Bulletin of Volcanology

, 78:14 | Cite as

Dynamic implications of ridges on a debris avalanche deposit at Tutupaca volcano (southern Peru)

  • Patricio ValderramaEmail author
  • Olivier Roche
  • Pablo Samaniego
  • Benjamin van Wyk de Vries
  • Karine Bernard
  • Jersy Mariño
Research Article


Catastrophic volcanic landslides can involve different parts of a volcano that can be incorporated into any resulting debris avalanche. The different material properties may influence the mechanical behaviour and, hence, the emplacement mechanisms of the different avalanche units. We present data from a coupled hydrothermal- and magmatic-related volcanic landslide at Tutupaca volcano (Peru). Around ad 1802, the hydrothermal system under Tutupaca’s growing dacite dome failed, creating a debris avalanche that triggered a large explosive eruption. A typical debris avalanche hummocky unit is found, formed out of rock from the dome foot and the underlying hydrothermally altered lavas. It is covered by a more widespread and remarkable deposit that contains remnants of the hot dome core and the inner hydrothermal material. This deposit has ridges 20–500-m long, 10–30-m wide and 1–5-m high, regularly spaced and that fan slightly outward. Cross sections exposed within the ridges reveal coarser cores and finer troughs, suggesting grain size segregation during emplacement. Ridge morphology and granulometry are consistent with fingering known to occur in granular flows. The ridges are also associated with large blocks that have evidence of differential movement compared with the rest of the flowing mass. The presence of both ridged and hummocky deposits in the same event shows that, as different lithologies combine and collapse sequentially, materials with different mechanical properties can coexist in one landslide, leading to contrasting emplacement dynamics. The different structures thus highlight the complexity of such hazardous volcanic events and show the difficulty we face with modelling them.


Tutupaca volcano Debris avalanche Flank collapse Ridges Granular fingering 



This work is part of a Peruvian–French cooperation programme carried out between the Instituto Geológico, Minero y Metalúrgico (INGEMMET) and the French Institut de Recherche pour le Développement (IRD). It was partially founded by the JEAI project financed by the IRD. This research was also supported by the French Government Laboratory of Excellence initiative n°ANR-10-LABX-0006, the Région Auvergne and the European Regional Development Fund. This is Laboratory of Excellence ClerVolc contribution n° 186. We thank the constructive reviews of A. Dufresne, an anonymous reviewer, and the Associate Editor L. Capra.


  1. Andrade D, van Wyk de Vries B (2010) Structural analysis of the early stages of catastrophic stratovolcano flank-collapse using analogue models. Bull Volcanol 72:771–789CrossRefGoogle Scholar
  2. Belousov A, Belousova M, Voight B (1999) Multiple edifice failures, debris avalanches and associated eruptions in the Holocene history of Shiveluch volcano, Kamchatka, Russia. Bull Volcanol 61:324–342CrossRefGoogle Scholar
  3. Blott SJ, Pye K (2001) GRADISTAT: a grain size distribution and statistics package for the analysis of unconsolidated sediments. Earth Surf Process Landf 26:1237–1248CrossRefGoogle Scholar
  4. Clavero JE, Sparks RSJ, Huppert HE (2002) Geological constraints on the emplacement mechanism of the Parinacota avalanche, northern Chile. Bull Volcanol 64:40–54. doi: 10.1007/s00445-001-0183-0 CrossRefGoogle Scholar
  5. Dufresne A, Davies TR (2009) Longitudinal ridges in mass movement deposits. Geomorphology 105:171–181CrossRefGoogle Scholar
  6. Eppler DB, Fink J, Fletcher R (1987) Rheologic properties and kinematics of emplacement of the Chaos Jumbles rockfall avalanche,Lassen Volcanic National Park, California. J Geophys Res 92:3623–3633CrossRefGoogle Scholar
  7. Félix G, Thomas N (2004) Relation between dry granular flow regimes and morphology of deposits: formation of levées in pyroclastic deposits. Earth Planet Sci Lett 221:197–213CrossRefGoogle Scholar
  8. Glicken H (1991) Sedimentary architecture of large volcanic-debris avalanches. In: Smith GA, Fisher RV (eds) Sedimentation in volcanic settings 45: 99–106Google Scholar
  9. Glicken H (1998) Rockslide-debris avalanche of May 18, 1980, Mount St. Helens Volcano, Washington. Bull Geol Soc Jpn 49:55–106Google Scholar
  10. Gray JMNT, Kokelaar BP (2010) Large particle segregation, transport and accumulation in granular free-surface flows. J Fluid Mech 652:105–137CrossRefGoogle Scholar
  11. Iverson RM (1997) The physics of debris flows. Rev Geophys 35:245–296CrossRefGoogle Scholar
  12. Jessop DE, Kelfoun K, Labazuy P, Mangeney A, Roche O, Tilliere J-L, Trouillete M, Thibault G (2012) LiDAR derived morphology of the 1993 Lascar pyroclastic flow deposits, and implication for flow dynamics and rheology. J Volcanol Geotherm Res 245–246:81–97. doi: 10.1016/j.jvolgeores.2012.06.030 CrossRefGoogle Scholar
  13. Johnson CG, Kokelaar BP, Iverson RM, Logan M, LaHusen RG, Gray JMNT (2012) Grain-size segregation and levee formation in geophysical mass flows. J Geophys Res 117:F01032. doi: 10.1029/2011JF002185 Google Scholar
  14. Kelfoun K, Druitt TH (2005) Numerical modeling of the emplacement of Socompa rock avalanche, Chile. J Geophys Res 110, B12202. doi: 10.1029/2005JB003758 CrossRefGoogle Scholar
  15. Kelfoun K, Druitt TH, van Wyk de Vries B, Guilbaud MN (2008) Topographic reflection of the Socompa debris avalanche, Chile. Bull Volcanol 70:1169–1187. doi: 10.1007/s00445-008-0201-6 CrossRefGoogle Scholar
  16. Legros F (2002) The mobility of long-runout landslides. Eng Geol 63:301–331CrossRefGoogle Scholar
  17. Lipman PW, Mullineaux DR (Eds) (1981) The 1980 eruptions of Mount St. Helens, Washington (No. 1250). US Dept. of the Interior, US Geological SurveyGoogle Scholar
  18. Lube G, Cronin SJ, Platz T, Freundt A, Procter JN, Henderson C, Sheridan MF (2007) Flow and deposition of pyroclastic granular flows: a type example from the 1975 Ngauruhoe eruption, New Zealand. J Volcanol Geotherm Res 161:165–186CrossRefGoogle Scholar
  19. Luchitta BKA (1978) Large landslide on mars: geological society of America bulletin 89:1601–1609Google Scholar
  20. Mallogi F, Lanuza J, Andreotti B, Clement E (2006) Erosion waves: transverse instabilities and fingering. Europhys Lett 75:825CrossRefGoogle Scholar
  21. Mangeney A, Bouchut F, Thomas N, Vilotte JP, Bristeau MO (2007) Numerical modeling of self-channelling granular flows and of their levée channel deposits. J Geophys Res Solid Earth 112, F02017CrossRefGoogle Scholar
  22. McSaveney MJ (1978) Sherman Glacier rock avalanche, Alaska, U.S.A. Rockslides and Avalanches. Elsevier, Amsterdam, pp 197–258Google Scholar
  23. Naranjo JA, Francis P (1987) High velocity debris avalanche at Lastarria Volcano in the North Chilean Andes. Bull Volcanol 49:509–514CrossRefGoogle Scholar
  24. Paguican EMR, van Wyk de Vries B, Lagmay AMF (2014) Hummocks: how they from in and how they evolve in rockslide-debris avalanches. Landslides 11:67–80CrossRefGoogle Scholar
  25. Pouliquen O, Vallance JW (1999) Segregation induced instabilities of granular fronts. Chaos 9:621–630CrossRefGoogle Scholar
  26. Pouliquen O, Delour J, Savage SB (1997) Fingering in granular flows. Nature 386:816–817CrossRefGoogle Scholar
  27. Richards JP, Villeneuve M (2001) The Llullaillaco volcano, northwest Argentina: construction by Pleistocene volcanism and destruction by sector collapse. J Volcanol Geotherm Res 105:77–105CrossRefGoogle Scholar
  28. Roverato M, Cronin S, Procter J, Capra L (2015) Textural features as indicators of debris avalanche transport and emplacement, Taranaki volcano. Geol Soc Am Bull 127:3–18CrossRefGoogle Scholar
  29. Samaniego P, Valderrama P, Mariño J, de Wyk de Vries B, Roche O, Manrique N, Chedeville C, Fidel L, Malnati J (2015) The historical (218 ± 14 aAP) explosive eruption of Tutupaca volcano (Southern Peru). Bull Volcanol 77:51. doi: 10.1007/s00445-015-0937-8 CrossRefGoogle Scholar
  30. Shaller PJ (1991) Analysis of a large moist landslide, Lost River range, Idaho, USA. Can Geotech J 28:584–600CrossRefGoogle Scholar
  31. Shea T, van Wyk de Vries B (2008) Structural analysis and analogue modelling of the kinematics and dynamics of large-scale rock avalanches. Geosphere 4:657–686CrossRefGoogle Scholar
  32. Siebert L (1984) Large volcanic debris avalanches: characteristics of source areas, deposits, and associated eruptions. J Volcanol Geotherm Res 22:163–197CrossRefGoogle Scholar
  33. Siebert L, Glicken H, Ui T (1987) Volcanic hazards from Bezymianny- and Bandaï-type eruptions. Bull Volcanol 49:435–459CrossRefGoogle Scholar
  34. van Wyk de Vries B, Davies T (2014) Landslides, debris avalanches and volcanic gravitational deformation. In: Sigurdsson H, Houghton B, McNutt S, Rymer H, Stix J (eds) Encyclopedia of volcanoes, 2nd edition. ElsevierGoogle Scholar
  35. van Wyk de Vries B, Self S, Francis PW, Keszthelyi L (2001) A gravitational spreading origin for the Socompa debris avalanche. J Volcanol Geotherm Res 105:225–247CrossRefGoogle Scholar
  36. Voight B, Komorowski J-C, Norton GR, Belousov AB, Belousova M, Boudon G, Francis PW, Franz W, Heinrich P, Sparks RSJ, Young SR (2002) The 26 December (Boxing Day) 1997 sector collapse and debris avalanche at Soufriere Hills Volcano, Montserrat, W.I. In: Druitt TH, Kokelaar BP (eds) The eruption of Soufriere Hills Volcano, Montserrat, from 1995 to 1999. Mem Geol Soc London 21: 363–407Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Patricio Valderrama
    • 1
    • 2
    Email author
  • Olivier Roche
    • 2
  • Pablo Samaniego
    • 2
  • Benjamin van Wyk de Vries
    • 2
  • Karine Bernard
    • 2
  • Jersy Mariño
    • 1
  1. 1.Observatorio Vulcanológico del INGEMMET (OVI)San BorjaPeru
  2. 2.Laboratoire Magmas et VolcansUniversité Blaise Pascal - CNRS - IRD, OPGCAubièreFrance

Personalised recommendations