A revised age of ad 667–699 for the latest major eruption at Rabaul

  • Chris O. McKee
  • Michael G. Baillie
  • Paula J. Reimer
Research Article

Abstract

The most recent major eruption at Rabaul was one of the largest known volcanic events at this complex system, having a volcanic explosivity index (VEI) rating of 6. The eruption generated widespread pumice lapilli and ash fall deposits and ignimbrites of different types. The total volume of pyroclastic material produced in the eruption exceeded 11 km3 and led to a new phase of collapse within Rabaul Caldera. Initial 14C dating of the event yielded an age of about 1400 years bp, and the eruption became known as the “1400 bp” eruption. Previous analyses of the timing of the eruption have sought to link it to events in ad 536 and ad 639. However, we have re-evaluated the age of the eruption using the Bayesian wiggle-match radiocarbon dating method, and the eruption is now thought to have occurred in the interval ad 667–699. The only significant equatorial eruptions recorded in both Greenland and Antarctic ice during this interval are at ad 681 and ad 684, dates that coincide with frost rings in bristlecone pines of western USA in the same years. Definitively linking the Rabaul eruption to this narrow age range will require identification of Rabaul tephra in the ice records. However, it is proposed that a new working hypothesis for the timing of the most recent major eruption at Rabaul is that it occurred in the interval ad 681–684.

Keywords

1400 BP eruption Rabaul Caldera Rabaul Pyroclastics Formation 

References

  1. Baillie MGL (2008) Proposed re-dating of the European ice core chronology by seven years prior to the 7th century AD. Geophys Res Lett 35, L15813. doi:10.1029/2008GL034755 CrossRefGoogle Scholar
  2. Baillie MGL, McAneney J (2015) Tree ring effects and ice core acidities clarify the volcanic record of the first millenium. Clim Past 11:105–114. doi:10.5194/cp-11-105-2015 CrossRefGoogle Scholar
  3. Briffa KR, Bartholin TS, Eckstein D, Jones PD, Karlen W, Schweingrube FH, Zetterberg PA (1990) 1,400-year tree-ring record of summer temperatures in Fennoscandia. Nature 346:434–439CrossRefGoogle Scholar
  4. Bronk Ramsey C (2005) OxCal version 3.10Google Scholar
  5. Bronk Ramsey C (2009a) Bayesian analysis of radiocarbon dates. Radiocarbon 55(1):337–360Google Scholar
  6. Bronk Ramsey C (2009b) Dealing with outliers and offsets in radiocarbon dating. Radiocarbon 51(3):1023–1045Google Scholar
  7. Bronk Ramsey C, van der Plicht J, Weninger B (2001) ‘Wiggle matching’ radiocarbon dates. Radiocarbon 43(2A):381–389Google Scholar
  8. Coulter SE, Pilcher JR, Plunkett G, Baillie M, Hall VA, Steffensen JP, Vinther BM, Clausen HB, Johnson SJ (2012) Holocene tephras highlight complexity of volcanic signals in Greenland ice cores. J Geophys Res 117, D21303. doi:10.1029/2012JD017698 Google Scholar
  9. Hammer CU, Clausen HB, Dansgaard W (1980) Greenland ice sheet evidence of post-glacial volcanism and its climatic impact. Nature 288:230–235CrossRefGoogle Scholar
  10. Hammer CU, Clausen HB, Langway CC Jr (1997) 50,000 years of recorded global volcanism. Clim Chang 35:1–15CrossRefGoogle Scholar
  11. Heming RF (1974) Geology and petrology of Rabaul Caldera, Papua New Guinea. Geol Soc Am Bull 85(8):1253–1264CrossRefGoogle Scholar
  12. Heming RF (1977) Mineralogy and proposed P-T paths of basaltic lavas from Rabaul Caldera, Papua New Guinea. Contrib Mineral Petrol 61:15–33CrossRefGoogle Scholar
  13. Heming RF, Carmichael ISE (1973) High temperature pumice flows from the Rabaul Caldera, Papua New Guinea. Contrib Mineral Petrol 38:1–20CrossRefGoogle Scholar
  14. Hogg AG, Hua Q, Blackwell PG, Niu M, Buck CE, Guilderson TP, Heaton TJ, Palmer JG, Reimer PJ, Reimer RW, Turney CSM, Zimmerman SRH (2013) SHCal13 southern hemisphere calibration, 0–50,000 years cal BP. Radiocarbon 55(4):1889–1903CrossRefGoogle Scholar
  15. LaMarche VC Jr, Hirshboeck KK (1984) Frost rings in trees as records of major volcanic eruptions. Nature 307:121–126CrossRefGoogle Scholar
  16. Lamb HM (1970) Volcanic dust in the atmosphere; with its chronology and assessment of its meteorological significance. Philos Trans R Soc Lond 266:425–533CrossRefGoogle Scholar
  17. Larsen LB, Vinther BM, Briffa KR, Melvin TM, Clausen HB, Jones PD, Siggaard-Andersen M-L, Hammer CU, Eronne M, Grudd H, Gunnarson BE, Hantemirov RM, Naurzbaev MM, Nicolussi K (2008) New ice core evidence for a volcanic cause of the A.D. 536 dust veil. Geophys Res Lett 35, L04708. doi:10.1029/2007GL032450 Google Scholar
  18. Long A, Rippeteau B (1974) Testing contemporaneity and averaging radiocarbon dates. Am Antiq 39:205–215CrossRefGoogle Scholar
  19. McCormac FG, Hogg AG, Higham TFG, Lynch P, Stieglitz J, Broecker WS, Baillie MGL, Palmer JG, Xiong LM, Pilcher JR, Brown D, Hoper ST (1998) Temporal variation in the inter-hemispheric 14C offset. Geophys Res Lett 25(9):1321–1324CrossRefGoogle Scholar
  20. McCormac FG, Reimer PJ, Hogg AG, Higham TFG, Baillie MGL, Palmer J, Stuiver M (2002) Calibration of the radiocarbon time scale for the southern hemisphere: AD 1850–950. Radiocarbon 44(3):641–651Google Scholar
  21. McKee CO, Neall VE, Torrence R (2011) A remarkable pulse of large scale volcanism on New Britain Island, Papua New Guinea. Bull Volcanol 73:27–37CrossRefGoogle Scholar
  22. Nairn IA, Talai B, Wood CP, McKee CO (1989) Rabaul Caldera, Papua New Guinea 1: 25,000 reconnaissance geological map and eruption history. New Zealand Geological Survey, Department of Scientific and Industrial ResearchGoogle Scholar
  23. Nairn IA, McKee CO, Talai B, Wood CP (1995) Geology and eruptive history of the Rabaul Caldera area, Papua New Guinea. J Volcanol Geotherm Res 69:255–284CrossRefGoogle Scholar
  24. Newhall CG, Self S (1982) The volcanic explosivity index (VEI): an estimate of explosive magnitude for historical volcanism. J Geophys Res Oceans Atmos 87:1231–1238CrossRefGoogle Scholar
  25. Peterman ZE, Heming RF (1974) Sr87/Sr86 ratios of calc-alkalic lavas from the Rabaul Caldera, Papua New Guinea. Geol Soc Am Bull 85(8):1265–1268CrossRefGoogle Scholar
  26. Plummer CT, Curran MAJ, Van Ommen TD, Rasmussen SO, Moy AD, Vance TR, Clausen HB, Vinther BM, Mayewski PA (2012) An independently dated 2000 year volcanic record from Law Dome, East Antarctica, including a new perspective on the dating of the 1450s CE eruption of Kuwae, Vanuatu. Clim Past 8:1929–1940CrossRefGoogle Scholar
  27. Reimer PJ, Baillie MGL, Bard E, Bayliss A, Beck JW, Blackwell PG, Bronk Ramsey C, Buck CE, Burr GS, Edwards RL, Friedrich M, Grootes PM, Guilderson TP, Hajdas I, Heaton TJ, Hogg AG, Hughen KA, Kaiser KF, Kromer B, McCormac FG, Manning SW, Reimer RW, Richards DA, Southon JR, Talamo S, Turney CSM, van der Plicht J, Weyhenmeyer CE (2009) IntCal09 and Marine09 radiocarbon age calibration curves, 0–50,000 years cal BP. Radiocarbon 51(4):1111–1150Google Scholar
  28. Reimer PJ, Bard E, Bayliss A, Beck JW, Blackwell PG, Bronk Ramsey C, Buck CE, Cheng H, Edwards RL, Friedrich M, Grootes PM, Guilderson TP, Haflidason H, Hajdas I, Hatté C, Heaton TJ, Hogg AG, Hughen KA, Kaiser KF, Kromer B, Manning SW, Niu M, Reimer RW, Richards DA, Scott EM, Southon JR, Turney CSM, van der Plicht J (2013) IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55(4):1869–1887CrossRefGoogle Scholar
  29. Salzer MW, Hughes MK (2007) Bristlecone pine tree rings and volcanic eruptions over the last 5000 years. Quat Res 67:57–68CrossRefGoogle Scholar
  30. Sigl M, McConnell JR, Layman L, Maseli O, McGwire K, Pasteris D, Dahl-Jensen D, Steffensen JP, Vinther BM, Edwards R, Mulvaney R, Kipfstuhl S (2013) A new bipolar ice core record of volcanism from WAIS Divide and NEEM and implications for climate forcing of the last 2000 years. J Geophys Res 118:1151–1169Google Scholar
  31. Stothers RB (1984) Mystery cloud of AD 536. Nature 307:344–345CrossRefGoogle Scholar
  32. Stothers RB, Rampino MR (1983) Volcanic eruptions in the Mediterranean before AD 630 from written and archaeological sources. J Geophys Res 88(B8):6357–6371CrossRefGoogle Scholar
  33. Stuiver M, Polach HA (1977) Reporting of C-14 data—discussion. Radiocarbon 19(3):355–363Google Scholar
  34. Walker GPL, Heming RF, Wilson CJN (1980) Low aspect ratio ignimbrites. Nature 283:286–287CrossRefGoogle Scholar
  35. Walker GPL, Heming RF, Sprod TJ, Walker HR (1981) Latest major eruptions of Rabaul Volcano. In: Johnson RW (ed) Cooke-Ravian volume of volcanological papers, Geological Survey of Papua New Guinea Memoir 10:181–193Google Scholar
  36. Wood CP, Nairn IA, McKee CO, Talai B (1995) Petrology of Rabaul Caldera, Papua New Guinea. J Volcanol Geotherm Res 69:289–306Google Scholar
  37. Zielinski GA, Mayewski PA, Meeker ID, Whitlow S, Twickler MS, Morrison M, Meese D, Alley RB, Gow AJ (1994) Record of volcanism since 7000 B.C. from the GISP2 Greenland ice core and implications for the volcano-climate system. Science 264:948–952CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Chris O. McKee
    • 1
  • Michael G. Baillie
    • 2
  • Paula J. Reimer
    • 2
  1. 1.Port Moresby Geophysical ObservatoryPort MoresbyPapua New Guinea
  2. 2.School of Geography, Archaeology and PalaeoecologyQueen’s University BelfastBelfastUK

Personalised recommendations