Advertisement

Bulletin of Volcanology

, 77:73 | Cite as

Dynamics of the major plinian eruption of Samalas in 1257 A.D. (Lombok, Indonesia)

  • Céline M. Vidal
  • Jean-Christophe Komorowski
  • Nicole Métrich
  • Indyo Pratomo
  • Nugraha Kartadinata
  • Oktory Prambada
  • Agnès Michel
  • Guillaume Carazzo
  • Franck Lavigne
  • Jessica Rodysill
  • Karen Fontijn
  • Surono
Research Article

Abstract

The 1257 A.D. caldera-forming eruption of Samalas (Lombok, Indonesia) was recently associated with the largest sulphate spike of the last 2 ky recorded in polar ice cores. It is suspected to have impacted climate both locally and at a global scale. Extensive fieldwork coupled with sedimentological, geochemical and physical analyses of eruptive products enabled us to provide new constraints on the stratigraphy and eruptive dynamics. This four-phase continuous eruption produced a total of 33–40 km3 dense rock equivalent (DRE) of deposits, consisting of (i) 7–9 km3 DRE of pumiceous plinian fall products, (ii) 16 km3 DRE of pyroclastic density current deposits (PDC) and (iii) 8–9 km3 DRE of co-PDC ash that settled over the surrounding islands and was identified as far as 660 km from the source on the flanks of Merapi volcano (Central Java). Widespread accretionary lapilli-rich deposits provide evidence of the occurrence of a violent phreatomagmatic phase during the eruption. With a peak mass eruption rate of 4.6 × 108 kg/s, a maximum plume height of 43 km and a dispersal index of 110,500 km2, the 1257 A.D. eruption stands as the most powerful eruption of the last millennium. Eruption dynamics are consistent with an efficient dispersal of sulphur-rich aerosols across the globe. Remarkable reproducibility of trace element analysis on a few milligrammes of pumiceous tephra provides unequivocal evidence for the geochemical correlation of 1257 A.D. proximal reference products with distal tephra identified on surrounding islands. Hence, we identify and characterise a new prominent inter-regional chronostratigraphic tephra marker.

Keywords

Samalas 1257 A.D. Plinian eruption Caldera-forming eruption Phreatomagmatic eruption Eruptive dynamics Trace element analysis 

Notes

Acknowledgments

We are grateful to RISTEK for allowing us to undertake this research and the Nusa Tengara Barat Governor’s Office for administrative support. We thank Dr Hendrasto (PVMBG/CVGHM) for his steadfast support and our Indonesian colleagues for field and administrative assistance. We are very grateful to J.-P. Toutain and Etny at IRD for valuable assistance and the institutional support. We are most indebted to Sofie and her staff at PVMBG for their help with administrative procedures and to Didik for the skilful dedicated driving. We also thank F. Le Cornec for her assistance for ICP-MS measurements, S. Hidalgo for pumice density measurements, M. Abrams (NASA) for providing ASTER satellite data and Arlyn (Rinjani Observatory, PVMBG) and H. Rachmat for samples of Barujari lavas. We thank Y. Wahyudi (PVMBG) and participants of the Rinjani excursion (CoV 8) for sharing their ideas. We are grateful for discussions and field insights on Merapi stratigraphy with S. Andreastuti, R. Gertisser and S. Charbonnier, and on marine cores with W. Kuhnt. 14C dates were obtained by C. Moreau and J.-P. Dumoulin (LMC14, CNRS UMS2572). We are grateful to S. Self (editor) and T. Druitt and R. Gertisser (reviewers) for their insightful and constructive comments that helped us to improve our manuscript. K. Fontijn is supported by NERC grant NE/I013210/1. This work is a part of C. Vidal’s PhD thesis (Institut de Physique du Globe de Paris). It has been partly funded by the Institut National des Sciences de l’Univers-Centre National de la Recherche Scientifique programme CT3-ALEA, projects ECRin 2013 and 2014, and INSU-CNRS Artemis 2014 for 14C dating. This is IPGP contribution 3550.

Supplementary material

445_2015_960_MOESM1_ESM.xlsx (126 kb)
ESM 1 (XLSX 126 kb)
445_2015_960_MOESM2_ESM.pdf (132 kb)
ESM 2 (PDF 131 kb)
445_2015_960_MOESM3_ESM.pdf (127 kb)
ESM 3 (PDF 126 kb)

References

  1. Andreastuti SD (1999) Stratigraphy and geochemistry of Merapi volcano, central Java, Indonesia: implication for assessment of volcanic hazard. PhD thesis, University of AucklandGoogle Scholar
  2. Andreastuti SD, Alloway BV, Smith IEM (2000) A detailed tephro-stratigraphic framework at Merapi Volcano, Central Java, Indonesia: implications for eruption predictions and hazard assessment. J Volcanol Geotherm Res 100:51–67CrossRefGoogle Scholar
  3. Barbier B (2010) Bilan thermique et caractérisation géochimique de l’activité hydrothermale du volcan Rinjani (Lombok, Indonésie). PhD thesis, Université Libre de BruxellesGoogle Scholar
  4. Bonadonna C, Costa A (2012) Estimating the volume of tephra deposits: a new simple strategy. Geology 40(5):415–418CrossRefGoogle Scholar
  5. Bonadonna C, Costa A (2013) Plume height, volume, and classification of explosive volcanic eruptions based on the Weibull function. Bull Volcanol 75:742–762CrossRefGoogle Scholar
  6. Bonadonna C, Houghton B (2005) Total grain-size distribution and volume of tephra-fall deposits. Bull Volcanol 67:441–456CrossRefGoogle Scholar
  7. Bonadonna C, Ernst GGJ, Sparks RSJ (1998) Thickness variations and volume estimates of tephra fall deposits: the importance of particle Reynolds number. J Volcanol Geotherm Res 81:173–187CrossRefGoogle Scholar
  8. Bonadonna C, Cioni R, Pistolesi M, Connor C, Scollo S, Pioli L, Rosi M (2013) Determination of the largest clast sizes of tephra deposits for the characterization of explosive eruptions: a study of the IAVCEI commission on tephra hazard modelling. Bull Volcanol 75(680):1–15. doi: 10.1007/s00445-012-0680-3 Google Scholar
  9. Branney MJ, Kokelaar P (2002) Pyroclastic density currents and the sedimentation of ignimbrites. Geol Soc Lond Mem 27:1–143CrossRefGoogle Scholar
  10. Bull ID, Knicker H, Poirier N, Porter HC, Scott AC, Sparks RSJ, Richard P (2008) Evershed, biomolecular characteristics of an extensive tar layer generated during eruption of the Soufriere Hills volcano, Montserrat, West Indies. Org Geochem 39:1372–1383CrossRefGoogle Scholar
  11. Bursik MI, Sparks RSJ, Gilbert JS, Carey SN (1992) Sedimentation of tephra by volcanic plumes: I. Theory and its comparison with a study of the Fogo A plinian deposit, Sao Miguel (Azores). Bull Volcanol 54:329–344CrossRefGoogle Scholar
  12. Carazzo G, Kaminski E, Tait S (2008) On the rise of turbulent plumes: quantitative effects of variable entrainment for submarine hydrothermal vents, terrestrial and extra-terrestrial explosive volcanism. J Geophys Res. doi: 10.1029/2007JB005458 Google Scholar
  13. Carey SN, Sparks RSJ (1986) Quantitative models of the fallout and dispersal of tephra from volcanic eruption columns. Bull Volcanol 48:109–125CrossRefGoogle Scholar
  14. Cole-Dai J, Ferris DG, Lanciki AL, Savarino J, Thiemens MH, McConnell JR (2013) Two likely stratospheric volcanic eruptions in the 1450s C.E. found in a bipolar, subannually dated 800 year ice core record. J Geophys Res 118:7459–7466. doi: 10.1002/jgrd.50587 Google Scholar
  15. Crosweller HS, Arora B, Brown SK, Cottrell E, Deligne NI, Guerrero NO, Hobbs L, Kiyosugi K, Loughlin SC, Lowndes J, Nayembil M, Siebert L, Sparks RSJ, Takarada S, Venzke E (2012) Global database on large magnitude explosive volcanic eruptions (LaMEVE). J Appl Volcanol 1:4. http://www.appliedvolc.com/content/1/1/4
  16. Daggit ML, Mather TA, Pyle DM, Page S (2014) AshCalc—a new tool for the comparison of the exponential, power-law and Weibull models of tephra deposition. J Appl Volcanol 3:7CrossRefGoogle Scholar
  17. Druitt TH, Calder ES, Cole PD, Hoblitt RP, Loughlin SC, Norton GE, Ritchie LJ, Sparks RS, Voight B (2002) Small-volume, highly mobile pyroclastic flows formed by rapid sedimentation from pyroclastic surges at Soufrière Hills volcano, Montserrat: an important volcanic hazard. In: Druitt TH, Kokelaar BP (eds) The eruption of Soufrière Hills volcano, Montserrat, from 1995 to 1999: Mem Geol Soc Lond 21, pp 263–280Google Scholar
  18. Engwell SL, Sparks RSJ, Aspinall WP (2013) Quantifying uncertainties in the measurement of tephra fall thickness. J Appl Volcanol 2:5CrossRefGoogle Scholar
  19. Fierstein J, Nathenson M (1992) Another look at the calculation of fallout tephra volumes. Bull Volcanol 4:156–167CrossRefGoogle Scholar
  20. Fontijn K, Costa F, Sutawidjaja I, Newhall CG, Herrin JS (2015) A five thousand year record of multiple highly explosive mafic eruptions from Gunung Agung (Bali, Indonesia): implications for eruption frequency and volcanic hazards. Bull Volcanol. doi: 10.1007/s00445-015-0943-x Google Scholar
  21. Furukawa R, Takada A, Nasution A (2005) Caldera forming eruption of Rinjani volcano at 13th century, Lombok, Indonesia. In: Abstracts Fall Meet Volcanol Soc Japan, Hokkaido, JapanGoogle Scholar
  22. Furukawa R, Takada A, Nasution A, Taufiqurrohman R (2014) Eruptive sequence of Rinjani caldera, 13th century, Lombok, Indonesia. In: Abstracts Japan Geosci Union Meet, Yokohama, Japan, 28 May–2 April 2014Google Scholar
  23. Gao C, Oman L, Robock A, Stenchikov L (2008) Atmospheric volcanic loading derived from bipolar ice cores: accounting for the spatial distribution of volcanic deposition. J Geophys Res. doi: 10.1029/2006JD007461 Google Scholar
  24. Gennaretti F, Arseneault D, Nicault A, Perreault L, Bégin Y (2014) Volcano-induced regime shifts in millennial tree-ring chronologies from northeastern North America. Proc Natl Acad Sci U S A 111(28):10077–10082. doi: 10.1073/pnas.1324220111 CrossRefGoogle Scholar
  25. Gerlach M, Westrich RH, Symonds RB (1996) Preeruption vapor in magma of the climactic Mount Pinatubo eruption: source of the giant stratospheric sulfur dioxide cloud. In: Newhall CG, Punongbayan RS (eds) Fire and mud: eruptions and lahars of Mount Pinatubo, Philippines. PHIVOLCS, Quezon City, Philippines and University of Washington Press, Seattle, pp 415–433Google Scholar
  26. Gertisser R (2001) Gunung Merapi (Java, Indonesien): Eruptionsgeschichte und magmatische Evolution eines Hochrisiko-Vulkans. PhD thesis, Universität FreiburgGoogle Scholar
  27. Gertisser R, Charbonnier SJ, Keller J, Quidelleur X (2012) The geological evolution of Merapi volcano, Central Java. Bull Volcanol 74:1213–1233. doi: 10.1007/s00445-012-0591-3 CrossRefGoogle Scholar
  28. Global Volcanism Program (2014) Bulletin, Smithsonian Institution, Washington D.C. http://www.volcano.si.edu/. Accessed 31 Dec 2014
  29. Houghton BF, Wilson CJN, Smith RT, Gilbert JS (2000) Phreatoplinian eruptions. In: Sigurdsson H, Houghton BF, Rymer H, Stix J, McNutt S (eds) Encyclopedia of volcanoes, pp 513–525Google Scholar
  30. Houghton BF, Carey RJ, Rosenberg MD (2014) The 1800a Taupo eruption: “Ill wind” blows the ultraplinian type event down to plinian. Geology 42(5):459–461CrossRefGoogle Scholar
  31. Kandlbauer J, Sparks RSJ (2014) New estimates of the 1815 Tambora eruption volume. J Volcanol Geotherm Res. doi: 10.1016/j.jvolgeores.2014.08.020 Google Scholar
  32. Lavigne F, Degeai JP, Komorowski JC, Guillet S, Robert V, Lahitte P, Oppenheimer C, Stoffel M, Vidal CM, Pratomo I, Wassmer P, Hajdas I, Sri Hadmoko D, de Bélizal E (2013) Source of the great A.D. 1257 mystery eruption unveiled: Samalas volcano, Rinjani volcanic complex, Indonesia. Proc Natl Acad Sci U S A. doi: 10.1073/pnas.13075201100 Google Scholar
  33. Longpré MA, Stix J, Burkert C, Hansteen T, Kutterolf S (2014) Sulfur budget and global climate impact of the A.D. 1835 eruption of Cosigüina volcano, Nicaragua. Geophys Res Lett 41. doi: 10.1002/2014GL061205
  34. Miller CF, Wark DA (2008) Supervolcanoes and their explosive super-eruptions. Elements 4(1):11–16CrossRefGoogle Scholar
  35. Miller GH, Geirsdóttir A, Zhong Y, Larsen DJ, Otto-Bliesner BL, Holland MM, Bailey DA, Refsnider KA, Lehman SJ, Southon JR, Anderson C, Björnsson H, Thordarson T (2012) Abrupt onset of the Little Ice Age triggered by volcanism and sustained by sea-ice/ocean feedbacks. Geophys Res Lett 39, L0270810. doi: 10.1029/2011GL050168 CrossRefGoogle Scholar
  36. Nasution A, Takada A, Rosgandika M (2004) The volcanic activity of Rinjani, Lombok Island, Indonesia, during the last thousand years, viewed from 14C datings. In: Abstracts of the Convention Bandung 2004, The 33rd annual convention & exhibition, 29 Nov–1 Oct 2004, Bandung, IndonesiaGoogle Scholar
  37. Nasution A, Takada A, Udibowo WD, Hutasoit L (2010) Rinjani and Propok volcanics as a heat sources of geothermal prospects from eastern Lombok, Indonesia. Jurnal Geoaplika 5(1):1–9Google Scholar
  38. Newhall CG, Dzurisin D (1989) Historical unrest at large calderas of the world. US Geol Surv Prof Pap 1855:1–1109Google Scholar
  39. Newhall CG, Self S (1982) The Volcanic Explosivity Index (VEI): an estimate of explosive magnitude for historical volcanism. J Geophys Res Oceans Atm 87:1231–1238CrossRefGoogle Scholar
  40. Newhall CG, Bronto S, Alloway B, Banks NG, Bahar I, Del Marmol MA, Hadisantono RD, Holcomb RT, McGeehin J, Miksic JN, Rubin M, Sayudi SD, Sukhyar R, Andreastuti S, Tilling RI, Torley R, Trimble D, Wirakusumah AD (2000) 10,000 years of explosive eruptions of Merapi Volcano, Central Java: archaeological and modern implications. J Volcanol Geotherm Res 100:9–50CrossRefGoogle Scholar
  41. Oppenheimer C (2003) Ice core and palaeoclimatic evidence for the timing and nature of the great mid-13th century volcanic eruption. Int J Climatol 23(4):417–426CrossRefGoogle Scholar
  42. Palais JM, Germani MS, Zielinski GA (1992) Interhemispheric transport of volcanic ash from a 1259 A.D. volcanic eruption to the Greenland and Antarctic ice sheets. Geophys Res Lett 19(8):801–804CrossRefGoogle Scholar
  43. Plummer CT, Curran MAJ, van Ommen TD, Rasmussen SO, Moy AD, Vance TR, Clausen HB, Vinther BM, Mayewski PA (2012) An independently dated 2000-yr volcanic record from Law Dome, East Antarctica, including a new perspective on the dating of the 1450s CE eruption of Kuwae, Vanuatu. Clim Past 8:1929–1940CrossRefGoogle Scholar
  44. Pyle DM (1989) The thickness, volume and grainsize of tephra fall deposits. Bull Volcanol 51(1):1–15CrossRefGoogle Scholar
  45. Pyle DM (1995) Assessment of the minimum volume of tephra fall deposits. J Volcanol Geotherm Res 69(3–4):379–382CrossRefGoogle Scholar
  46. Pyle DM (2000) Sizes of volcanic eruptions. In: Sigurdsson H, Houghton B, Reimer H, STix J, McNutt S (eds) Encyclopedia of volcanoes. Academic, San Diego, pp 263–269Google Scholar
  47. Robock A (2000) Volcanic eruptions and climate. Rev Geophys 38:191–219. doi: 10.1029/1998RG000054 CrossRefGoogle Scholar
  48. Rodysill JR, Russell JM, Bijaksana S, Brown ET, Safiuddin LO, Eggermont H (2012) A paleolimnological record of rainfall and drought from East Java, Indonesia during the last 1,400 years. J Paleolimnol 47:125–139CrossRefGoogle Scholar
  49. Rodysill JR, Russell JM, Crausbay SD, Bijaksana S, Vuille M, Edwards RL, Cheng H (2013) A severe drought during the last millennium in East Java, Indonesia. Quat Sci Rev 80:102–111CrossRefGoogle Scholar
  50. Schmidt A, Robock A (2015) Volcanism, the atmosphere and climate through time. In: Schmdit A, Fristad KE and Elkins-Tanton LT (eds) Volcanism and global environmental change. Cambridge Univ Press 195–227Google Scholar
  51. Schneider DP, Ammann CM, Otto-Bliesner BL, Kaufman DS (2009) Climate response to large, high-latitude and low-latitude volcanic eruptions in the Community Climate System model. J Geophys Res 114, D15101CrossRefGoogle Scholar
  52. Scott AC, Sparks RSJ, Bull ID, Knicker H, Evershed RP (2008) Temperature proxy data and their significance for the understanding of pyroclastic density currents. Geology 36(2):143–146CrossRefGoogle Scholar
  53. Self S (2006) The effects and consequences of very large explosive volcanic eruptions. Phil Trans R Soc A 364:2073–2097. doi: 10.1098/rsta.2006.1814 CrossRefGoogle Scholar
  54. Self S, Rampino MR, Newton MS, Wolff JA (1984) Volcanological study of the great Tambora eruption of 1815. Geology 12:659–663CrossRefGoogle Scholar
  55. Self S, Gertisser R, Thordarson T, Rampino MR, Wolff JA (2004) Magma volume, volatile emissions, and stratospheric aerosols from the 1815 eruption of Tambora. Geophys Res Lett 31, L20608. doi: 10.1029/2004GL020925 CrossRefGoogle Scholar
  56. Sheridan MF, Wohletz KH (1983) Hydrovolcanism: basic considerations and review. J Volcanol Geotherm Res 17:1–29CrossRefGoogle Scholar
  57. Sigl M, McConnell JR, Layman L, Maselli O, McGwire K, Pasteris D, Dahl-Jensen D, Steffensen JP, Vinther B, Edwards R, Mulvaney R, Kipfstuhl S (2013) A new bipolar ice core record of volcanism from WAIS Divide and NEEM and implications for climate forcing of the last 2000 years. J Geophys Res Atmos 118:1151–1169. doi: 10.1029/2012JD018603 CrossRefGoogle Scholar
  58. Sigl M, McConnell JR, Toohey M, Curran M, Das SB, Edwards R, Isaksson E, Kawamura K, Kipfstuhl S, Kruger K, Layman L, Maselli OJ, Motizuki Y, Motoyama H, Pasteris DR, Severi M (2014) Insights from Antarctica on volcanic forcing during the Common Era. Nat Clim Chang 4:693–697CrossRefGoogle Scholar
  59. Sigurdsson H, Carey S (1989) Plinian and co-ignimbrite tephra fall from the 1815 eruption of Tambora volcano. Bull Volcanol 51:243–270CrossRefGoogle Scholar
  60. Simons WJF, Socquet A, Vigny C, Ambrosius BAC, Haji Abu S, Promthong C, Subarya C, Sarsito DA, Matheussen S, Morgan P, Spakman W (2007) A decade of GPS in Southeast Asia: resolving Sundaland motion and boundaries. J Geophys Res 112, B06420. doi: 10.1029/2005JB003868 Google Scholar
  61. Sparks RSJ (1986) The dimensions and dynamics of volcanic eruption columns. Bull Volcanol 48:13–15CrossRefGoogle Scholar
  62. Sparks RSJ, Walker GPL (1977) The significance of vitric-enriched air-fall ashes associated with crystal-enriched ignimbrites. J Volcanol Geotherm Res 2:329–341CrossRefGoogle Scholar
  63. Sparks RSJ, Wilson L (1976) A model for the formation of ignimbrite by gravitational column collapse. J Geol Soc Lond 132:441–451CrossRefGoogle Scholar
  64. Sparks RSJ, Barclay J, Calder ES, Herd RA, Komorowski JC, Luckett R, Norton GE, Ritchie LJ, Voight B, Woods AW (2002) Generation of a debris avalanche and violent pyroclastic density current on 26 December (Boxing Day) 1997 at Soufriere Hills volcano, Montserrat. In: Druitt TH, Kokelaar BP (eds) Geol Soc Lond, Mem 21:409–434Google Scholar
  65. Stothers RB (2000) Climatic and demographic consequences of the massive eruption of 1258. Clim Chang 45(2):361–374CrossRefGoogle Scholar
  66. Sulpizio R (2005) Three empirical methods for the calculation of distal volume of tephra-fall deposits. J Volcanol Geotherm Res 145(3–4):315–336CrossRefGoogle Scholar
  67. Takada A, Nasution A, Rosgandika M (2003) Eruptive history during the last 10ky for the caldera-forming eruption of Rinjani volcano. In: Abstracts of Japan Earth and Planet Sci Joint Meet, Chiba, Japan, 26–29 May 2003Google Scholar
  68. Timmreck C (2012) Modelling the climatic effect of large explosive volcanic eruptions. WIREs Clim Chang. doi: 10.1002/wcc.192 Google Scholar
  69. Vidal CM, Métrich N, Komorowski JC, Pratomo I, Lavigne F, Surono (2013) Insights into the magmatic processes leading to the Holocene caldera eruption of Rinjani, Indonesia. Goldschmidt 2013 International Conference, Florence, Italy, 25–30 August 2013, Mineral Mag 77(5):2413Google Scholar
  70. Vidal C, Komorowski J-C, Métrich N, Pratomo I, Kartadinata N, Lavigne F, Prambada O, Fontijn K, Rodysill J, Michel A, Kuhn W, Surono (2015) Eruptive dynamics of a major plinian eruption with evidence of global impact: the recently discovered Samalas 1257 AD eruption (Rinjani volcanic complex, Lombok, Indonesia). In: Abstracts of Volcanoes, Climate, and Society, Bicentenary of the great Tambora eruption Conference, 7–11 April 2015, Bern, SwitzerlandGoogle Scholar
  71. Voight B, Komorowski JC, Norton G, Belousov A, Belousova M, Boudon G, Francis P, Franz W, Sparks S, Young S (2002) The 1997 Boxing Day sector collapse and debris avalanche, Soufriere Hills Volcano, Montserrat, B.W.I. In: Druitt, T., Kokelaar, B.P. (Eds.), The eruption of Soufriere Hills volcano, Montserrat, from 1995–1999: Mem Geol Soc Lond 21, pp 363–407Google Scholar
  72. Walker GPL (1973) Explosive volcanic eruptions—a new classification scheme. Geol Rundsch 62:431–446CrossRefGoogle Scholar
  73. Walker GPL (1980) The Taupo Pumice: product of the most powerful known (Ultraplinian) eruption? J Volcanol Geotherm Res 8:69–94CrossRefGoogle Scholar
  74. Walker GPL (1981) The Waimihia and Hatepe plinian deposits from the rhyolitic Taupo volcanic Centre. N Z J Geol Geophys 24:305–324Google Scholar
  75. Williams SN, Self S (1983) The October 1902 plinian eruption of Santa Maria volcano, Guatemala. J Volcanol Geotherm Res 16:36–56Google Scholar
  76. Witter JB, Self S (2007) The Kuwae (Vanuatu) eruption of AD 1452: potential magnitude and volatile release. Bull Volcanol 69:301–318. doi: 10.1007/s00445-006-0075-4 CrossRefGoogle Scholar
  77. Woods A, Wohletz K (1991) Dimensions and dynamics of co-ignimbrite eruption columns. Nature 350:225–227CrossRefGoogle Scholar
  78. Young SR (1990) Physical volcanology of Holocene airfall deposits from Mt Mazama, Crater Lake, Oregon. PhD thesis, University of LancasterGoogle Scholar
  79. Zielinski GA, Mayewski PA, Meeker LD, Whitlow S, Twickler MS, Morrison M, Meese D, Alley RB, Gow AJ (1994) Record of volcanism since 7000 B.C. from the GISP2 Greenland ice core and implication for the volcano-climate system. Science 264:948–952CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Céline M. Vidal
    • 1
  • Jean-Christophe Komorowski
    • 1
  • Nicole Métrich
    • 1
  • Indyo Pratomo
    • 2
  • Nugraha Kartadinata
    • 3
  • Oktory Prambada
    • 3
  • Agnès Michel
    • 1
  • Guillaume Carazzo
    • 1
    • 4
  • Franck Lavigne
    • 5
  • Jessica Rodysill
    • 6
  • Karen Fontijn
    • 7
    • 8
  • Surono
    • 9
  1. 1.Institut de Physique du Globe, Sorbonne Paris-Cité, CNRS UMR-7154Université Paris DiderotParis, Cedex 05France
  2. 2.Museum of GeologyBadan GeologiBandungIndonesia
  3. 3.Center of Volcanology and Geological Hazards MitigationBadan GeologiBandungIndonesia
  4. 4.Observatoire Volcanologique et Sismologique de la MartiniqueInstitut de Physique du GlobeFonds Saint-DenisMartinique, FWI
  5. 5.Laboratoire de Géographie Physique UMR 8591Université Paris 1 Panthéon-SorbonneMeudonFrance
  6. 6.Department of Geological SciencesBrown UniversityProvidenceUSA
  7. 7.Department of Earth SciencesUniversity of OxfordOxfordUK
  8. 8.Department of Geology and Soil ScienceGhent UniversityGhentBelgium
  9. 9.Badan GeologiBandungIndonesia

Personalised recommendations