Bulletin of Volcanology

, 78:5 | Cite as

Explosive eruptions from the interaction of magmatic and hydrothermal systems during flank extension: the Bellecombe Tephra of Piton de La Fournaise (La Réunion Island)

  • Michael H. Ort
  • Andrea Di Muro
  • Laurent Michon
  • Patrick Bachèlery
Research Article

Abstract

Piton de la Fournaise (La Réunion Island) is a very active, primarily effusive ocean-island volcano. The Bellecombe Tephra represents at least three explosive eruptions that occurred between about 5465 and 2971 calendar years BP. Near the margin of the present-day Enclos Fouqué caldera margin, two Bellecombe eruptions produced a sequence of two tuff breccias interbedded with tuff. The tuff breccias only reach a few hundred meters outside the current caldera margin. At Petite Carrière, an old scoria cone ~1 km from the Enclos Fouqué margin, these two deposits (the “lower Bellecombe Tephra”) are represented by two tuffs with incipient soil formation at the top of each. They are overlain by a third unit (the upper Bellecombe Tephra) made of bedded lapilli tuff and tuff, some reworked in small debris flows off the scoria cone. The lapilli increase in size and the beds in thickness southeastward, toward Chisny volcano and away from the Enclos Fouqué caldera. Deposits from the upper Bellecombe tephra are correlated to sites 5 km northwest of Petite Carrière and 6 km north of a postulated vent location on the north side of Chisny volcano. Distribution patterns of all Bellecombe tephra are consistent with eruption columns that did not rise above 8 km asl. The ash fraction of the Bellecombe Tephra contains three juvenile components: a dominant gray vitric basaltic ash, an oceanitic (olivine-rich basalt) ash, and pyroxene-bearing gabbro with a few percent glass. It also contains doubly terminated clear quartz grains, and olivine and rarer clinopyroxene crystals. The lower Bellecombe Tephra contains an altered brown ash, whereas a tan-yellow clay-rich ash is common in the upper unit. Lava flows of gray aphyric basalt and oceanite are exposed at the surface and preceded the Bellecombe eruptions, but the gabbro, quartz crystals, and hydrothermally altered grains indicate the involvement of the magma/hydrothermal system from 0.5- to 2-km depth. We propose that the three eruptions of the Bellecombe tephra were preceded by voluminous eruptions of lava flows that led to seaward-sliding mass movement of the volcano. This opened fractures that explosively depressurized the hydrothermal system and incorporated magma and gabbro, from the magma system and probably from rock along the fissure, in the ejecta. This model is consistent with the small erupted volume (150 Mm3 for the lower two combined and about the same for the upper tephra) and presence of components from a variety of depths. If the eruption had excavated downward, more surficial components would be expected. Instead, the fissures allowed material from many depths to erupt simultaneously. Similar eruptions may occur after voluminous eruptions and/or when lateral seaward sliding of the volcano occurs.

Keywords

Piton de la Fournaise Bellecombe Tephra Hydrothermal eruption Flank fracture 

Supplementary material

445_2015_998_MOESM1_ESM.xlsx (46 kb)
ESM 1(XLSX 45 kb)
445_2015_998_MOESM2_ESM.docx (75 kb)
ESM 2(DOCX 75 kb)

References

  1. Anderson K, Wells SG, Graham RC (2002) Pedogenesis of vesicular horizons, Cima Volcanic Field, Mojave Desert, California. Soil Sci Soc Am J 66:878–887CrossRefGoogle Scholar
  2. Bachèlery P (1981) Le Piton de la Fournaise (Ile de la Réunion). Etude volcanologique, structurale et pétrologique. Dissertation, University of Clermont-Ferrand.Google Scholar
  3. Bachèlery P, Mairine P (1990) Evolution morphostructurale du Piton de la Fournaise depuis 0,53 Ma. In: Lénat JF (ed) Le volcanisme de l’île de la Réunion. Monographie. Centre de Recherches Volcaniques, Clermont Ferrand, pp 213–242Google Scholar
  4. Bachèlery P, Lénat JF, Di Muro A, Michon L (2015) Piton de la Fournaise and Karthala volcanoes. Springer Active Volcanoes of the World series, BerlinGoogle Scholar
  5. Boivin P, Bachèlery P (2009) Petrology of 1977 to 1998 eruptions of Piton de la Fournaise, La Réunion Island. J Volcanol Geotherm Res 184:109–125CrossRefGoogle Scholar
  6. Bonadonna C, Costa A (2012) Estimating the volume of tephra deposits: a new simple strategy. Geology 40:415–418CrossRefGoogle Scholar
  7. Bonadonna C, Costa A (2013) Plume height, volume, and classification of explosive volcanic eruptions based on the Weibull function. Bull Volcanol 75:742. doi:10.1007/s00445-013-0742-1 CrossRefGoogle Scholar
  8. Brenguier F, Kowalski P, Staudacher T, Ferrazzini V, Lauret F, Boissier P, Catherine P, Lemarchand A, Pequegnat C, Meric O, Pardo C, Peltier A, Tait S, Shapiro NM, Campillo M, Di Muro A (2012) First results from the UnderVolc high resolution seismic and GPS network deployed on Piton de La Fournaise Volcano. Seism Res Lett 83:97–102. doi:10.1785/gssrl.83.1.97 CrossRefGoogle Scholar
  9. Bret L, Join J-L, Legal X, Coudray J, Fritz B (2003) Argiles et zéolites dans l’altération d’un volcan bouclier en milieu tropical (Le Piton des Neiges, La Réunion). Comptes Rendus Geoscience 335:1031–1038CrossRefGoogle Scholar
  10. Di Muro A, Metrich N, Vergani D, Rosi M, Armienti P, Fougeroux T, Deloule E, Arienzo I, Civetta L (2014) The shallow plumbing system of Piton de la Fournaise Volcano (La Reunion Island, Indian Ocean) revealed by the major 2007 caldera-forming eruption. J Petrol 55:1287–1315CrossRefGoogle Scholar
  11. Di Muro A, Bachèlery P, Barsotti S, Bielli-Bousquet S, Boissier P, Braukmuller N, Brugier Y, Büttner R, Carey R, Cavalière C, Davoine PA, De Michieli-Vitturi M, Durand J, Frese I, Gurioli L, Mairine P, Marchini G, McPhie J, Métrich N, Michon L, Morandi A, Ort M, Pichavant M, Principe C, Saint-Marc C, Tulet PE, Vergani D, Villeneuve N, Walther G, Wörner G, Zimanowski B (2015) Evaluation de l’aléa volcanique à la Réunion – annéé II. Evaluation of the volcanic hazard at La Réunion - year II. Observatoire Volcanologique du Piton de la Fournaise, report for La Réunion Civil Defense, St Denis, Réunion Island, France, 40 pGoogle Scholar
  12. Dietze M, Bartel S, Lindner M, Kleber A (2012) Formation mechanisms and control factors of vesicular soil structure. Catena 99:83–96. doi:10.1016/j.catena.2012.06.011 CrossRefGoogle Scholar
  13. Famin V, Welsch B, Okumura S, Bachèlery P, Nakashima S (2009) Three differentiation stages of a single magma at Piton de la Fournaise (Reunion hotspot). Geochem Geophys Geosyst 10:Q01007. doi:10.1029/2008GC002015 CrossRefGoogle Scholar
  14. Fiske RS, Rose TR, Swanson DA, Champion DE, McGeehin JP (2009) Kulanaokuaiki Tephra (ca. AD 400–1000): newly recognized evidence for highly explosive eruptions at Kīlauea Volcano, Hawaii. Geol Soc Am Bull 121:712–728CrossRefGoogle Scholar
  15. Fontaine FJ, Rabinowicz M, Boulègue J, Jouniaux L (2002) Constraints on hydrothermal processes on basaltic edifices: inferences on the conditions leading to hydrovolcanic eruptions at Piton de la Fournaise, Réunion Island, Indian Ocean. Ear Planet Sci Lett 200:1–14CrossRefGoogle Scholar
  16. Fontaine FR, Roult G, Michon L, Barruol G, Di Muro A (2014) The 2007 eruptions and caldera collapse of the Piton de la Fournaise volcano (La Réunion Island) from tilt analysis at a single very broadband seismic station. Geophys Res Lett 41. doi:10.1002/2014GL059691
  17. Gudmundsson MT, Thordarson T, Höskuldsson Á, Larsen G, Björnsson H, Prata FJ, Oddsson B, Magnússon E, Högnadóttir T, Petersen GN, Hayward CL, Stevenson JA, Jónsdóttir I (2012) Ash generation and distribution from the April-May 2010 eruption of Eyjafjallajökull, Iceland. Nature 2:572. doi:10.1038/srep00572 Google Scholar
  18. Iverson RM (1995) Can magma-injection and groundwater forces cause massive landslides on Hawaiian volcanoes? J Volcanol Geotherm Res 66:295–308CrossRefGoogle Scholar
  19. Join J-L, Folio J-L, Robineau B (2005) Aquifers and groundwater within active shield volcanoes. Evolution of conceptual models in the Piton de la Fournaise volcano. J Volcanol Geotherm Res 147:187–201CrossRefGoogle Scholar
  20. Larsen J, Neal C, Webley P, Freymueller J, Haney M, McNutt SR, Schneider D, Prejean S, Schaefer J, Wessels R (2009) Eruption of Alaska volcano breaks historic pattern. Eos Trans AGU 90:173–174CrossRefGoogle Scholar
  21. Lénat JF, Fitterman D, Jackson DB, Labazuy P (2000) Geoelectrical structure of the central zone of Piton de la Fournaise Volcano (Reunion). Bull Volcanol 62:75–89CrossRefGoogle Scholar
  22. Lénat JF, Bachèlery P, Merle O (2012a) Anatomy of Piton de la Fournaise volcano (La Reunion, Indian Ocean). Bull Volcanol 74:1945–1961CrossRefGoogle Scholar
  23. Lénat JF, Bachèlery P, Peltier A (2012b) The interplay between collapse structures, hydrothermal systems, and magma intrusions: the case of the central area of Piton de la Fournaise volcano. Bull Volcanol 74:407–421. doi:10.1007/s00445-011-0535-3 CrossRefGoogle Scholar
  24. Martí J, Mitjavila J, Araña V (1994) Stratigraphy, structure and geochronology of the Las Cañadas caldera (Tenerife, Canary Islands). Geol Mag 131:715–727CrossRefGoogle Scholar
  25. Mastin LG (1997) Evidence for water influx from a caldera lake during the explosive hydromagmatic eruption of 1790, Kilauea volcano, Hawaii. J Geophys Res 102:20,093–20,109CrossRefGoogle Scholar
  26. Mastin LG, Christiansen RL, Thornber C, Lowenstern J, Beeson M (2004) What makes hydromagmatic eruptions violent? Some insights from the Keanakāko‘i Ash, Kīlauea Volcano, Hawai’i. J Volcanol Geotherm Res 137:15–31CrossRefGoogle Scholar
  27. Mastin LG, Guffanti M, Servranckx R, Webley PW, Barsotti S, Dean K, Denlinger R, Durant A, Ewert JW, Gardner CA, Holliday AC, Neri A, Rose WI, Schneider D, Siebert L, Stunder B, Swanson G, Tupper A, Volentik A, Waythomas CF (2009) A multidisciplinary effort to assign realistic source parameters to model of volcanic ash-cloud transport and dispersion during eruptions. J Volcanol Geotherm Res 186:10–21CrossRefGoogle Scholar
  28. McPhie J, Walker GPL, Christiansen RL (1990) Phreatomagmatic and phreatic fall and surge deposits from explosions at Kilauea Volcano, Hawaii, 1790 A.D.: Keanakakoi Ash Member. Bull Volcanol 52:334–354CrossRefGoogle Scholar
  29. Merle O, Mairine P, Michon L, Bachèlery P, Smietana M (2010) Calderas, landslides and paleo-canyons on Piton de la Fournaise volcano (La Réunion Island, Indian Ocean). J Volcanol Geotherm Res 189:131–142. doi:10.1016/j.jvolgeores.2009.11.001 CrossRefGoogle Scholar
  30. Michon L, Saint-Ange F (2008) The morphology of Piton de la Fournaise basaltic shield volcano (La Réunion island): characterization and implication in the volcano evolution. J Geophys Res 113:B03203. doi:10.1029/2005JB004118 Google Scholar
  31. Michon L, Staudacher T, Ferrazzini V, Bachèlery P, Martí J (2007) April 2007 collapse of Piton de la Fournaise: A new example of caldera formation. Geophys Res Lett 34:L21301. doi:10.1029/2007GL031248 CrossRefGoogle Scholar
  32. Michon L, Di Muro A, Villeneuve N, Saint-Marc C, Fadda P, Manta F (2013) Explosive activity of the summit cone of Piton de la Fournaise volcano (La Réunion island): A historical and geological review. J Volcanol Geotherm Res 263:117–133CrossRefGoogle Scholar
  33. Michon L, Ferrazzini V, Di Muro A, Villeneuve N, Famin V (2015) Rift zones and magma plumbing system of Piton de la Fournaise volcano: how do they differ from Hawaii and Etna. J Volcanol Geotherm Res 303:112–129. doi:10.1016/j.jvolgeores.2015.07.031
  34. Mohamed-Abchir A (1996) Les Cendres de Bellecombe: un évènement majeur dans le passé récent du Piton de la Fournaise, Ile de la Réunion. Dissertation, Université de Paris VII.Google Scholar
  35. Mohamed-Abchir A, Semet SM, Boudon G, Ildefonse P, Bachèlery P, Clocchiati R (1998) Huge hydrothermal explosive activity on Piton de la Fournaise, Réunion Island: The Bellecombe ash member, 2700 BC. In: Casal R, Fytikas M, Sigvaldasson G, Vougioukalakis G (eds) Volcanic Risk—The European Laboratory Volcanoes. Eur Comm, Brussels, pp 447–455Google Scholar
  36. Morandi A, Principe C, Di Muro A, Leroi G, Michon L, Bachèlery P (2016) Pre-historic explosive activity at Piton de La Fournaise volcano. In: Bachèlery P, Lénat JF, Di Muro A, Michon L (eds) Active Volcanoes of the Southwest Indian Ocean: Piton de la Fournaise and Karthala. Active Volcanoes of the World. Springer-Verlag, Berlin and Heidelberg, pp 107–138CrossRefGoogle Scholar
  37. Rose WI, Durant AJ (2011) Fate of volcanic ash: Aggregation and fallout. Geology 39:895–896. doi:10.1130/focus092011.1 CrossRefGoogle Scholar
  38. Roult G, Peltier A, Taisne B, Staudacher T, Ferrazzini V, Di Muro A, the OVPF team (2012) A new comprehensive classification of the Piton de la Fournaise activity spanning the 1985–2010 period. Search and analysis of short-term precursors from a broad-band seismological station. J Volcanol Geotherm Res 241–242:78–104CrossRefGoogle Scholar
  39. Schumacher R, Schmincke H-U (1995) Models for the origin of accretionary lapilli. Bull Volcanol 56:626–639CrossRefGoogle Scholar
  40. Sparks RSJ, Bursik MI, Carey SN, Gilbert JE, Glaze L, Sigurdsson H, Woods AW (1997) Volcanic Plumes. John Wiley and Sons, Chichester, 574 pGoogle Scholar
  41. Staudacher T, Allègre CJ (1993) Ages of the second caldera of Piton de la Fournaise volcano (Réunion) determined by cosmic ray produced 3He and 21Ne. Earth Planet Sci Lett 119:395–404CrossRefGoogle Scholar
  42. Swanson DA (2008) Hawaiian oral tradition describes 400 years of volcanic activity at Kīlauea. J Volcanol Geotherm Res 176:427–431CrossRefGoogle Scholar
  43. Swanson DA, Rose TR, Fiske RS, McGeehin JP (2012a) Keanakākoʻi Tephra produced by 300 years of explosive eruptions following collapse of Kīlauea’s caldera in about 1500 CE. J Volcanol Geotherm Res 215–216:8–25CrossRefGoogle Scholar
  44. Swanson DA, Zolkos SP, Haravitch B (2012b) Ballistic blocks around Kīlauea Caldera: Their vent locations and number of eruptions in the late 18th century. J Volcanol Geotherm Res 231–232:1–11CrossRefGoogle Scholar
  45. Swanson DA, Rose TR, Mucek AE, Garcia MO, Fiske RS, Mastin LG (2014) Cycles of explosive and effusive eruptions at Kīlauea Volcano, Hawai‘i. Geology 42:631–634. doi:10.1130/G35701.1 CrossRefGoogle Scholar
  46. Swanson DA, Weaver SJ, Houghton BF (2015) Reconstructing the deadly eruptive events of 1790 at Kīlauea Volcano, Hawai‘i. Geol Soc Am Bull 127:503–515. doi:10.1130/B31116.1 CrossRefGoogle Scholar
  47. Tulet P, Villeneuve N (2011) Large scale modeling of the transport, chemical transformation and mass budget of the sulfur emitted during the April 2007 eruption of Piton de la Fournaise. Atmos Chem Phys 11:4533–4546. doi:10.5194/acp-11-4533-2011
  48. Upton BGJ, Semet MP, Joron J-L (2000) Cumulate clasts in the Bellecombe Ash Member, Piton de la Fournaise, Réunion Island, and their bearing on cumulative processes in the petrogenesis of the Réunion lavas. J Volcanol Geotherm Res 104:297–318CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Michael H. Ort
    • 1
  • Andrea Di Muro
    • 2
  • Laurent Michon
    • 3
  • Patrick Bachèlery
    • 4
  1. 1.SESESNorthern Arizona UniversityFlagstaffUSA
  2. 2.Observatoire Volcanologique du Piton de la Fournaise (OVPF)Institut de Physique du Globe de Paris (IPGP), Sorbonne Paris-Cité, CNRS, Université Paris DiderotLa Plaine des CafresFrance
  3. 3.Laboratoire Géosciences RéunionUniversité de La Réunion, Institut de Physique du Globe de Paris, Sorbonne Paris-Cité, UMR-7154 CNRSSaint-DenisFrance
  4. 4.Laboratoire Magmas et Volcans, UMR CNRS-IRD 6524Observatoire de Physique du Globe de Clermont-Ferrand, Université Blaise PascalClermont-FerrandFrance

Personalised recommendations