volcanology 2. Springer, Berlin, pp 88–126CrossRefGoogle Scholar
  9. Bonafede M, Danesi S (1997) Near-field modifications of stress induced by dyke injection at shallow depth. Geophys J Int 130:435–448CrossRefGoogle Scholar
  10. Calvert AT, Moore RB, McGeehin JP, Rodrigues da Silva AM (2006) Volcanic history and 40Ar/39Ar and 14C geochronology of Terceira Island, Azores, Portugal. J Volcanol Geotherm Res 156:103–115CrossRefGoogle Scholar
  11. Cappello A, Zanon V, Del Negro C, Ferreira TLJ, Queiroz MGPS (2015) Exploring lava-flow hazards at Pico Island, Azores Archipelago (Portugal). Terra Nov. 27:156–161CrossRefGoogle Scholar
  12. Carlut J, Quidelleur X, Courtillot V, Boudon G (2000) Paleomagnetic directions and K/Ar dating of 0 to 1 Ma lava flows from La Guadeloupe Island (French West Indies): implications for time-averaged field models. J Geophys Res 105:835–849CrossRefGoogle Scholar
  13. Carmo R, Madeira J, Ferreira T, Queiroz G, Hipólito A (2015) Volcano-tectonic structures of S. Miguel Island, Azores. In: Gaspar JL, Guest JE, Duncan AM, Barriga FJAS, Chester DK (eds) Volcanic geology of S. Miguel Island (Azores Archipelago). GSL Memoirs 44, pp 65–86Google Scholar
  14. Casalbore D, Romagnoli C, Pimentel A, Quartau R, Casas D, Ercilla G, Hipólito A, Sposato A, Chiocci FL (2015) Volcanic, tectonic and mass-wasting processes offshore Terceira Island (Azores) revealed by high-resolution seafloor mapping. Bull Volcanol 77:24CrossRefGoogle Scholar
  15. Casas LI, Incoronato A (2007) Distribution analysis of errors due to relocation of geomagnetic data using the ‘conversion via pole’ (CVP) method: implications on archaeomagnetic data. Geophys J Int 169:448–454CrossRefGoogle Scholar
  16. Civile D, Lodolo E, Tortorici L, Lanzafame G, Brancolini G (2008) Relationships between magmatism and tectonics in a continental rift: the Pantelleria Island region (Sicily Channel, Italy). Mar Geol 251:32–46CrossRefGoogle Scholar
  17. Cole PD, Queiroz G, Wallenstein N, Gaspar JL, Duncan AM, Guest JE (1995) An historic subplinian/phreatomagmatic eruption: the 1630 AD eruption of Furnas volcano, São Miguel, Azores. J Volcanol Geotherm Res 69:117–135CrossRefGoogle Scholar
  18. Currenti G, Del Negro C, Ganci G, Williams CA (2008) Static stress changes induced by the magmatic intrusions during the 2002–2003 Etna eruption. J Geophys Res 113, B10206CrossRefGoogle Scholar
  19. Daniels KA, Menand T (2015) An experimental investigation of dyke injection under regional extensional stress. J Geophys Res Solid Earth 120:2014–2035CrossRefGoogle Scholar
  20. de Groot LV, Biggin AJ, Dekkers MJ, Langereis CG, Herrero-Bervera E (2013) Rapid regional perturbations to the recent global geomagnetic decay revealed by a new Hawaiian record. Nat Commun 4:1–7CrossRefGoogle Scholar
  21. de Groot LV, Béguin A, Kosters ME, van Rijsingen EM, Struijk ELM, Biggin AJ, Hurst EA, Langereis CG, Dekkers MJ (2015) High paleointensities for the Canary Islands constrain the Levant geomagnetic high. Earth Planet Sci Lett 419:154–167CrossRefGoogle Scholar
  22. Di Chiara A, Speranza F, Porreca M (2012) Paleomagnetic secular variation at the Azores during the last 3 ka. J Geophys Res 117, B07101Google Scholar
  23. Di Chiara A, Speranza F, Porreca M, Pimentel A, D’Ajello Caracciolo F, Pacheco J (2014) Constraining chronology and time-space evolution of Holocene volcanic activity on the Capelo Peninsula (Faial Island, Azores): the paleomagnetic contribution. Geol Soc Am Bull 126:1164–1180CrossRefGoogle Scholar
  24. Doell RR, Cox A (1965) Paleomagnetism of Hawaiian lava flows. J Geophys Res 70:3377–3405CrossRefGoogle Scholar
  25. Drummond FF (1856) Anais da ilha Terceira, Vol II. Reprint 1981 Sec Reg Edu Cul Governo Autónomo dos Açores, Angra do HeroísmoGoogle Scholar
  26. Eason DE, Sinton JM (2009) Lava shields and fissure eruptions of the Western Volcanic Zone, Iceland: evidence for magma chambers and crustal interaction. J Volcanol Geotherm Res 186:331–348CrossRefGoogle Scholar
  27. Einarssom P, Brandsdóttir B, Gudmundsson MT, Björnsson H, Grínvold K, Sigmundsson F (1997) Center of the Iceland hotspot experiences volcanic unrest. Eos Trans AGU 78:369–375CrossRefGoogle Scholar
  28. Einarsson P (1991) Earthquakes and present-day tectonism in Iceland. Tectonophysics 189:261–279CrossRefGoogle Scholar
  29. Elias RB (2001) Sucessão primária em domas traquíticos. MSc thesis, Universidade dos AçoresGoogle Scholar
  30. Elias RB, Dias E (2004) Primary succession on lava domes on Terceira (Azores). J Veg Sci 15:331–338CrossRefGoogle Scholar
  31. Fisher R (1953) Dispersion on a sphere. Proc R Soc Lond A 217:295–305CrossRefGoogle Scholar
  32. Gaspar JL (1996) Ilha Graciosa (Açores): História vulcanológica e avaliação do hazard. PhD thesis, Universidade dos AçoresGoogle Scholar
  33. Gaspar JL, Queiroz G, Pacheco JM, Ferreira T, Wallenstein N, Almeida MH, Coutinho R (2003) Basaltic lava balloons produced during the 1998–2001 Serreta submarine ridge eruption (Azores). In: White JDL, Smellie JL, Clague DA (eds) Explosive subaqueous volcanism. AGU Geophysical Monograph 140, pp 205–212Google Scholar
  34. Genevey A, Gallet Y, Constable CG, Korte M, Hulot G (2008) ArcheoInt: an upgraded compilation of geomagnetic field intensity data for the past ten millennia and its application to the recovery of the past dipole moment. Geochem Geophys Geosyst 9, Q04038CrossRefGoogle Scholar
  35. Genevey A, Gallet Y, Thébault E, Jesset S, Le Goff M (2013) Geomagnetic field intensity variations in Western Europe over the past 1100 years. Geochem Geophys Geosyst 14:2858–2872CrossRefGoogle Scholar
  36. Gertisser R, Self S, Gaspar JL, Kelley SP, Pimentel A, Eikenberg J, Barry TL, Pacheco JM, Queiroz G, Vespa M (2010) Ignimbrite stratigraphy and chronology on Terceira Island, Azores. In: Groppelli G, Viereck-Goette L (eds) Stratigraphy and geology of volcanic areas. GSA Special Paper 464, pp 133–154Google Scholar
  37. Gudmundsson A (1995) Infrastructure and mechanics of volcanic systems in Iceland. J Volcanol Geotherm Res 64:1–22CrossRefGoogle Scholar
  38. Gudmundsson A (2000) Dynamics of volcanic systems in Iceland: example of tectonism and volcanism at juxtaposed hot spot and mid-ocean ridge system. Ann Rev Earth Sci 28:107–140CrossRefGoogle Scholar
  39. Gudmundsson A (2006) How local stresses control magma-chamber ruptures, dyke injections, and eruptions in composite volcanoes. Earth-Sci Rev 79:1–31CrossRefGoogle Scholar
  40. Hagstrum JT, Champion DE (1994) Paleomagnetic correlation of late Quaternary lava flows in the lowest east rift zone of Kilauea volcano, Hawaii. J Geophys Res 99:21679–21690CrossRefGoogle Scholar
  41. Hildenbrand A, Madureira P, Marques FO, Cruz I, Henry B, Silva P (2008) Multi-stage evolution of a sub-aerial volcanic ridge over the last 1.3 Myr: S. Jorge Island, Azores Triple Junction. Earth Planet Sci Lett 273:289–298CrossRefGoogle Scholar
  42. Hildenbrand A, Marques FO, Costa ACG, Sibrant ALR, Silva PF, Henry B, Miranda JM, Madureira P (2012) Reconstructing the architectural evolution of volcanic islands from combined K/Ar, morphologic, tectonic, and magnetic data: the Faial Island example (Azores). J Volcanol Geotherm Res 241–242:39–48CrossRefGoogle Scholar
  43. Hildenbrand A, Weis D, Madureira P, Marques FO (2014) Recent plate re-organization at the Azores Triple Junction: evidence from combined geochemical and geochronological data on Faial, S. Jorge and Terceira volcanic islands. Lithos 210–211:27–39CrossRefGoogle Scholar
  44. Hipólito A, Madeira J, Carmo R, Gaspar JL (2013) Neotectonics of Graciosa Island (Azores): a contribution to seismic hazard assessment of a volcanic area in a complex geodynamic setting. Ann Geophys 56:S0677Google Scholar
  45. Johnson CL, Wijbrans JR, Constable CG, Gee J, Staudigel H, Tauxe L, Forjaz VH, Salgueiro M (1998) 40Ar/39Ar ages and paleomagnetism of São Miguel lavas, Azores. Earth Planet Sci Lett 160:637–649CrossRefGoogle Scholar
  46. Klügel A, Schwarz S, van den Bogaard P, Hoernle KA, Wohlgemuth-Ueberwasser CC, Köster JJ (2009) Structure and evolution of the volcanic rift zone at Ponta de São Lourenço, eastern Madeira. Bull Volcanol 71:671–685CrossRefGoogle Scholar
  47. Kueppers U, Nichols AR, Zanon V, Potuzak M, Pacheco JM (2012) Lava balloons-peculiar products of basaltic submarine eruptions. Bull Volcanol 74:1379–1393CrossRefGoogle Scholar
  48. Lacasse C, Sigurdsson H, Carey SN, Jóhannesson H, Thomas LE, Rogers NW (2007) Bimodal volcanism at the Katla subglacial caldera, Iceland: insight into the geochemistry and petrogenesis of rhyolitic magmas. Bull Volcanol 69:373–399CrossRefGoogle Scholar
  49. Lanos P (2004) Bayesian inference of calibration curves: application to archaeomagnetism. In: Buck C, Millard A (eds) Tools for constructing chronologies. Lecture Notes in Statistics 177, pp 43–82Google Scholar
  50. Larsen G, Newton AJ, Dugmore AJ, Vilmundardóttir EG (2001) Geochemistry, dispersal, volumes and chronology of Holocene from the Katla volcanic silicic tephra layers system, Iceland. J Quat Sci 16:119–132CrossRefGoogle Scholar
  51. Le Bas MJ, Le Maitre RW, Streckeisen A, Zanettin B (1986) A chemical classification of volcanic rocks based on the total alkali-silica diagram. J Petrol 27:745–750CrossRefGoogle Scholar
  52. Le Corvec N, Menand T, Lindsay J (2013) Interaction of ascending magma with pre-existing crustal fractures in monogenetic basaltic volcanism: an experimental approach. J Geophys Res Solid Earth 118:1–17CrossRefGoogle Scholar
  53. Lourenço N, Miranda J, Luis J, Ribeiro A, Mendes-Victor L, Madeira J, Needham H (1998) Morpho-tectonic analysis of the Azores Volcanic Plateau from a new bathymetric compilation of the area. Mar Geophys Res 20:141–156CrossRefGoogle Scholar
  54. Lyman AW, Koenig E, Fink J (2004) Predicting yield strengths and effusion rates of lava domes from morphology and underlying topography. J Volcanol Geotherm Res 129:125–138CrossRefGoogle Scholar
  55. Maccaferri F, Bonafede M, Rivalta E (2010) A numerical model of dyke propagation in layered elastic media. Geophys J Int 180:1107–1123CrossRefGoogle Scholar
  56. Macdonald R (1974) Nomenclature and petrochemistry of the peralkaline oversaturated extrusive rocks. Bull Volcanol 38:498–516CrossRefGoogle Scholar
  57. Machado F, Parsons WH, Richards AF, Mulford JW (1962) Capelinhos eruption of Fayal Volcano, Azores. J Geophys Res 67:3519–3529CrossRefGoogle Scholar
  58. Madeira J (2005) The volcanoes of Azores Island: a world-class heritage. Examples from Terceira, Pico and Faial Islands. In: IV International Symposium ProGEO on the Conservation of the Geological Heritage—Field Trip Guide Book. Eur Assoc for the Conserv of the Geol Heritage and Centro de Geociências da Universidade do Minho, BragaGoogle Scholar
  59. Madeira J, Brum da Silveira A (2003) Active tectonics and first paleoseismological results in Faial, Pico and S. Jorge Islands (Azores, Portugal). Ann Geophys 46:733–761Google Scholar
  60. Madeira J, Brum da Silveira A, Hipólito A, Carmo R (2015) Active tectonics in the central and eastern Azores Islands along the Eurasia-Nubia boundary: a review. In: Gaspar JL, Guest JE, Duncan AM, Barriga FJAS, Chester DK (eds) Volcanic geology of S. Miguel Island (Azores Archipelago). GSL Memoirs 44, pp 15–32Google Scholar
  61. Madureira P, Mata J, Mattielli N, Queiroz G, Silva P (2011) Mantle source heterogeneity, magma generation and magmatic evolution at Terceira Island (Azores archipelago): constraints from elemental and isotopic (Sr, Nd, Hf, and Pb) data. Lithos 126:402–418CrossRefGoogle Scholar
  62. Marques FO, Catalão JC, DeMets C, Costa ACG, Hildenbrand A (2013) GPS and tectonic evidence for a diffuse plate boundary at the Azores Triple Junction. Earth Planet Sci Lett 381:177–187CrossRefGoogle Scholar
  63. McDonough WF, Sun SS (1995) The composition of the Earth. Chem Geol 120:223–253CrossRefGoogle Scholar
  64. McFadden PL, Jones FJ (1981) The discrimination of mean directions drawn from Fisher distributions. Geophys J R Astron Soc 67:19–33CrossRefGoogle Scholar
  65. McGuire WJ, Pullen AD (1989) Location and orientation of eruptive fissures and feeder-dykes at Mount Etna: influence of gravitational and regional stress regimes. J Volcanol Geotherm Res 38:325–344CrossRefGoogle Scholar
  66. Mungall JE, Martin RF (1995) Petrogenesis of basalt-comendite and basalt-pantellerite suites, Terceira, Azores, and some implications for the origin of ocean-island rhyolites. Contrib Mineral Petrol 119:43–55CrossRefGoogle Scholar
  67. Nelson ST, Montana A (1992) Sieve-textured plagioclase in volcanic rocks produced by rapid decompression. Am Mineral 77:1242–1249Google Scholar
  68. Neves MC, Miranda JM, Luis JF (2013) The role of lithospheric processes on the development of linear volcanic ridges in the Azores. Tectonophysics 608:376–388CrossRefGoogle Scholar
  69. Pavón-Carrasco FJ, Rodríguez-González J, Osete ML, Torta JM (2011) A Matlab tool for archaeomagnetic dating. J Archaeol Sci 38:408–419CrossRefGoogle Scholar
  70. Pavón-Carrasco FJ, Osete ML, Torta JM, De Santis A (2014) A geomagnetic field model for the Holocene based on archaeomagnetic and lava flow data. Earth Planet Sci Lett 388:98–109CrossRefGoogle Scholar
  71. Peccerillo A, Barberio MR, Yirgu G, Ayalew D, Barbieri M, Wu TW (2003) Relationships between mafic and peralkaline silicic magmatism in continental rift settings: a petrological, geochemical and isotopic study of the Gedemsa volcano, central Ethiopian rift. J Petrol 44:2003–2032CrossRefGoogle Scholar
  72. Perry FV, Valentine GA, Gogbill AH, Keating GN, Gaffney ES, Damjanac B (2006) Control of basaltic feeder dike orientation by fault capture near Yucca Mountain, Nevada, USA. AGU Fall Meeting, Abstract V11B-0572Google Scholar
  73. Pimentel A (2006) Domos e coulées da ilha Terceira (Açores): contribuição para o estudo dos mecanismos de instalação. MSc thesis, Universidade dos AçoresGoogle Scholar
  74. Pinel V, Jaupart C (2000) The effect of edifice load on magma ascent beneath a volcano. Phil Trans R Soc A 358:1515–1532CrossRefGoogle Scholar
  75. Pollard DD, Muller OH (1976) The effect of gradients in regional stress and magma pressure on the form of sheet intrusions in cross section. J Geophys Res 81:975–984CrossRefGoogle Scholar
  76. Quartau R, Hipólito A, Romagnoli C, Casalbore D, Madeira J, Tempera F, Roque C, Chiocci FL (2014) The morphology of insular shelves as a key for understanding the geological evolution of volcanic islands: insights from Terceira Island (Azores). Geochem Geophys Geosyst 15:1801–1826CrossRefGoogle Scholar
  77. Rolph T, Shaw J, Guest JE (1987) Geomagnetic field variations as a dating tool: application to Sicilian lavas. J Archaeol Sci 14:215–225CrossRefGoogle Scholar
  78. Rubin AM (1993) Tensile fracture of rock at high confining pressure: implications for dike propagation. J Geophys Res 98:15919–15935CrossRefGoogle Scholar
  79. Self S (1976) The recent volcanology of Terceira, Azores. J Geol Soc Lond 132:645–666CrossRefGoogle Scholar
  80. Self S, Gunn BM (1976) Petrology, volume, and age relations of alkaline and saturated peralkaline volcanics from Terceira, Azores. Contrib Mineral Petrol 54:293–313CrossRefGoogle Scholar
  81. Sigmarsson O, Vlastelic I, Andreasen R, Bindeman I, Devidal J-L, Moune S, Keiding JK, Larsen G, Höskuldsson A, Thordarson T (2011) Remobilization of silicic intrusion by mafic magmas during the 2010 Eyjafjallajökull eruption. Solid Earth 2:271–281CrossRefGoogle Scholar
  82. Sigmundsson F, Hreinsdóttir S, Hooper A, Árnadótir T, Pedersen R, Roberts MJ, Óskarsson N, Auriac A, Decriem J, Einarsson P, Geirsson H, Hensch M, Ófeigsson BG, Sturkell E, Sveinbjörnsson H, Feigl KL (2010) Intrusion triggering of the 2010 Eyjafjallajökull explosive eruption. Nature 468:426–432CrossRefGoogle Scholar
  83. Sigurdsson H, Sparks RSJ (1981) Petrology of rhyolite and mixed magma ejecta from the 1875 eruption of Askja, Iceland. J Petrol 22:41–84CrossRefGoogle Scholar
  84. Simakin A, Ghassemi A (2010) The role of magma chamber-fault interaction in caldera forming eruption. Bull Volcanol 72:85–101CrossRefGoogle Scholar
  85. Soler V, Carracedo JC, Heller F (1984) Geomagnetic secular variation in historical lavas from the Canary Islands. Geophys J R Astron Soc 78:313–318CrossRefGoogle Scholar
  86. Sparks RSJ, Sigurdsson H, Wilson L (1977) Magma mixing: a mechanism for triggering acid explosive eruptions. Nature 267:315–318CrossRefGoogle Scholar
  87. Tauxe L, Banerjee SK, Butler RF, van der Voo R (2014) Essentials of Paleomagnetism, 3rd Web EditionGoogle Scholar
  88. Thompson R, Turner G (1985) Icelandic Holocene paleomagnetism. Phys Earth Planet Inter 38:250–261CrossRefGoogle Scholar
  89. Trippanera D, Porreca M, Ruch J, Pimentel A, Acocella V, Pacheco J, Salvatore M (2014) Relationships between tectonics and magmatism in a transtensive/transform setting: an example from Faial Island (Azores, Portugal). Geol Soc Am Bull 126:164–181CrossRefGoogle Scholar
  90. Tzanis A, Makropoulos K (1999) Magnetotellurics and seismotectonics in the analysis of active domains: an essential combination? Phys Chem Earth A 24:841–847CrossRefGoogle Scholar
  91. Wadge G, Burt L (2011) Stress field control of eruption dynamics at a rift volcano: Nyamuragira, D. R. Congo. J Volcanol Geotherm Res 207:1–15CrossRefGoogle Scholar
  92. Walker GPL (1999) Volcanic rift zones and their intrusion swarms. J Volcanol Geotherm Res 94:21–34CrossRefGoogle Scholar
  93. Watson G (1983) Large sample theory of the Langevin distributions. J Stat Plan Inference 8:245–256CrossRefGoogle Scholar
  94. Weston FS (1964) List of recorded volcanic eruptions in the Azores with brief reports. Bol Mus Lab Min Geol Fac Ciên Lisboa 10:3–18Google Scholar
  95. Wright TJ, Sigmundsson F, Pagli C, Belachew M, Hamling IJ, Brandsdóttir B, Keir D, Pedersen R, Ayele A, Ebinger C, Einarsson P, Lewi E, Calais E (2012) Geophysical constraints on the dynamics of spreading centres from rifting episodes on land. Nat Geosci 5:242–250CrossRefGoogle Scholar
  96. Zanon V (2015) Conditions for mafic magma storage beneath fissure zones at oceanic islands. The case of São Miguel island (Azores archipelago). In: Caricchi L, Blundy JD (eds) Chemical, physical and temporal evolution of magmatic systems. GSL Special Publication 442. doi: 10.1144/SP422.4
  97. Zanon V, Frezzotti ML (2013) Magma storage and ascent conditions beneath Pico and Faial islands (Azores Islands): a study on fluid inclusions. Geochem Geophys Geosyst 14:3494–3514CrossRefGoogle Scholar
  98. Zanon V, Pimentel A (2015) Spatio-temporal constraints on magma storage and ascent conditions in a transtensional tectonic setting: the case of the Terceira Island (Azores). Am Mineral 100:795–805CrossRefGoogle Scholar
  99. Zanon V, Kueppers U, Pacheco JM, Cruz I (2013) Volcanism from fissure zones and central volcanoes: geochemical processes in multiple feeding systems. The case study of Faial Island—Azores archipelago. Geol Mag 150:536–555CrossRefGoogle Scholar
  100. Zbyszewski G (1963) Les phénomènes volcaniques modernes dans l'archipel des Açores. Com dos Serviços Geológicos de Portugal 47Google Scholar
  101. Zbyszewski G, Medeiros AC, Ferreira OV, Assunção CT (1971) Carta geológica de Portugal, na escala de 1/50 000. Notícia explicativa da folha da ilha Terceira. Serviços Geológicos de PortugalGoogle Scholar
  102. Zijderveld JDA (1967) A.C. demagnetization of rocks: analysis of results. In: Collinson D, Creer K, Runcorn S (eds) Methods in paleomagnetism. Elsevier, Amsterdam, pp 254–286Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • A. Pimentel
    • 1
    • 2
  • V. Zanon
    • 2
    • 3
  • L. V. de Groot
    • 4
  • A. Hipólito
    • 2
  • A. Di Chiara
    • 5
  • S. Self
    • 6
  1. 1.Centro de Informação e Vigilância Sismovulcânica dos AçoresPonta DelgadaPortugal
  2. 2.Centro de Vulcanologia e Avaliação de Riscos GeológicosUniversity of the AzoresPonta DelgadaPortugal
  3. 3.Institut de Physique du Globe de ParisParisFrance
  4. 4.Paleomagnetic Laboratory Fort Hoofddijk, Department of Earth SciencesUtrecht UniversityUtrechtThe Netherlands
  5. 5.School of Geography, Earth and EnvironmentPlymouth UniversityPlymouthUK
  6. 6.Department of Earth and Planetary ScienceUniversity of CaliforniaBerkeleyUSA

Personalised recommendations