Skip to main content
Log in

Probabilistic analysis of rain-triggered lahar initiation at Tungurahua volcano

  • Research Article
  • Published:
Bulletin of Volcanology Aims and scope Submit manuscript

Abstract

Semi-continuous production of pyroclastic material by intermittent strombolian, vulcanian and sub-plinian eruptions at Volcán Tungurahua, Ecuador has created a persistent rain-triggered lahar hazard during the 1999–present eruptive episode. Lahars threaten the city of Baños, which lies approximately 8 km from the crater, as well as other villages and vital infrastructure situated in close proximity to the dense radial drainage network of the volcano. This study analyses the initiation of rain-triggered lahars and the influence of antecedent rainfall on this process in two northern instrumented drainages, La Pampa and the Vazcun. Analysis of lahar-triggering rainfall intensity and duration between March 2012 and June 2013 yields a power-law relationship, whilst receiver operating characteristic (ROC) analysis indicates that peak rainfall intensity (10, 30 and 60 min) is the most effective single predictor of lahar occurrence. The probability of a lahar exceeding a pre-defined magnitude increases with peak rainfall intensity. Incorporation of antecedent rainfall (24 h and 3, 5 and 7 days) as a secondary variable significantly impacts lahar probabilities, particularly during moderate–high-intensity rainfall events. The resultant two- and three-dimensional lahar probability matrices are applied to rainfall data between 1st July and 31st December 2013 with the aim of predicting lahar occurrence. Composite lahar indicators comprised from the mean lahar probability estimates of individual matrices are shown to perform this task most effectively. ROC analysis indicates a probability > 80 % that these composite indicators will generate a higher estimated lahar probability for a randomly selected lahar event than a randomly selected non-lahar event. This method provides an average of 24 min of additional warning time compared with the current acoustic flow monitors (AFMs) used for lahar detection, effectively doubling warning times for key downstream infrastructure in the two drainages. Ultimately, this method of lahar analysis could be used to construct real-time probabilistic rain-triggered lahar forecasts as an aid to current lahar hazard mitigation techniques at any location with a significant rain-triggered lahar hazard and a basic instrumental setup.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Alexander J, Barclay J, Susnik J, Loughlin SC, Herd RA, Darnell A, Crosweller S (2010) Sediment-charged flash floods on Montserrat: the influence of synchronous tephra fall and varying extent of vegetation damage. J Volcanol Geotherm Res 194:127–138. doi:10.1016/j.jvolgeores.2010.05.002

    Article  Google Scholar 

  • Arboleda R, Martinez M (1996) 1992 Lahars in the Pasig-Potrero river system. In: Newhall C, Punongbayan R (eds) Fire and mud, eruptions and lahars of Mt Pinatubo, Philippines. PHIVOLCS/University of Washington Press, Quezon City/Seattle, pp 1045–1055

    Google Scholar 

  • Barclay J, Alexander J, Susnik J (2007) Rainfall-induced lahars in the Belham Valley, Montserrat, West Indies. J Geol Soc 164:815–827. doi:10.1144/0016-76492006-078

    Article  Google Scholar 

  • Bernard J, Kelfoun K, Le Pennec JL, Vargas SV (2014) Pyroclastic flow erosion and bulking processes: comparing field-based vs. modeling results at Tungurahua volcano, Ecuador. Bull Volcanol 76. doi: 10.1007/S00445-014-0858-Y

  • Biggs J, Mothes P, Ruiz M, Amelung F, Dixon TH, Baker S, Hong SH (2010) Stratovolcano growth by co-eruptive intrusion: The 2008 eruption of Tungurahua Ecuador. Geophys Res Lett 37. doi: 10.1029/2010gl044942

  • Bradford JM, Ferris JE, Remley PA (1987a) Interrill soil erosion processes: I. Effect of surface sealing on infiltration, runoff, and soil splash detachment. Soil Sci Soc Am J 51:1566–1571. doi:10.2136/sssaj1987.03615995005100060029x

    Article  Google Scholar 

  • Bradford JM, Ferris JE, Remley PA (1987b) Interrill soil erosion processes: II. Relationship of splash detachment to soil properties. Soil Sci Soc Am J 51:1571–1575. doi:10.2136/sssaj1987.03615995005100060030x

    Article  Google Scholar 

  • Burtin A, Bollinger L, Vergne J, Cattin R, Nabelek JL (2008) Spectral analysis of seismic noise induced by rivers: A new tool to monitor spatiotemporal changes in stream hydrodynamics. J Geophys Res Solid Earth 113. doi: 10.1029/2007jb005034

  • Capra L, Borselli L, Varley N, Gavilanes-Ruiz JC, Norini G, Sarocchi D, Caballero L, Cortes A (2010) Rainfall-triggered lahars at Volcán de Colima, Mexico: surface hydro-repellency as initiation process. J Volcanol Geotherm Res 189:105–117. doi:10.1016/j.jvolgeores.2009.10.014

    Article  Google Scholar 

  • Cole SE, Cronin SJ, Sherburn S, Manville V (2009) Seismic signals of snow-slurry lahars in motion: 25 September 2007, Mt Ruapehu, New Zealand. Geophys Res Lett 36. doi: 10.1029/2009gl038030

  • Collins BD, Dunne T (1986) Erosion of Tephra from the 1980 eruption of Mount St Helens. Geol Soc Am Bull 97:896–905. doi:10.1130/0016-7606(1986)97<896:Eotfte>2.0.Co;2

    Article  Google Scholar 

  • Collins B, Dunne T, Lehre A (1983) Erosion of tephra-covered hillslopes North of Mount St. Helens, Washington: May 1980-May 1981. Zeitschrift für Geomorphologische Naturwissenschaftliche Forschung 16:103–121

    Google Scholar 

  • Craddock RA, Howard AD, Irwin RP, Tooth S, Williams RME, Chu P-S (2012) Drainage network development in the Keanakāko‘i tephra, Kīlauea Volcano, Hawai‘i: Implications for fluvial erosion and valley network formation on early Mars. J Geophys Res 117. doi: 10.1029/2012je004074

  • Crosta GB, Dal Negro P (2003) Observations and modelling of soil slip-debris flow initiation processes in pyroclastic deposits: the Sarno 1998 event. Nat Hazards Earth Syst Sci 3:53–69. doi:10.5194/nhess-3-53-2003

    Article  Google Scholar 

  • Cummans J (1980) Mudflows resulting from the May 18, 1980, eruption of Mount St. Helens, Washington. Geol Surv Circ 850-B

  • de Bélizal E, Lavigne F, Hadmoko DS, Degeai J-P, Dipayana GA, Mutaqin BW, Marfai MA, Coquet M, Mauff BL, Robin A-K, Vidal C, Cholik N, Aisyah N (2013) Rain-triggered lahars following the 2010 eruption of Merapi volcano, Indonesia: a major risk. J Volcanol Geotherm Res 261:330–347. doi:10.1016/j.jvolgeores.2013.01.010

    Article  Google Scholar 

  • Donovan A, Eiser J, Sparks R (2014) Scientists’ views about lay perceptions of volcanic hazard and risk. J Appl Volcanol 3:15. doi:10.1186/s13617-014-0015-5

    Article  Google Scholar 

  • Douillet GA, Pacheco DA, Kueppers U, Letort J, Tsang-Hin-Sun E, Bustillos J, Hall M, Ramon P, Dingwell DB (2013a) Dune bedforms produced by dilute pyroclastic density currents from the August 2006 eruption of Tungurahua volcano, Ecuador. Bull Volcanol 75. doi: 10.1007/S00445-013-0762-X

  • Douillet GA, Tsang-Hin-Sun E, Kueppers U, Letort J, Pacheco DA, Goldstein F, Von Aulock F, Lavallee Y, Hanson JB, Bustillos J, Robin C, Ramon P, Hall M, Dingwell DB (2013b) Sedimentology and geomorphology of the deposits from the August 2006 pyroclastic density currents at Tungurahua volcano, Ecuador. Bull Volcanol 75. doi: 10.1007/S00445-013-0765-7

  • Doyle E, Cronin S, Cole S, Thouret J (2009) The challenges of incorperating temporal and spatial changes into numerical models of Lahars. Paper presented at the 18th World IMACS Congress and MODSIM09 International Congress on Modelling and Simulation

  • Doyle EE, Cronin SJ, Cole SE, Thouret JC (2010) The coalescence and organization of lahars at Semeru volcano, Indonesia. Bull Volcanol 72:961–970. doi:10.1007/s00445-010-0381-8

    Article  Google Scholar 

  • Druzdzel MJ, van der Gaag LC (2000) Building probabilistic networks: “where do the numbers come from?” Guest editors’ introduction. IEEE Trans Knowl Data Eng 12:481–486. doi:10.1109/tkde.2000.868901

    Article  Google Scholar 

  • Dumaisnil C, Thouret JC, Chambon G, Doyle EE, Cronin SJ, Surono M (2010) Hydraulic, physical and rheological characteristics of rain-triggered lahars at Semeru volcano, Indonesia. Earth Surf Process Landf 35:1573–1590. doi:10.1002/Esp.2003

    Article  Google Scholar 

  • Eychenne J, Le Pennec JL, Troncoso L, Gouhier M, Nedelec JM (2012) Causes and consequences of bimodal grain-size distribution of tephra fall deposited during the August 2006 Tungurahua eruption (Ecuador). Bull Volcanol 74:187–205. doi:10.1007/s00445-011-0517-5

    Article  Google Scholar 

  • Fagents SA, Baloga SM (2006) Toward a model for the bulking and debulking of lahars. J Geophys Res Solid Earth 111. doi: 10.1029/2005jb003986

  • Fawcett T (2006) An introduction to ROC analysis. Pattern Recogn Lett 27:861–874. doi:10.1016/j.patrec.2005.10.010

    Article  Google Scholar 

  • Fiksdal A (1982) infiltration rates of undisturbed and disturbed Mount St. Helens tephra deposits. In: Keller SAC (ed) Mount St. Helens—one year later. Eastern Washington University Press, Cheney

    Google Scholar 

  • Folsom M (1986) Mount St. Helens tephra on range and forest lands of Eastern Washington-local erosion and redeposition. In: Keller SAC (ed) Mount St. Helens—five years later. Eastern Washington University Press, Cheney

    Google Scholar 

  • Garreaud RD (2009) The Andes climate and weather. Adv Geosci 22:3–11. doi:10.5194/adgeo-22-3-2009

    Article  Google Scholar 

  • Gómez JA, Darboux F, Nearing MA (2003) Development and evolution of rill networks under simulated rainfall. Water Resour Res 39. doi: 10.1029/2002wr001437

  • Hall M, Robin C, Beate B, Mothes P, Monzier M (1999) Tungurahua volcano, Ecuador: structure, eruptive history and hazards. J Volcanol Geotherm Res 91:1–21. doi:10.1016/S0377-0273(99)00047-5

    Article  Google Scholar 

  • Hall ML, Steele AL, Mothes PA, Ruiz MC (2013) Pyroclastic density currents (PDC) of the 16–17 August 2006 eruptions of Tungurahua volcano, Ecuador: geophysical registry and characteristics. J Volcanol Geotherm Res 265:78–93. doi:10.1016/j.jvolgeores.2013.08.011

    Article  Google Scholar 

  • Hikida M, Moriyama M, Nagai Y (2007) Warning system for debris flow hazards at Sakurajima Volcano, Japan. Debris-flow hazards mitigation: mechanics, prediction, and assessment. Millpress Science Publishers, Rotterdam

    Google Scholar 

  • Hodgson KA, Manville VR (1999) Sedimentology and flow behavior of a rain-triggered lahar, Mangatoetoenui Stream, Ruapehu volcano, New Zealand. Geol Soc Am Bull 111:743–754. doi:10.1130/0016-7606(1999)111<0743:safboa>2.3.co;2

    Article  Google Scholar 

  • Horton RE (1945) Erosional development of streams and their drainage basins; hydrophysical approach to quantitative morphology. Geol Soc Am Bull 56:275. doi:10.1130/0016-7606(1945)56[275:edosat]2.0.co;2

    Article  Google Scholar 

  • Huang CJ, Shieh CL, Yin HY (2004) Laboratory study of the underground sound generated by debris flows. J Geophys Res Earth 109. doi: 10.1029/2003jf000048

  • Hunink JE, Immerzeel WW, Droogers P (2014) A high-resolution precipitation 2-step mapping procedure (HiP2P): development and application to a tropical mountainous area. Remote Sens Environ 140:179–188. doi:10.1016/j.rse.2013.08.036

    Article  Google Scholar 

  • Iverson RM, Lahusen RG (1989) Dynamic pore-pressure fluctuations in rapidly shearing granular materials. Science 246:796–799. doi:10.1126/science.246.4931.796

    Article  Google Scholar 

  • Iverson RM, Reid ME, Logan M, LaHusen RG, Godt JW, Griswold JP (2010) Positive feedback and momentum growth during debris-flow entrainment of wet bed sediment. Nat Geosci 4:116–121. doi:10.1038/ngeo1040

    Article  Google Scholar 

  • Janda R, Daag A, Delos Reyes P, Newhall C, Pierson T, Punongbayan R, Rodolfo K, Solidum R, Umbal J (1996) Assessment and response to lahar hazard around Mt Pinatubo, 1991 to 1993. In: Newhall C, Punongbayan R (eds) Fire and mud, eruptions and lahars of Mt Pinatubo, Philippines. PHIVOLCS/University of Washington Press, Quezon City/Seattle, pp 107–139

    Google Scholar 

  • Kean JW, Staley DM, Cannon SH (2011) In situ measurements of post-fire debris flows in southern California: comparisons of the timing and magnitude of 24 debris-flow events with rainfall and soil moisture conditions. J Geophys Res Earth. 116. doi: 10.1029/2011jf002005

  • Kilgour G, Manville V, Della Pasqua F, Graettinger A, Hodgson KA, Jolly GE (2010) The 25 September 2007 eruption of Mount Ruapehu, New Zealand: directed ballistics, surtseyan jets, and ice-slurry lahars. J Volcanol Geotherm Res 191:1–14. doi:10.1016/j.jvolgeores.2009.10.015

    Article  Google Scholar 

  • Kumagai H, Palacios P, Maeda T, Castillo DB, Nakano M (2009) Seismic tracking of lahars using tremor signals. J Volcanol Geotherm Res 183:112–121. doi:10.1016/j.jvolgeores.2009.03.010

    Article  Google Scholar 

  • Lavigne F, Suwa H (2004) Contrasts between debris flows, hyperconcentrated flows and stream flows at a channel of Mount Semeru, East Java, Indonesia. Geomorphology 61:41–58. doi:10.1016/j.geomorph.2003.11.005

    Article  Google Scholar 

  • Lavigne F, Thouret JC (2003) Sediment transportation and deposition by rain-triggered lahars at Merapi Volcano, Central Java, Indonesia. Geomorphology 49:45–69. doi:10.1016/S0169-555x(02)00160-5

    Article  Google Scholar 

  • Lavigne F, Thouret JC, Voight B, Suwa H, Sumaryono A (2000a) Lahars at Merapi volcano, Central Java: an overview. J Volcanol Geotherm Res 100:423–456. doi:10.1016/S0377-0273(00)00150-5

    Article  Google Scholar 

  • Lavigne F, Thouret JC, Voight B, Young K, LaHusen R, Marso J, Suwa H, Sumaryono A, Sayudi DS, Dejean M (2000b) Instrumental lahar monitoring at Merapi volcano, Central Java, Indonesia. J Volcanol Geotherm Res 100:457–478. doi:10.1016/S0377-0273(00)00151-7

    Article  Google Scholar 

  • Lavigne F, Thouret JC, Hadmoko D, Sukatja B (2007) Lahars in Java: initiations, dynamic, hazard assessment and deposition processes. Forum Geogr 21:17–32

    Google Scholar 

  • Le Pennec JL, Jaya D, Samaniego P, Ramón P, Moreno Yánez S, Egred J, van der Plicht J (2008) The AD 1300–1700 eruptive periods at Tungurahua volcano, Ecuador, revealed by historical narratives, stratigraphy and radiocarbon dating. J Volcanol Geotherm Res 176:70–81. doi:10.1016/j.jvolgeores.2008.05.019

    Article  Google Scholar 

  • Le Pennec J-L, Ruiz GA, Ramón P, Palacios E, Mothes P, Yepes H (2012) Impact of tephra falls on Andean communities: the influences of eruption size and weather conditions during the 1999–2001 activity of Tungurahua volcano, Ecuador. J Volcanol Geotherm Res 217–218:91–103. doi:10.1016/j.jvolgeores.2011.06.011

    Article  Google Scholar 

  • Leavesley G, Lusby G, Lichty R (1989) Infiltration and erosion characteristics of selected tephra deposits from the 1980 eruption of Mt St Helens, Washington, USA. Hydrol Sci 34:339–353

    Article  Google Scholar 

  • Lowe DR, Williams SN, Leigh H, Connort CB, Gemmell JB, Stoiber RE (1986) Lahars initiated by the 13 November 1985 eruption of Nevado del Ruiz, Colombia. Nature 324:51–53. doi:10.1038/324051a0

    Article  Google Scholar 

  • Major JJ, Newhall CG (1989) Snow and ice perturbation during historical volcanic eruptions and the formation of lahars and floods. Bull Volcanol 52:1–27. doi:10.1007/bf00641384

    Article  Google Scholar 

  • Major J, Yamakoshi T (2005) Decadal-scale change of infiltration characteristics of a tephra-mantled hillslope at Mount St Helens, Washington. Hydrol Process 19:3621–3630. doi:10.1002/Hyp.5863

    Article  Google Scholar 

  • Major J, Janda R, Daag A (1996) Watershed disturbance and lahars on the east side of Mount Pinatubo during the Mid-June 1991 eruptions. In: Newhall C, Punongbayan R (eds) Fire and mud, eruptions and lahars of Mt Pinatubo, Philippines. PHIVOLCS/University of Washington Press, Quezon City/Seattle, pp 895–921

    Google Scholar 

  • Manville V, Cronin SJ (2007) Breakout lahar from New Zealand’s crater lake. Eos Trans Am Geophys Union 88:441. doi:10.1029/2007eo430001

    Article  Google Scholar 

  • Manville V, Hodgson K, Houghton B, Keys J, White J (2000) Tephra, snow and water: complex sedimentary responses at an active snow-capped stratovolcano, Ruapehu, New Zealand. Bull Volcanol 62:278–293. doi:10.1007/s004450000096

    Article  Google Scholar 

  • Marchi L, Arattano M, Deganutti AM (2002) Ten years of debris-flow monitoring in the Moscardo Torrent (Italian Alps). Geomorphology 46:1–17. doi:10.1016/S0169-555x(01)00162-3

    Article  Google Scholar 

  • Marcial S, Melosantos A, Hadley K, LaHusen R, Marso J (1996) Instrumental lahar monitoring at Mount Pinatubo. In: Newhall C, Punongbayan R (eds) Fire and mud, eruptions and lahars of Mt Pinatubo, Philippines. PHIVOLCS/University of Washington Press, Quezon City/Seattle, pp 1015–1023

    Google Scholar 

  • Martinez M, Arboleda R, Delos Reyes P, Gabinete E, Dolan M (1996) Observations of 1992 lahars along the Sacobia-Bamban river system. In: Newhall C, Punongbayan R (eds) Fire and mud, eruptions and lahars of Mt Pinatubo, Philippines. PHIVOLCS/University of Washington Press, Quezon City/Seattle, pp 1033–1045

    Google Scholar 

  • Massey CI, Manville V, Hancox GH, Keys HJ, Lawrence C, McSaveney M (2009) Out-burst flood (lahar) triggered by retrogressive landsliding, 18 March 2007 at Mt Ruapehu, New Zealand—a successful early warning. Landslides 7:303–315. doi:10.1007/s10346-009-0180-5

    Article  Google Scholar 

  • Murata KJ, Dondoli C, Saenz R (1966) The 1963–65 eruption of Irazú volcano, Costa Rica (the period of March 1963 to October 1964). Bull Volcanol 29:763–793. doi:10.1007/bf02597194

    Article  Google Scholar 

  • Myers ML, Geist DJ, Rowe MC, Harpp KS, Wallace PJ, Dufek J (2014) Replenishment of volatile-rich mafic magma into a degassed chamber drives mixing and eruption of Tungurahua volcano. Bull Volcanol 76. doi: 10.1007/S00445-014-0872-0

  • Ogawa Y, Daimaru H, Shimizu A (2007) Experimental study of post-eruption overland flow and sediment load from slopes overlain by pyroclastic-flow deposits, Unzen volcano, Japan. Geomorphologie:237-246

  • Okano K, Suwa H, Kanno T (2012) Characterization of debris flows by rainstorm condition at a torrent on the Mount Yakedake volcano, Japan. Geomorphology 136:88–94. doi:10.1016/j.geomorph.2011.04.006

    Article  Google Scholar 

  • Pierson TC, Janda RJ, Thouret J-C, Borrero CA (1990) Perturbation and melting of snow and ice by the 13 November 1985 eruption of Nevado del Ruiz, Colombia, and consequent mobilization, flow and deposition of lahars. J Volcanol Geotherm Res 41:17–66. doi:10.1016/0377-0273(90)90082-q

    Article  Google Scholar 

  • Pierson T, Daag A, Delos Reyes P, TM R, Solidum R, Tubianosa B (1996) Flow and deposition of posteruption hot lahars on the east side of Mount Pinatubo, July-October 1991. In: Newhall C, Punongbayan R (eds) Fire and mud, eruptions and lahars of Mt Pinatubo, Philippines. PHIVOLCS/University of Washington Press, Quezon City/Seattle, pp 921–951

    Google Scholar 

  • Reid M, Iverson R, Logan M, Lahusen RG, Godt J, Griswold J (2011) Entrainment of bed sediment by debris flows: results from large scale experiments. Paper presented at the Fifth International Conference on debris-flow hazards mitigation, mechanics, prediction and assessment, Casa Editrice Universita La Sapienza, Rome

  • Rodolfo K, Arguden A (1991) Rain-lahar generation and sediment-delivery systems at Mayon Volcano, Philippines. In: RV F, GA S (eds) Sedimentation in volcanic settings, vol 45. Society of Economic Paleontologists and Mineralogists, Special Publications, pp 71–88

  • Rodolfo K, Umbal J, Alonso R, Remotigue C, Paladio-Melosantos L, Salvador J, Evangelista D, Miller Y (1996) Two years of lahars on the Western Flank of Mount Pinatubo: initiation, flow processes, deposits, and attendant geomorphic and hydraulic changes. In: Newhall C, Punongbayan R (eds) Fire and mud, eruptions and lahars of Mt Pinatubo, Philippines. PHIVOLCS/University of Washington Press, Quezon City/Seattle, pp 989–1015

    Google Scholar 

  • Samaniego P, Le Pennec JL, Robin C, Hidalgo S (2011) Petrological analysis of the pre-eruptive magmatic process prior to the 2006 explosive eruptions at Tungurahua volcano (Ecuador). J Volcanol Geotherm Res 199:69–84. doi:10.1016/j.jvolgeores.2010.10.010

    Article  Google Scholar 

  • Schneider D, Bartelt P, Caplan-Auerbach J, Christen M, Huggel C, McArdell BW (2010) Insights into rock-ice avalanche dynamics by combined analysis of seismic recordings and a numerical avalanche model. J Geophys Res Earth 115. doi: 10.1029/2010jf001734

  • Scott K, Janda R, De La Cruz E, Gabinete E, Eto I, Isada M, Sexon M, Hadley K (1996) Channel and sedimentation responses to large volumes of 1991 volcanic deposits on the East Flank of Mt Pinatubo. In: Newhall C, Punongbayan R (eds) Fire and mud, eruptions and lahars of Mt Pinatubo, Philippines. PHIVOLCS/University of Washington Press, Quezon City/Seattle, pp 971–989

    Google Scholar 

  • Smith GA, Fritz WJ (1989) Volcanic influences on terrestrial sedimentation. Geology 17:375–376

    Article  Google Scholar 

  • Sorenson O, Rose W, Jaya D (2003) Lahar hazard modelling at Tungurahua, Ecuador. Paper presented at the GS - AGU - EUG Joint Assembly, Nice, France

  • Stone J, Barclay J, Simmons P, Cole PD, Loughlin SC, Ramón P, Mothes P (2014) Risk reduction through community-based monitoring: the vigías of Tungurahua, Ecuador. J Appl Volcanol 3:11. doi:10.1186/s13617-014-0011-9

    Google Scholar 

  • Swets J, Dawes R, Monahan J (1988) Better decisions through science. Sci Am 240:1285–1293

    Google Scholar 

  • Todisco F (2014) The internal structure of erosive and non-erosive storm events for interpretation of erosive processes and rainfall simulation. J Hydrol 519:3651–3663. doi:10.1016/j.jhydrol.2014.11.002

    Article  Google Scholar 

  • Tungol N, Regalado T (1996) Rainfall, acoustic flow monitor records, and observed lahars of the Sacobia River in 1992. In: Newhall C, Punongbayan R (eds) Fire and Mud, Eruptions and Lahars of Mt Pinatubo, Philippines. PHIVOLCS/University of Washington Press, Quezon City/Seattle, pp 1023–1033

    Google Scholar 

  • Van Westen C, Daag A (2005) Analysing the relation between rainfall characteristics and lahar Activity at Mt Pinatubo, Philippines. Earth Surf Process Landf 30:1663–1674

    Article  Google Scholar 

  • Waldron H (1967) Debris flow and erosion control problems caused by the ash eruptions of Irazu. Contrib Gen Geol 1966:1241–1

    Google Scholar 

  • Wang L, Shi ZH, Wang J, Fang NF, Wu GL, Zhang HY (2014) Rainfall kinetic energy controlling erosion processes and sediment sorting on steep hillslopes: a case study of clay loam soil from the Loess Plateau, China. J Hydrol 512:168–176. doi:10.1016/j.jhydrol.2014.02.066

    Article  Google Scholar 

  • Waythomas CF, Pierson TC, Major JJ, Scott WE (2013) Voluminous ice-rich and water-rich lahars generated during the 2009 eruption of Redoubt Volcano, Alaska. J Volcanol Geotherm Res 259:389–413. doi:10.1016/j.jvolgeores.2012.05.012

    Article  Google Scholar 

  • Williams R, Stinton AJ, Sheridan MF (2008) Evaluation of the Titan2D two-phase flow model using an actual event: case study of the 2005 Vazcun Valley Lahar. J Volcanol Geotherm Res 177:760–766. doi:10.1016/j.jvolgeores.2008.01.045

    Article  Google Scholar 

  • Wischmeier W, Smith D (1978) Prediciting rainfall erosion losses—a guide to conservation planning. Agricultural Handbooks (USA) No. 537. US Department of Agriculture, Washington DC

    Google Scholar 

  • Yamakoshi T, Suwa H (2000) Post-eruption characteristics of surface runoff and sediment discharge on the slopes of pyroclastic-flow deposits, Mt Unzen, Japan. Trans Jpn Geomorphol Union 21:469–497

    Google Scholar 

  • Zanchetta G, Sulpizio R, Pareschi MT, Leoni FM, Santacroce R (2004) Characteristics of May 5–6, 1998 volcaniclastic debris flows in the Sarno area (Campania, southern Italy): relationships to structural damage and hazard zonation. J Volcanol Geotherm Res 133:377–393. doi:10.1016/s0377-0273(03)00409-8

    Article  Google Scholar 

  • Zobin VM, Plascencia I, Reyes G, Navarro C (2009) The characteristics of seismic signals produced by lahars and pyroclastic flows: volcán de Colima, México. J Volcanol Geotherm Res 179:157–167. doi:10.1016/j.jvolgeores.2008.11.001

    Article  Google Scholar 

Download references

Acknowledgements

The authors are extremely grateful to IGEPN for their support with this research. The authors would also like to thank two anonymous reviewers whose comments helped to improve the manuscript. The research was funded as part of a STREVA (NERC/ESRC consortium project) PhD Studentship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robbie Jones.

Additional information

Editorial responsibility: G. Lube

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jones, R., Manville, V. & Andrade, D. Probabilistic analysis of rain-triggered lahar initiation at Tungurahua volcano. Bull Volcanol 77, 68 (2015). https://doi.org/10.1007/s00445-015-0946-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00445-015-0946-7

Keywords

Navigation