Bulletin of Volcanology

, 78:26 | Cite as

The effects of the host-substrate properties on maar-diatreme volcanoes: experimental evidence

  • Élodie Macorps
  • Alison H. Graettinger
  • Greg A. Valentine
  • Pierre-Simon Ross
  • James D. L. White
  • Ingo Sonder
Research Article


While the relationship between the host-substrate properties and the formation of maar-diatreme volcanoes have been investigated in the past, it remains poorly understood. In order to establish the effects of the qualitative host-substrate properties on crater depth, diameter, morphological features, and sub-surface structures, we present a comparison of four campaigns of experiments that used small chemical explosives buried in various geological media to simulate the formation of maar-diatremes. Previous results from these experiments have shown that primary variations in craters and sub-surface structures are related to the scaled depth (physical depth divided by cube root of blast energy). Our study reveals that single explosions at optimal scaled depths in stronger host materials create the largest and deepest craters with steep walls and the highest crater rims. For single explosions at deeper than optimal scaled depths, the influence of material strength is less obvious and non-linear for crater depth, and non-existent for crater diameter, within the range of the experiments. For secondary and tertiary blasts, there are no apparent relationships between the material properties and the crater parameters. Instead, the presence of pre-existing craters influences the crater evolution. A general weakening of the materials after successive explosions can be observed, suggesting a possible decrease in the host-substrate influence even at optimal scaled depth. The results suggest that the influence of the host-substrate properties is important only in the early stage of a maar-diatreme (neglecting post-eruptive slumping into the open crater) and decreases as explosion numbers increase. Since maar-diatremes reflect eruptive histories that involve tens to hundreds of individual explosions, the influence of initial substrate properties on initial crater processes could potentially be completely lost in a natural system.


Maar Diatreme Substrate Crater Morphology Phreatomagmatic 



This work was supported by the INVOGE Exchange Program (Élodie Macorps), by the US National Science Foundation (grant EAR 1420455 to Dr. Greg Valentine), and by the University at Buffalo 3E fund. The authors thank Valerio Acocella, Karoly Nemeth, and Olivier Roche for their constructive and helpful reviews of the manuscript.


  1. Auer A, Martin U, Nemeth K (2007) The Fekete-hegy (Balaton Highland Hungary) “soft-substrate” and “hard-substrate” maar volcanoes in an aligned volcanic complex—implications for vent geometry, subsurface stratigraphy and the palaeoenvironmental setting. J Volcanol Geotherm Res 159:225–245. doi: 10.1016/j.jvolgeores.2006.06.008 CrossRefGoogle Scholar
  2. Coulomb CA (1773) Sur l’application des règles de maximis et minimis à quelques problèmes de statique, relatifs à l’architecture, in Mémoires de mathématiques et de physique, vol. 7. Académie Royale des Sciences de Paris, Paris, p 343–382Google Scholar
  3. Delpit S, Ross P-S, Hearn BC (2014) Deep-bedded ultramafic diatremes in the Missouri River Breaks volcanic field, Montana, USA: 1 km of syn-eruptive subsidence. Bull Volcanol 76:832. doi: 10.1007/s00445-014-0832-8 CrossRefGoogle Scholar
  4. Fredlund DG, Morgenstern NR, Widger RA (1978) The shear strength of unsaturated soils. Can Geotech J 15:313–321CrossRefGoogle Scholar
  5. Geshi N, Németh K, Oikawa T (2011) Growth of phreatomagmatic explosion craters: a model inferred from Suoana crater in Miyakejima Volcano, Japan. J Volcanol Geotherm Res 201:30–38. doi: 10.1016/j.jvolgeores.2010.11.012 CrossRefGoogle Scholar
  6. Goto A, Taniguchi H, Yoshida M, Ohba T, Oshima H (2001) Effects of explosion energy and depth to the formation of blast wave and crater: field explosion experiment for the understanding of volcanic explosion. J Geophys Res 28:4287–4290Google Scholar
  7. Graettinger AH, Valentine GA, Sonder I, Ross P-S, White JDL, Taddeucci J (2014) Maar-diatreme geometry and deposits: subsurface blast experiments with variable explosion depth. Geochem Geophys Geosyst. doi: 10.1002/2013GC005198, 15 Google Scholar
  8. Graettinger AH, Valentine GA, Sonder I, Ross P-S, White JDL (2015) Facies distribution of ejecta in analog tephra rings from experiments with single and multiple subsurface explosions. Bull Volcanol 77:66–78. doi: 10.1007/s00445-015-0951x- CrossRefGoogle Scholar
  9. Hornbaker DJ, Albert R, Albert I, Barabási A-L, Schiffer P (1997) What keeps sandcastles standing? Nature 387:765CrossRefGoogle Scholar
  10. Kim T-H (2001) Moisture-induced tensile strength and cohesion in sand. Dissertation, University of Colorado, Colorado, USAGoogle Scholar
  11. Lefebvre NS, White JDL, Kjarsgaard BA (2013) Unbedded diatreme deposits reveal maar-diatreme-forming eruptive processes: standing Rocks West, Hopi Buttes, Navajo Nation, USA. Bull Volcanol 75:739CrossRefGoogle Scholar
  12. Lorenz V (1973) On the formation of maars. Bull Volcanol 37:183–204CrossRefGoogle Scholar
  13. Lorenz V (1986) On the growth of maars and diatremes and its relevance to the formation of tuff rings. Bull Volcanol 48:265–274CrossRefGoogle Scholar
  14. Lorenz V (2003) Maar-diatreme volcanoes, their formation, and their setting in hard-rock or soft-rock environments. GeoLines 15:72–83Google Scholar
  15. Palladino DM, Valentine GA, Scottili G, Taddeucci J (2015) Maars to calderas: end-members on a spectrum of explosive volcanic depressions. Front Earth Sci 3:36. doi: 10.3389/feart.2015.00036 CrossRefGoogle Scholar
  16. Ross P-S, Delpit S, Haller MJ, Németh K, Corbella H (2011) Influence of the substrate on maar-diatreme volcanoes—an example of a mixed setting from the Pali Aike Volcanic Field, Argentina. J Volcanol Geotherm Res 201:253–271. doi: 10.1016/j.jvolgeores.2010.07.018 CrossRefGoogle Scholar
  17. Ross P-S, White JDL, Valentine GA, Taddeucci J, Sonder I, Andrews R (2013) Experimental birth of a maar-diatreme volcano. J Volcanol Geotherm Res 260:1–12. doi: 10.1016/j.jvolgeores.2013.05.005 CrossRefGoogle Scholar
  18. Singhal BBS, Gupta RP (2010) Applied hydrogeology of fractured rocks, 2nd edn. Springer Science & Business Media, New York, pp 13–33CrossRefGoogle Scholar
  19. Sonder I, Graettinger AH, Valentine GA (2015) Scaling multiblast craters: general approach and application to volcanic craters. J Geophys Res Solid Earth 120:6141–6158. doi: 10.1002/2015JB012018 CrossRefGoogle Scholar
  20. Sweeney MR, Valentine GA (2015) Transport and mixing dynamics from explosions in debris-filled volcanic conduits: numerical results and implications for maar-diatreme volcanoes. Earth Planet Sci Lett 425:64–76. doi: 10.1016/j.epsl.2015.05.038 CrossRefGoogle Scholar
  21. Taddeucci J, Valentine GA, Sonder I, White JDL, Ross P-S, Scarlato P (2013) The effect of pre-existing crater on the initial development of explosive volcanic eruptions: an experimental investigation. Geophys Res Lett 40:507–510. doi: 10.1002/grl.50176 CrossRefGoogle Scholar
  22. Valentine GA, van Wyk de Vries B (2014) Unconventional maar diatreme and associated intrusions in soft sediment-hosted Mardoux structure (Gergovie, France). Bull Volcanol 76:807CrossRefGoogle Scholar
  23. Valentine GA, White JDL (2012) Revised conceptual model for maar-diatremes: subsurface processes, energetics, and eruptive products. Geology 40:1111–1114. doi: 10.1130/G33411.1 CrossRefGoogle Scholar
  24. Valentine GA, White JDL, Ross P-S, Amin J, Taddeucci J, Sonder I, Johnson PJ (2012) Experimental craters formed by single and multiple buried explosions and implications for volcanic craters with emphasis on maars. Geophys Res Lett 39:L20301. doi: 10.1029/2012GL053716 CrossRefGoogle Scholar
  25. Valentine GA, Graettinger AH, Sonder I (2014) Explosion depths for phreatomagmatic eruptions. Geophys Res Lett 41:3045–3051. doi: 10.1002/2014GL060096 CrossRefGoogle Scholar
  26. Valentine GA, Graettinger AH, Macorps É, Ross P-S, White JDL, Döhring E, Sonder I (2015) Experiments with vertically and laterally migrating subsurface explosions with applications to the geology of phreatomagmatic and hydrothermal explosion craters and diatremes. Bull Volcanol 77:1–17. doi: 10.1007/s00445-015-0901-7 CrossRefGoogle Scholar
  27. Van Mechelen JLM (2004) Strength of moist sand controlled by surface tension for tectonic analogue modelling. Tectonophysics 384:275–284. doi: 10.1016/j.tecto.2004.04.003 CrossRefGoogle Scholar
  28. White JDL, Ross P-S (2011) Maar-diatreme volcanoes: a review. J Volcanol Geotherm Res 201:1–29. doi: 10.1016/j.jvolgeores.2011.01.010 CrossRefGoogle Scholar
  29. Wohletz K, Heiken G (1992) Volcanology and geothermal energy. University of California Press, Berkeley, p 432Google Scholar
  30. Zhao Z, Liu C, Brogliato B (2008) Energy dissipation and dispersion effects in granular media. Phys Rev E 78:031307. doi: 10.1103/PhysRevE.78.031307 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Élodie Macorps
    • 1
  • Alison H. Graettinger
    • 2
  • Greg A. Valentine
    • 2
  • Pierre-Simon Ross
    • 3
  • James D. L. White
    • 4
  • Ingo Sonder
    • 2
  1. 1.School of GeosciencesUniversity of South FloridaTampaUSA
  2. 2.Department of Geology and Center for Geohazard StudiesState University of New York at BuffaloBuffaloUSA
  3. 3.Centre Eau Terre EnvironnementInstitut National de la Recherche ScientifiqueQuébecCanada
  4. 4.Geology DepartmentUniversity of OtagoDunedinNew Zealand

Personalised recommendations