Bulletin of Volcanology

, 78:9 | Cite as

A debris avalanche at Süphan stratovolcano (Turkey) and implications for hazard evaluation

  • Yavuz ÖzdemirEmail author
  • İsmail Akkaya
  • Vural Oyan
  • Karim Kelfoun
Research Article


The Quaternary Süphan debris avalanche deposit is located in Eastern Anatolia, Turkey. The avalanche formed by the sector collapse of a major stratovolcano towards the north, possibly during a single catastrophic event. The deposit has an estimated volume of 4 km3 and ran out over 25 km to cover an area of approximately 200 km2. Products of the collapse are overlain by younger eruptive units from the Süphan volcano. We have tested the numerical code VolcFlow to first reproduce the emplacement of the Quaternary Süphan debris avalanche and then to develop a hazard assessment for potential future sector collapses and subsequent emplacement of debris avalanches and associated tsunami. The numerical model captures the main features of the propagation process, including travel distance, lateral spread, and run up. The best fit obtained for the existing flow has a constant retarding stress of 50 kPa and a collapse scar volume of 4 km3. Analysis of potential future collapse scenarios reveals that northern sector debris avalanches (up to 6 km3) could affect several towns. In the case of a sector collapse towards the south, a tsunami will reach the city of Van and several of the biggest towns on the southern shoreline of Lake Van. Cities most affected by the larger amplitude waves would be Van, Edremit, Gevaş, Tatvan, and, to a lesser extent, Erciş, with wave amplitudes (first waves after the onset of the collapse) between 8 and 10 m.


Süphan stratovolcano Eastern anatolia Debris avalanche Tsunami Volcflow 



The constructive reviews of Nilgün Güleç, R.A. Brooker, and JC Komorowski and editors Jacopo Taddeucci and James D.L. White considerably improved the manuscript and are gratefully acknowledged.


  1. Angus DA, Wilson DC, Sandvol E, Ni JF (2006) Lithospheric structure of the Arabian and Eurasian collision zone in eastern Turkey from S-wave receiver functions. Geophys J Int 166:1335–1346CrossRefGoogle Scholar
  2. Bernard J, Kelfoun K, Le Pennec JL, Vargas SV (2014) Pyroclastic flow erosion and bulking processes: comparing field-based vs. modeling results at Tungurahua volcano, Ecuador. Bull Volcanol 76:1–16Google Scholar
  3. Borselli L, Capra L, Sarocchi D, De la Cruz-Reyna S (2011) Flank col- 406 lapse scenarios at volcan de Colima, Mexico: a relative instability analysis. J Volcanol Geotherm Res 208:51–65CrossRefGoogle Scholar
  4. Capra L, Norini G, Groppelli G, Macías JL, Arce JL (2008) Volcanic hazard zonation of Nevado de Toluca volcano. J Volcanol Geotherm Res 176:469–484CrossRefGoogle Scholar
  5. Chen H, Lee CF (2000) Numerical simulation of debris flows. Can Geotech J 37(1):146–160CrossRefGoogle Scholar
  6. Chen H, Lee CF (2003) A dynamic model for rainfall-induced landslides on natural slopes. Geomorphology 51:269–288CrossRefGoogle Scholar
  7. Crosta GB, Chen H, Lee CF (2004) Replay of the 1987 Val Pola landslide, Italian alps. Geomorphology 60(1–2):127–146CrossRefGoogle Scholar
  8. Crosta GB, Imposimato S, Roddeman D (2009) Numerical modelling of entrainment/ deposition in rock and debris-avalanches. Eng Geol 109(1–2):135–145CrossRefGoogle Scholar
  9. Cukur D, Krastel S, Schmincke HU, Sumita M, Çağatay MN, Meydan AF, Damcı E, Stockhecke M (2014) Seismic stratigraphy of lake Van, eastern Turkey. Quat Sci Rev 104:63–84CrossRefGoogle Scholar
  10. Dade WB, Huppert HE (1998) Long-runout rockfalls. Geology 26:803–806CrossRefGoogle Scholar
  11. Degens ET, Wong HK, Kempe S, Kurtmann F (1984) A geological study of Lake Van, eastern Turkey. Geol Rundsch 73(2):701–734CrossRefGoogle Scholar
  12. Devoli G, Cepeda J, Kerle N (2009) The 1998 casita volcano flank failure revisited—new insights into geological setting and failure mechanisms. Eng Geol 105:65–83CrossRefGoogle Scholar
  13. Giachetti T, Paris R, Kelfoun K, José Pérez-Torrado F (2011) Numerical modelling of the tsunami triggered by the Güìmar debris avalanche, Tenerife (Canary Islands): comparison with field-based data. Mar Geol 284:189–202CrossRefGoogle Scholar
  14. Glicken H (1982) Criteria for identification of large volcanic debris avalanches (abstr). EOS Trans Am Geophys Union 63:1141Google Scholar
  15. Glicken H (1986) Rockslide–debris avalanche of May 18, 1980, Mount St. Helens volcano. PhD dissertation, Univ Santa Barbara, 303 ppGoogle Scholar
  16. Glicken H (1996) Rockslide-debris avalanche of the May 18, 1980, Mount St. Helens Volcano, Washington, U.S. Geol. Surv. Open-file Rep., 96–677Google Scholar
  17. Heinrich P, Boudon G, Komorowski JC, Sparks RSJ, Herd R, Voight B (2001) Numerical simulation of the December 1997 debris avalanche in Montserrat. Geophys Res Lett 28(13):2529–2532CrossRefGoogle Scholar
  18. Hungr O, Evans SG (1996) Rock avalanche runout prediction using a dynamic model, Proc. 7th Int. Symp. on Landslides. Int Symp on Landslides 1:233–238Google Scholar
  19. Hungr O, Evans SG (2004) Entrainment of debris in rock avalanches: an analysis of a long run-out mechanism. Geol Soc Am Bull 116:1240–1252CrossRefGoogle Scholar
  20. Karaoğlu Ö, Özdemir Y, Tolluoğlu AÜ, Karabıyıkoğlu M, Köse O, Froger JL (2005) Stratigraphy of the volcanic products around Nemrut Caldera: implications for reconstruction of the caldera formation. Turk J Earth Sci 14:123–143Google Scholar
  21. Keating BH, McGuire WJ (2000) Island edifice failures and associated tsunami hazards. Pure Appl Geophys 157:899–955CrossRefGoogle Scholar
  22. Kelfoun K, Druitt TH (2005) Numerical modeling of the emplacement of Socompa rock avalanche, Chile. J Geophys Res 110, B12202CrossRefGoogle Scholar
  23. Kelfoun K, Giachetti T, Labazuy P (2010) Landslide-generated tsunamis at Réunion Island. J Geophys Res 115, F04012. doi: 10.1029/2009JF001381 Google Scholar
  24. Kerle N, van Wyk de Vries B (2001) The 1998 debris avalanche at Casita volcano, Nicaragua: investigation of structural deformation as the cause of slope instability using remote sensing. J Volcanol Geotherm Res 105(1–2):49–63CrossRefGoogle Scholar
  25. Kerle N, van Wyk de Vries B, Oppenheimer C (2003a) New insight into the factors leading to the 1998 flank collapse and lahar disaster at Casita volcano, Nicaragua. Bull Volcanol 65:331–345CrossRefGoogle Scholar
  26. Kerle N, Froger J-L, Oppenheimer C, van Wyk de Vries B (2003b) Remote sensing of the mudflow at Casita volcano, Nicaragua. Int J Remote Sens 24(23):4791–4816CrossRefGoogle Scholar
  27. Le Friant A, Heinrich P, Deplus C, Boudon G (2003) Numerical simulation of the last flank- collapse event of Montagne Pelee, Martinique, lesser Antilles. Geophys Res Lett 30(2):1034CrossRefGoogle Scholar
  28. Litt T, Krastel S, Sturm M, Kipfer R, Örcen S, Heumann G, Franz SO, Ülgen UB, Niessen F (2009) ‘PALEOVAN’, international continental scientific drilling program (ICDP): site survey results and perspectives. Quat Sci Rev 28:1555–1567CrossRefGoogle Scholar
  29. Mc Guire W (1996) Volcano instability: a review of contemporary themes. Geol Soc Lond Spec Publ 110:1–23CrossRefGoogle Scholar
  30. McDougall S, Hungr H (2004) A model for the analysis of rapid landslide motion across three-dimensional terrain. Can Geotech J 41:1084–1097CrossRefGoogle Scholar
  31. Ogata A, Nakamura K, Nagao K, Akimoto S (1989) K-Ar age of young volcanic rocks of Turkey. Annual meeting of the Geochemical Society of Japan, ICO 3Google Scholar
  32. Özdemir Y, Güleç N (2014) Geological and geochemical evolution of the quaternary Süphan stratovolcano, eastern Anatolia, Turkey: evidence for the lithosphere-asthenosphere interaction in post-collisional volcanism. J Petrol 55:37–62CrossRefGoogle Scholar
  33. Özdemir Y, Karaoğlu Ö, Tolluoğlu AÜ, Guleç N (2006) Volcanostratigraphy and petrogenesis of the Nemrutstratovolcano (East Anatolian Plateau): the most recent post-collisional volcanism in Turkey. Chem Geol 226:189–211CrossRefGoogle Scholar
  34. Özdemir Y, Blundy JD, Güleç N (2011) The importance of fractional crystallization and magma mixing in controlling chemical differentiation at Süphan stratovolcano, eastern Anatolia, Turkey. Contrib Mineral Petrol 162:573–597CrossRefGoogle Scholar
  35. Özdemir Y, Oyan V, Güleç N (2012) Süphan Volkanik Çığı’nın Jeolojik Özellikleri Yüzüncü Yıl Üniversitesi Fen Bilimleri Enstitüsü Dergisi. J Ins Nat App Scie 17(1):1–5Google Scholar
  36. Özvan A, Dinçer İ, Akın M, Oyan V, Tapan M (2015) Experimental studies on ignimbrite and the effect of lichens and capillarity on the deterioration of Seljuk Gravestones. Eng Geol 185:81–95CrossRefGoogle Scholar
  37. Pınar A, Honkura Y, Kuge K, Matsushima M, Sezgin N, Yilmazer M, Öğütçü Z (2007) Source mechanism of the 2000 November 15 Lake Van earthquake (Mw = 5.6) in eastern Turkey and its seismotectonic implications. Geophys J Int 170(2):749–763CrossRefGoogle Scholar
  38. Pitman EB, Patra AK, Bauer A, Sheridan MF, Bursik MI (2003) Computing debris flows and landslides. Phys Fluids 15:3638–3646CrossRefGoogle Scholar
  39. Pouget S, Davies T, Kennedy B, Kelfoun K, Leyrit H (2012) Numerical modelling: a useful tool to simulate collapsing volcanoes. Geol Today 28:59–63CrossRefGoogle Scholar
  40. Savage SB, Hutter K (1989) The motion of a finite mass of granular material down a rough incline. J Fluid Mech 199:177–215CrossRefGoogle Scholar
  41. Schmincke HU, Sumita M, Paleovan scientific team (2014) Impact of volcanism on the evolution of Lake Van (eastern Anatolia) III: periodic (Nemrut) vs. episodic (Süphan) explosive eruptions and climate forcing reflected in a tephra gap between ca. 14 ka and ca. 30 ka. J Volcanol Geotherm Res 285:195–213CrossRefGoogle Scholar
  42. Schuster RL, Crandell DR (1984) Catastrophic debris avalanches from volcanoes. Proc. IV hit. Symp. on landslide. Toronto 1:567–572Google Scholar
  43. Scott KM, Macías JL, Naranjo JA, Rodríguez S, McGeehin JP (2001) Catastrophic debris flows transformed from landslides in volcanic terrains: mobility, hazard, assessment, and mitigation strategies. U.S. Geological Survey Professional Paper 1630Google Scholar
  44. Scott KM, Vallance JW, Kerle N, Macías JL, Strauch W, Devoli G (2005) Catastrophic precipitation-triggered lahar at casita volcano, Nicaragua: occurrence, bulking and transformation. Earth Surf 30:59–79CrossRefGoogle Scholar
  45. Şengör AMC, Özeren S, Zor E, Genc T (2003) East Anatolian high plateau as a mantle supported, N-S shortened modal structure. Geophys Res Lett 30(24):8045. doi: 10.1029/2003GL017858 CrossRefGoogle Scholar
  46. Sheridan MF, Stinton AJ, Patra A, Pitman EB, Bauer A, Nichita CC (2005) Evaluating Titan 2D mass-flow model using the 1963 little Tahoma peak avalanches, Mount Rainier, Washington. J Volcanol Geotherm Res 139(1–2):89–102CrossRefGoogle Scholar
  47. Siebert L (1984) Large volcanic debris avalanches: characteristics of source areas, deposits, and associated eruptions. J Volcanol Geotherm Res 22:163–197CrossRefGoogle Scholar
  48. Siebert L (2002) Landslides resulting from structural failure of volcanoes. In: Evans SG, DeGraff JV (eds) Catastrophic landslides: effect, occurrence, and mechanisms. Geological Society of America Reviews in Engineering Geology, Boulder XV, pp 209–235CrossRefGoogle Scholar
  49. Siebert L, Glicken H, Ui T (1987) Volcanic hazards from Bezymianny- and Bandai-type eruptions. Bull Volcanol 49:435–459CrossRefGoogle Scholar
  50. Sigurdsson H, Houghton B, McNutt SR et al (eds) (2000) Encyclopedia of volcanoes. CA, Academic Press, San DiegoGoogle Scholar
  51. Sosio R, Crosta GB (2009) Rheology of concentrated granular suspensions and possible implications for debris flow modeling. Water Resour Res 45(W03412):16Google Scholar
  52. Sosio R, Crosta GB, Hungr O (2011) Numerical modeling of debris avalanche propagation from collapse of volcanic edifices. Landslides 9:315–334CrossRefGoogle Scholar
  53. Stoopes GR, Sheridan MF (1992) Giant debris avalanches from the Colima volcanic complex, Mexico: implications for long-runout landslides (>100 km) and hazard assessment. Geology 20:299–302CrossRefGoogle Scholar
  54. Tinti S, Pagnoni G, Zaniboni F (2006) The landslides and tsunamis of the 30th of December 2002 in Stromboli analysed through numerical simulations. Bull Volcanol 68:462–479CrossRefGoogle Scholar
  55. Ui T (1983) Volcanic dry avalanche deposits-identification and comparison with non-volcanic debris stream deposits. In: Aramaki S, Kushiro I (eds). Arc Volcanism. Journal Volcanol Geotherm Res 18: 135–150Google Scholar
  56. Ui T (1989) Discrimination between debris avalanches and other volcaniclastic deposits. In: Latter, J.H. (Ed.), Volcanic Hazards. IAVCEI Proc. in Volcanology. Springer-Verlag, Heidelberg, 1: pp. 201–209Google Scholar
  57. Ui T, Takarada T and Yoshimoto M (2000) Debris avalanches, Encyclopedia of Volcanoes, H. Sigurdsson, ed., Academic Press, San Diego, California, pp. 617–626Google Scholar
  58. van Wyk de Vries B, Kerle N, Petley D (2000) A sector collapse forming at Casita volcano, Nicaragua. Geology 28:167–170CrossRefGoogle Scholar
  59. Voight B, Glicken H, Janda RJ, Douglass PM (1981) Catastrophic rockslide avalanche of May 18. In: Lipman P W, Mullineaux D R (eds) The 1980 eruptions of Mount St. Helens, Washington. U S Geol Surv Prof Pap 1250:347–348Google Scholar
  60. Voight B, Janda RJ, Glicken H, Douglass PM (1983) Nature and mechanics of the Mount St. Helens rockslide-avalanche of 18 May 1980. Geotechnique 33(3):243–273CrossRefGoogle Scholar
  61. Yılmaz Y, Güner Y, Şaroğlu F (1998) Geology of the quaternary volcanic centers of the east Anatolia. J Volcanol Geotherm Res 85:173–210CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Yavuz Özdemir
    • 1
    Email author
  • İsmail Akkaya
    • 2
  • Vural Oyan
    • 3
  • Karim Kelfoun
    • 4
  1. 1.Department of Geological EngineeringYuzuncu Yıl UniversityVanTurkey
  2. 2.Department of Geophysical EngineeringYuzuncu Yıl UniversityVanTurkey
  3. 3.Department of Mining EngineeringYuzuncu Yıl UniversityVanTurkey
  4. 4.Laboratoire Magmas et VolcansUniversité Blaise PascalClermont-FerrandFrance

Personalised recommendations