MeMoVolc consensual document: a review of cross-disciplinary approaches to characterizing small explosive magmatic eruptions

  • L. Gurioli
  • D. Andronico
  • P. Bachelery
  • H. Balcone-Boissard
  • J. Battaglia
  • G. Boudon
  • A. Burgisser
  • M. R. Burton
  • K. Cashman
  • S. Cichy
  • R. Cioni
  • A. Di Muro
  • L. Dominguez
  • C. D’Oriano
  • T. Druitt
  • A. J. L. Harris
  • M. Hort
  • K. Kelfoun
  • J. C. Komorowski
  • U. Kueppers
  • J. L. Le Pennec
  • T. Menand
  • R. Paris
  • L. Pioli
  • M. Pistolesi
  • M. Polacci
  • M. Pompilio
  • M. Ripepe
  • O. Roche
  • E. Rose-Koga
  • A. Rust
  • F. Schiavi
  • L. Scharff
  • R. Sulpizio
  • J. Taddeucci
  • T. Thordarson
Review Article

Abstract

A workshop entitled “Tracking and understanding volcanic emissions through cross-disciplinary integration: a textural working group” was held at the Université Blaise Pascal (Clermont-Ferrand, France) on the 6–7 November 2012. This workshop was supported by the European Science Foundation (ESF). The main objective of the workshop was to establish an initial advisory group to begin to define measurements, methods, formats and standards to be applied in the integration of geophysical, physical and textural data collected during volcanic eruptions. This would homogenize procedures to be applied and integrated during both past and ongoing events. The workshop comprised a total of 35 scientists from six countries (France, Italy, Great Britain, Germany, Switzerland and Iceland). The four main aims were to discuss and define: standards, precision and measurement protocols for textural analysis; identification of textural, field deposit, chemistry and geophysical parameters that can best be measured and combined; the best delivery formats so that data can be shared between and easily used by different groups; and multi-disciplinary sampling and measurement routines currently used and measurement standards applied, by each community. The group agreed that community-wide, cross-disciplinary integration, centred on defining those measurements and formats that can be best combined, is an attainable and key global focus. Consequently, we prepared this paper to present our initial conclusions and recommendations, along with a review of the current state of the art in this field that supported our discussions.

Keywords

MeMoVolc European Science Foundation Small explosive magmatic eruptions Texture 

Notes

Acknowledgments

L Gurioli thanks the MeMoVolc, European Science Foundation grant (ref. n. 4253). G Valentine D Swanson and the editor, J White, are thanked for their constructive reviews. This research was financed by the French Government Laboratory of Excellence initiative no ANR-10-LABX-0006, the Région Auvergne and the European Regional Development Fund. This is Laboratory of Excellence ClerVolc contribution number 154.

References

  1. Adams NK, Houghton BF, Hildreth W (2006a) Abrupt transitions during sustained explosive eruptions: examples from the 1912 eruption of Novarupta, Alaska. Bull Volcanol 69:189–206Google Scholar
  2. Adams NK, Houghton BF, Fagents S, Hildreth W (2006b) The transition from explosive to effusive eruptive regime: the example of the 1912 Novarupta eruption, Alaska. GSA Bull 118(5/6):620–634. doi: 10.1130/B25768.1 Google Scholar
  3. Alfano F, Bonadonna C, Volentik ACM, Connor CB, Watt SFL, Pyle DM, Connor LJ (2011) Tephra stratigraphy and eruptive volume of the May, 2008, Chaiten eruption, Chile. Bull Volcanol 73(5):613–630Google Scholar
  4. Alfano F, Bonadonna C, Gurioli L (2012) Insights on rhyolitic eruption dynamic from textural analysis: the example of the May Chaitén eruption (Chile). Bull Volcanol 74(9):2095–2108. doi: 10.1007/s00445-012-0648-3 Google Scholar
  5. Aloisi M, D’Agostino M, Dean KG, Mostaccio A, Neri G (2002) Satellite analysis and PUFF simulation of the eruptive cloud generated by the Mount Etna paroxysm of 22 July 1998. J Geophys Res 107(B12):2373. doi: 10.1029/2001JB000630 Google Scholar
  6. Alparone S, Andronico D, Lodato L, Sgroi T (2003) Relationship between tremor and volcanic activity during the Southeast Crater eruption on Mount Etna in early 2000. J Geophys Res 108(B5):2241. doi: 10.1016/j.jvolgeores.2008.05.011
  7. Anderson AT (1991) Hourglass inclusions: theory and application to the Bishop Rhyolitic Tuff. Am Mineral 76:530–547Google Scholar
  8. Andronico D, Corsaro RA, Cristaldi A, Polacci M (2008) Characterizing high energy explosive eruptions at Stromboli volcano using multidisciplinary data: an example from the 9 January 2005 explosion. J Volcanol Geotherm Res 176:541–550. doi: 10.1016/j.jvolgeores.2008.05.011 Google Scholar
  9. Andronico D, Scollo S, Cristaldi A, Ferrari F (2009a) Monitoring ash emission episodes at Mt. Etna: the 16 November 2006 case study. J Volcanol Geotherm Res 180(2–4):123–134. doi: 10.1016/j. jvolgeores.2008.10.019 Google Scholar
  10. Andronico D, Cristaldi A, Del Carlo P, Taddeucci J (2009b) Shifting styles of basaltic explosive activity during the 2002-03 eruption of Mt Etna, Italy. J Volcanol Geotherm Res 180(2-4):110–122. doi: 10.1016/j.jvolgeores.2008.07.026 Google Scholar
  11. Andronico D, Lo Castro MD, Sciotto M, Spina L (2013a) The 2010 ash emissions at the summit craters of Mt Etna: relationship with seismo-acoustic signals. J Geophys Res 118:51–70. doi: 10.1029/2012JB009895 Google Scholar
  12. Andronico D, Taddeucci J, Cristaldi A, Miraglia L, Scarlato P, Gaeta M (2013b) The 15 March 2007 paroxysm of Stromboli: video-image analysis, and textural and compositional features of the erupted deposit. Bull Volcanol 75:733. doi: 10.1007/s00445-013-0733-2 Google Scholar
  13. Aoyama H, Oshima H (2008) Tilt change recorded by broadband seismometer prior to small phreatic explosion of Meakan-dake volcano, Hokkaido. Japan Geophys Res Lett 35:L06307. doi: 10.1029/2007GL032988 Google Scholar
  14. Armienti P (2008) Decryption of igneous textures: crystal size distribution tools. Rev Mineral Geochem 69:623–649Google Scholar
  15. Armienti P, Tarquini S (2002) Power law olivine crystal size distributions in lithospheric mantle xenoliths. Lithos 65:273–285Google Scholar
  16. Armienti P, Pareschi M, Innocenti F, Pompilio M (1994) Effects of magma storage and ascent on the kinetics of crystal growth. The case of the 1991-92 Mt. Etna eruption. Contrib Mineral Petrol 115:402–414Google Scholar
  17. Arzilli F, Voltolini M, Mancini L, Cicconi MR, Giuli G, Carroll MR (2013) Spherulites in trachytic melts. Mineral Mag 77(5):622Google Scholar
  18. Asimow PD, Ghiorso MS (1998) Algorithmic modifications extending MELTS to calculate subsolidus phase relations. Am Mineral 83:1127–1131Google Scholar
  19. Bai L, Baker DR, Rivers M (2008) Experimental study of bubble growth in Stromboli basalt melts at 1 atmosphere. Earth Planet Sci Lett 267:533–547. doi: 10.1016/j.epsl.2007.11.063 Google Scholar
  20. Bai L, Baker DR, Hill RJ (2010) Permeability of vesicular Stromboli basaltic glass: lattice Boltzmann simulations and laboratory measurements. J Geophys Res 115:B07201. doi: 10.1029/2009JB007047 Google Scholar
  21. Bai L, Baker DR, Polacci M, Hill RJ (2011) In-situ degassing study on crystal-bearing Stromboli basaltic magmas: implications for Stromboli explosions. Geophys Res Lett 38:L17309. doi: 10.1029/2011GL048540 Google Scholar
  22. Baker DR, Polacci M, LaRue A (2011) A study on the reproducibility of counting vesicles in volcanic rocks. Geosphere 7:70–78Google Scholar
  23. Baker DR, Mancini L, Polacci M, Higgins MD, Gualda GAR, Hill RJ, Rivers ML (2012) An introduction to the application of X-ray microtomography to the three-dimensional study of igneous rocks. Lithos 148:262–276Google Scholar
  24. Balcone-Boissard H, Villemant B, Boudon G (2010) Behavior of halogens during the degassing of felsic magma. Geochem Geophys Geosyst 11(9):477–485. doi: 10.10029/2010GC003028 Google Scholar
  25. Balcone-Boissard H, Boudon G, Villemant B (2011) Textural and geochemical constraints on eruptive style of the 79AD eruption at Vesuvius. Bull Volcanol 73:279–294. doi: 10.1007/s00445-010-0409-0
  26. Balcone-Boissard H, Boudon G, Ucciani G, Villemant B, Cioni R, Civetta L, Orsi G (2012) Magma degassing and eruption dynamics of the Avellino Pumice Plinian eruption of Somma-Vesuvius (Italy). Comparison with the Pompeii eruption. Earth Planet Sci Lett 331–332:257–268. doi: 10.1016/j.epsl.2012.03.011 Google Scholar
  27. Barberi F, Cioni R, Santacroce R, Sbrana A, Vecci R (1989) Magmatic and phreatomagmatic phases in explosive eruptions of Vesuvius as deduced by grain-size and component analysis of the pyroclastic deposits. J Volcanol Geotherm Res 38:287–307Google Scholar
  28. Barker SJ, Rotella MD, Wilson CJN, Wright IC, Wysoczanski RJ (2012) Contrasting pyroclast density spectra from subaerial and submarine silicic eruptions in the Kermadec arc: implications for eruption processes and dredge sampling. Bull Volcanol 74:1425–1443. doi: 10.1007/s00445-012-0604-2 Google Scholar
  29. Barnie T, Bombrun M, Burton MR, Harris A, Sawyer G (2014) Quantification of gas and solid emissions during Strombolian explosions using simultaneous sulphur dioxide and infrared camera observations. J Volcanol Geotherm Res. doi: 10.1016/j.jvolgeores.2014.10.003 Google Scholar
  30. Barsotti S, Neri A, Scire JS (2008) The VOL-CALPUFF model for atmospheric ash dispersal: 1. Approach and physical formulation. J Geophys Res 113:B03208Google Scholar
  31. Bear J (1972) Dynamics of fluids in porous media. Dover, New YorkGoogle Scholar
  32. Belien IB, Cashman KV, Rempel AW (2010) Gas accumulation in particle-rich suspensions and implications for bubble populations in crystal-rich magma. Earth Planet Sci Lett 297(1-2):133–140. doi: 10.1016/j.epsl.2010.06.014 Google Scholar
  33. Berlo K, Turner S (2010) 210Pb-226Ra disequilibria in volcanic rocks. Earth Planet Sci Lett (Frontiers) 296:155–164Google Scholar
  34. Berlo K, Blundy J, Turner S, Cashman K, Hawkesworth C, Black S (2004) Geochemical precursors to volcanic activity at Mount St. Helens, USA. Science 306:1167–1169Google Scholar
  35. Bernard B (2013) Home-made ashmeter: a low-cost, high-efficiency solution to improve tephra field-data collection for contemporary explosive eruptions. J Appl Volcanol 2:1Google Scholar
  36. Bernard ML, Zamora M, Geraud Y, Boudon G (2007) Transport properties of pyroclastic rocks from Montagne Pelée volcano (Martinique, Lesser Antilles). J Geophys Res 112:B05205. doi: 10.1029/2006JB004385 Google Scholar
  37. Bindeman IN (2003) Crystal sizes in evolving silicic magma chambers. Geology 31:367–370Google Scholar
  38. Bjornsson H, Magnusson S, Arason P, Petersen GN (2013) Velocities in the plume of the 2010 Eyjafjallajökull eruption. J Geophys Res Atmos 118:698–711. doi: 10.1002/jgrd.50876 Google Scholar
  39. Blower JD (2001a) Factors controlling permeability-porosity relationships in magma. Bull Volcanol 63:497–504Google Scholar
  40. Blower JD (2001b) A three-dimensional network model of permeability in vesicular material. Comput Geosci 27:115–119Google Scholar
  41. Blower JD, Keating JP, Mader HM, Phillips JC (2001) Inferring volcanic degassing processes from bubble size distributions. Geophys Res Lett 28(2):347–350Google Scholar
  42. Blower JD, Keating JP, Mader HM, Phillips JC (2002) The evolution of bubble size distributions in volcanic eruptions. J Volcanol Geotherm Res 120:1–23. doi: 10.1016/S0377-0273 Google Scholar
  43. Blundy J, Cashman KV (2008) Petrologic reconstruction of magmatic system variables and processes. Rev Mineral Geochem 69:179–239Google Scholar
  44. Blundy J, Cashman K, Humphreys M (2006) Magma heating by decompression-driven crystallization beneath andesite volcanoes. Nature 443:76–80Google Scholar
  45. Bombrun M, Barra V, Harris A (2014) Algorithm for particle detection and parameterization in high-frame-rate thermal video. J Appl Remote Sens 8(1):083549. doi: 10.1117/1.JRS.8.083549 Google Scholar
  46. Bonadonna C, Costa A (2012) Estimating the volume of tephra deposits: a new simple strategy. Geology 40(5):415–418. doi: 10.1130/G32769.1 Google Scholar
  47. Bonadonna C, Ernst GGJ, Sparks RSJ (1998) Thickness variations and volume estimates of tephra fall deposits: the importance of particle Reynolds number. J Volcanol Geotherm Res 81:173–187Google Scholar
  48. Bonadonna C, Genco R, Gouhier M, Pistolesi M, Cioni R, Alfano F, Hoskuldsson A, Ripepe M (2011) Tephra sedimentation during the 2010 Eyjafjallajökull eruption (Iceland) from deposit, radar, and satellite observations. J Geophys Res 116(B12202). doi: 10.1029/2011JB008462
  49. Bonadonna C, Cioni R, Pistolesi M, Connor C, Scollo S, Pioli L, Rosi M (2013) Determination of the largest clast sizes of tephra deposits for the characterization of explosive eruptions: a study of the IAVCEI commission on tephra hazard modelling. Bull Volcanol 75(1). doi: 10.1007/s00445-012-0680-3
  50. Boorman S, Boudreau AE, Kruger FJ (2004) The lower zone–critical zone transition of the Bushveld complex: a quantitative textural study. J Petrol 45:1209–1235Google Scholar
  51. Bouma AH (1969) Methods for the study of sedimentary structures. Wiley, New York, p 458Google Scholar
  52. Bouvet de Maisonneuve C, Bachmann O, Burgisser A (2009) Characterization of juvenile pyroclasts from the Kos Plateau Tuff (Aegean Arc): insights into the eruptive dynamics of a large rhyolitic eruption. Bull Volcanol 71:643–658Google Scholar
  53. Braun T, Ripepe M (1993) Interaction of seismic and air waves as recorded at Stromboli volcano. Geophys Res Lett 20(1):65–68Google Scholar
  54. Brodsky E, Kanamori H, Sturtevant B (1999) A seismically constrained mass discharge rate for the initiation of the May 18, 1980 Mount St. Helens eruption. J Geophys Res 104:29,387–29,400Google Scholar
  55. Bryon DN, Atherton MP, Hunter RH (1995) The interpretation of granitic textures from serial thin sectioning, image analysis and three-dimensional reconstruction. Mineral Mag 59:203–211Google Scholar
  56. Burbié T, Zinszner B (1985) Hydraulic and acoustic properties as a function of porosity in Fontainebleau sandstone. J Geophys Res 90:11524–11532Google Scholar
  57. Burgisser A, Gardner JE (2005) Experimental constraints on degassing and permeability in volcanic conduit flow. Bull Volcanol 67:42–56Google Scholar
  58. Burgisser A, Poussineau S, Arbaret L, Druitt TH, Giachetti T, Bourdier JL (2010) Pre-explosive conduit conditions of the 1997 Vulcanian explosions at Soufrière Hills Volcano (Montserrat): I. pressure and vesicularity distributions. J Volcanol Geotherm Res 194(1–3):27–41. doi: 10.1016/j.jvolgeores.2010.01.008 Google Scholar
  59. Burton MR, Mader HM, Polacci M (2007) The role of gas percolation in quiescent degassing of persistently active volcanoes. Earth Planet Sci Lett 264:46–60. doi: 10.1016/j.epsl.2007.08.028 Google Scholar
  60. Bustillos J, Mothes P (2010) Ash falls at Tungurahua volcano: implementation of systematic ash collection for quantifying accumulated volumes. Cities on volcanoes abstract volume, Tenerife. Canary Island, Spain, May 31 – June 4 2010, 2.7-O-07Google Scholar
  61. Büttner R, Dellino P, Zimanowski B (1999) Identifying magma–water interaction from the surface features of ash particles. Nature 401:688–690Google Scholar
  62. Büttner R, Dellino P, La Volpe L, Lorenz V, Zimanowsky B (2002) Thermohydraulic explosions in phreatomagmatic eruptions as evidenced by the comparison between pyroclasts and products from molten fuel interaction experiments. J Geophys Res 107(B11):2277. doi: 10.1029/2001JB000511 Google Scholar
  63. Cadoux A, Scaillet B, Druitt TH, Deloule E (2014) Magma storage conditions of large Plinian eruptions of Santorini volcano (Greece). J Petrol 55(6):1129–1171. doi: 10.1093/petrology/egu021 Google Scholar
  64. Caltabiano T, Roman R, Budetta G (1994) SO2 flux measurements at Mount Etna (Sicily). J Geophys Res 99:12 809–12 819Google Scholar
  65. Capaccioni B, Sarocchi D (1996) Computer-assisted image analysis on clast shape fabric from the Orvieto-Bagnoregio ignimbrite (Vulsini District, central Italy): implications on the emplacement mechanisms. J Volcanol Geotherm Res 70(1–2):75–90. doi: 10.1016/0377-0273(95)00049-6 Google Scholar
  66. Caracciolo C, Prodia F, Uijlenhoetc R (2006) Comparison between Pludix and impact/optical disdrometers during rainfall measurement campaigns. Atmos Res 82(1-2):137–163Google Scholar
  67. Carey S, Sparks RSJ (1986) Quantitative models of the fallout and dispersal of tephra from volcanic eruption columns. Bull Volcanol 48:109–125. doi: 10.1007/BF01046546 Google Scholar
  68. Carey S, Maria A, Sigurdsson H (2000) Use of fractal analysis for discrimination of particles from primary and reworked jökulhlaup deposits in SE Iceland. J Volcanol Geotherm Res 104:65–80Google Scholar
  69. Carey RJ, Houghton BF, Thordarson T (2009) Abrupt shifts between wet and dry phases of the 1875 eruption of Askja Volcano: microscopic evidence for macroscopic dynamics. J Volcanol Geotherm Res 184:256–270Google Scholar
  70. Carey RJ, Manga M, Degruyter W, Swanson D, Houghton B, Orr T, Patrick M (2012) Externally triggered renewed bubble nucleation in basaltic magma: the 12 October 2008 eruption at Halema‘uma‘u Overlook vent, Kīlauea, Hawai’i, USA. J Geophys Res 117, B11202. doi: 10.1029/2012JB009496 Google Scholar
  71. Carey RJ, Manga M, Degruyter W, Gonnermann H, Swanson D, Houghton B, Orr T, Patrick M (2013) Convection in a volcanic conduit recorded by bubbles. Geology 41(4):395–398Google Scholar
  72. Carn SA, Krueger AJ, Bluth GJS, Schaefer SJ, Krotkov NA, Watson IM, Datta S (2003) Volcanic eruption detection by the Total Ozone Mapping Spectrometer (TOMS) instruments: a 22-year record of sulfur dioxide and ash emissions. In: Volcanic degassing (eds. C Oppenheimer, DM Pyle and J Barclay), Geological Society, London, Special Publications, 213, pp. 177-202.Google Scholar
  73. Carn SA, Strow LL, de Souza-Machado S, Edmonds Y, Hannon S (2005) Quantifying tropospheric volcanic emissions with AIRS: the 2002 eruption of Mt. Etna (Italy). Geophys Res Lett 32(2), L02301. doi: 10.1029/2004GL021034 Google Scholar
  74. Cas RAF, Wright JV (1987) Volcanic successions: modern and ancient. Allen & Unwin, London, 528 pGoogle Scholar
  75. Cashman KV (1988) Crystallization of Mount St. Helens 1980–1986 dacite: a quantitative textural approach. Bull Volcanol 50(3):194–209. doi: 10.1007/BF01079682
  76. Cashman KV (1992) Groundmass crystallization of Mount St. Helens dacite, 1980-1986: a tool for interpreting shallow magmatic processes. Contrib Mineral Petrol 109:431–449Google Scholar
  77. Cashman KV (1993) Relationship between plagioclase crystallization and cooling rate in basaltic melts. Contrib Mineral Petrol 113:126–142Google Scholar
  78. Cashman KV, Mangan MT (1994) Physical aspects of magmatic degassing II. Constraints on vesiculation processes from textural studies of eruptive products. In: Carroll M (ed) Volatiles in Magmas. Mineral Sot Am, Washington, pp 447–478Google Scholar
  79. Cashman KV, Marsh BD (1988) Crystal size distribution (CSD) in rocks and the kinetics and dynamics of crystallization II. Makaopuhi lava lake. Contrib Mineral Petrol 99:292–305Google Scholar
  80. Cashman KV, McConnell S (2005) Transitions from explosive to effusive activity—the summer 1980 eruptions of Mount St. Helens. Bull Volcanol 68:57–75Google Scholar
  81. Cashman KV, Mangan MT, Newman S (1994) Surface degassing and modifications to vesicle size distributions in Kilauea basalt. J Volcanol Geotherm Res 61:45–68Google Scholar
  82. Castro JM, Cashman KV, Manga M (2003) A technique for measuring 3D crystal-size distributions of prismatic microlites in obsidian. Am Mineral 88:1230–1240Google Scholar
  83. Castro JM, Burgisser A, Shipper CI, Mancini S (2012) Mechanisms of bubble coalescence in silicic magmas. Bull Volcanol 74:2339–2352Google Scholar
  84. Chakraborty S (2008) Diffusion in solid silicates: a tool to track timescales of processes comes of age. Annu Rev Earth Planet Sci 36(1):153–190Google Scholar
  85. Chen Y, Provost A, Schiano P, Cluzel N (2011) The rate of water loss from olivine-hosted melt inclusions. Contrib Mineral Petrol 162:625–636Google Scholar
  86. Chen Y, Provost A, Schiano P, Cluzel N (2013) Magma ascent rate and initial water concentration inferred from diffusive water loss from olivine-hosted melt inclusions. Contrib Mineral Petrol 165:525–541Google Scholar
  87. Cheng HC, Lemlich R (1983) Errors in the measurement of bubble-size distribution in foam. Ind Eng Chem Fundam 22:105–109Google Scholar
  88. Chouet B, Hamisevicz N, McGetchin TR (1974) Photoballistics of volcanic jet activity at Stromboli, Italy. J Geophys Res 79:4961–4976Google Scholar
  89. Cichy SB, Botcharnikov RE, Holtz F, Behrens H (2011) Vesiculation and microlite crystallization induced by decompression: a case study of the 1991-1995 Mt Unzen eruption (Japan). J Petrol 52:1469–1492Google Scholar
  90. Cigolini C, Laiolo M, Bertolino S (2008) Probing Stromboli volcano from the mantle to paroxysmal eruptions. In: Annen C, Zellmer GF (eds) Dynamics of crustal magma transfer, storage and differentiation. Geological Society, London, special publication, vol 304. Geological Society, London, pp 33–70Google Scholar
  91. Cimarelli C, Di Traglia F, Taddeucci J (2010) Basaltic scoria textures from a zoned conduit as precursors to violent Strombolian activity. Geology 38(5):439–442Google Scholar
  92. Cioni R, Sbrana A, Vecci R (1992) Morphological features of juvenile pyroclasts from magmatic to phreatomagmatic deposits of Vesuvius. J Volcanol Geotherm Res 51:61–78Google Scholar
  93. Cioni R, D’Oriano C, Bertagnini A (2008) Fingerprinting ash deposits of small scale eruptions by their physical and textural features. J Volcanol Geotherm Res 177:277–287Google Scholar
  94. Cioni R, Bertagnini A, Andronico D, Cole PD, Mundula F (2011) The 512 AD eruption of Vesuvius: complex dynamics of a small scale subplinian event. Bull Volcanol 73(7):789–810. doi: 10.1007/s00445-011-0454-3 Google Scholar
  95. Clarke AB, Stephens S, Teasdale R, Sparks RSJ, Diller K (2007) Petrologic constraints on the decompression history of magma prior to Vulcanian explosions at the Soufrière Hills volcano, Montserrat. J Volcanol Geotherm Res 161:261–274Google Scholar
  96. Clarke AB, Phillips JC, Chojnicki KN (2009) An investigation of Vulcanian eruption dynamics using laboratory analogue experiments and scaling analysis. In: Studies in volcanology: the legacy of George Walker, Thordason T, Self S, Larsen G, Rowland SK, Höskuldsson Á (eds) IAVCEI Special Publications in Volcanology 2: 155-166.Google Scholar
  97. Cluzel N, Laporte D, Provost A (2008) Kinetics of heterogeneous bubble nucleation in rhyolitic melts: implications for the number density of bubbles in volcanic conduits and for pumice textures. Contrib Mineral Petrol 156:745–763Google Scholar
  98. Colò L, Ripepe M, Baker DR, Polacci M (2010) Magma vesiculation and infrasonic activity at Stromboli open conduit volcano. Earth Planet Sc Lett 292 (3–4):274–280Google Scholar
  99. Colucci S, Palladino DM, Mulukutla GK, Proussevitch AA (2013) 3-D reconstruction of ash vesicularity: insight into the origin of ash-rich explosive eruptions. J Volcanol Geotherm Res 255:98–107Google Scholar
  100. Costa F, Cohmen R, Chakraborty S (2008) Time scales of magmatic processes from modeling the zoning patterns of crystals. In: Putirka KD, Tepley FJ (Eds) Minerals, inclusions and volcanic processes. Rev Mineral Geochem 69:545-594Google Scholar
  101. Costantini L, Houghton BF, Bonadonna C (2010) Constraints on eruption dynamics of basaltic explosive activity derived from chemical and microtextural study: the example of the Fontana Lapilli Plinian eruption, Nicaragua. J Volcanol Geotherm Res 189(3–4):207–224. doi: 10.1016/j.jvolgeores.2009.11.008 Google Scholar
  102. Couch S, Sparks RSJ, Carroll MR (2003) The kinetics of degassing-induced crystallization at Soufrière Hills Volcano, Montserrat. J Petrol 44(8):1477–1502Google Scholar
  103. D’Oriano C, Poggianti E, Bertagnini A, Cioni R, Landi P, Polacci M, Rosi M (2005) Changes in eruptive styles during the A.D. 1538 Monte Nuovo eruption (Phleagrean Fields, Italy): the role of syneruptive crystallization. Bull Volcanol 67:601–621Google Scholar
  104. D’Oriano C, Cioni R, Bertagnini A, Andronico D, Cole PD (2011a) Dynamics of ash-dominated eruptions at Vesuvius: the post-512 AD AS1a event. Bull Volcanol 73(6):699–715. doi: 10.1007/s00445-010-0432-1 Google Scholar
  105. D’Oriano C, Bertagnini A, Pompilio M (2011b) Ash erupted during normal activity at Stromboli (Aeolian Islands, Italy) raises questions on how the feeding system works. Bull Volcanol 73:471–477Google Scholar
  106. D’Oriano C, Pompilio M, Bertagnini A, Cioni R, Pichavant M (2012) Effects of experimental reheating of natural basaltic ash at different temperatures and redox conditions. Contrib Mineral Petrol. doi: 10.1007/s00410-012-0839-0 Google Scholar
  107. De Campos CP, Dingwell DB, Perugini D et al (2008) Heterogeneities in magma chambers: insights from the behavior of major and minor elements during mixing experiments with natural alkaline melts. Chem Geol 256:131–145. doi: 10.1016/j.chemgeo.2008.06.034 Google Scholar
  108. De Keyser TL (1999) Digital scanning of thin sections and peels. J Sediment Res 69:962–964Google Scholar
  109. Degruyter W, Bachmann O, Burgisser A (2010a) Controls on magma permeability in the volcanic conduit during the climactic phase of the Kos Plateau Tuff eruption (Aegean Arc). Bull Volcanol 72:63–74. doi: 10.1007/s00445-009-0302-x Google Scholar
  110. Degruyter W, Burgisser A, Bachmann O, Malaspina O (2010b) Synchrotron X-ray microtomography and lattice Boltzmann simulations of gas flow through volcanic pumices. Geosphere 6:470–481Google Scholar
  111. Degruyter W, Bachmann O, Burgisser A, Manga M (2012) The effects of outgassing on the transition between effusive and explosive silicic eruptions. Earth Planet Sci Lett 349–350:161–170Google Scholar
  112. Dehn J, Dean K, Engle K (2000) Thermal monitoring of North Pacific volcanoes from space. Geology 28(8):755–758Google Scholar
  113. Dehn J, Dean KG, Engle K, Izbekov P (2002) Thermal precursors in satellite images of the 1999 eruption of Shishaldin volcano. Bull Volcanol 64:525–545Google Scholar
  114. Delle Donne D, Ripepe M (2012) High-frame rate thermal imagery of Strombolian explosions: implications for explosive and infrasonic source dynamics. J Geophys Res 117(B12):B09206. doi: 10.1029/2011JB008987
  115. Dellino P, La Volpe L (1996a) Image processing analysis in reconstructing fragmentation and transportation mechanisms of pyroclastic deposits. The case of Monte Pilato-Rocche Rosse eruptions, Lipari (Aeolian Islands, Italy). J Volcanol Geotherm Res 71:13–29Google Scholar
  116. Dellino P, La Volpe L (1996b) Cluster analysis on ash particles morphology features to discriminate fragmentation dynamics in explosive eruptions. Acta Vulcanol 1:31–39Google Scholar
  117. Dellino P, Liotino G (2002) The fractal and multifractal dimension of volcanic ash particles contour: a test study on the utility and volcanological relevance. J Volcanol Geotherm Res 113(1–2):1–18. doi: 10.1016/S0377-0273(01)00247-5 Google Scholar
  118. Dellino P, Isaia R, La Volpe L, Orsi G (2001) Statistical analysis of textural data from complex pyroclastic sequences: implications for fragmentation processes of the Agnano-Monte Spina Tephra (4.1 ka), Phlegraean Fields, southern Italy. Bull Volcanol 63:443–461Google Scholar
  119. Dellino P, Mele D, Bonasia R, Braia G, La Volpe L, Sulpizio R (2005) The analysis of the influence of pumice shape on its terminal velocity. J Geophys Res 32, L21306. doi: 10.1029/2005GL023954 Google Scholar
  120. Dellino P, Mele D, Sulpizio R, La Volpe L, Braia G (2012) A method for the calculation of the impact parameters of dilute pyroclastic density currents based on deposit particle characteristics. J Geophys Res 113 (B7). doi: 10.1029/2007JB005365
  121. Denniss AM, Harris AJL, Rothery DA, Francis PW, Carlton RW (1998) Satellite observations of the April 1993 eruption of Lascar volcano. Int J Remote Sens 19(5):801–821Google Scholar
  122. Dixon JE (1997) Degassing of alkali basalts. Am Mineral 82:368–378Google Scholar
  123. Dohmen R, Becker H-W, Chakraborty S (2007) Fe–Mg diffusion in olivine I: experimental determination between 700 and 1,200°C as a function of composition, crystal orientation and oxygen fugacity. Phys Chem 34:389–407. doi: 10.1007/s00269-007-0157-7 Google Scholar
  124. Dubosclard G, Cordesses R, Allard P, Hervier C, Coltelli C, Kornprobst J (1999) First testing of a volcano Doppler radar (Voldorad) at Mount Etna, Italy. Geophys Res Lett 26(22):3389–3392Google Scholar
  125. Eichelberger JC, Carrigan CR, Westrich HR, Price RH (1986) Non-explosive silicic volcanism. Nature 323:598–602Google Scholar
  126. Engwell SL, Sparks RSJ, Aspinall WP (2013) Quantifying uncertainties in the measurement of tephra fall thickness. J Appl Volcanol 2:5. doi: 10.1186/2191-5040-2-5 Google Scholar
  127. Ersoy O, Chinga G, Aydar E, Gourgaud A, Cubuku HE, Ulusoy I (2006) Texture discimination of volcanic ashes from different fragmentation mechanisms: a case study, Mount Nemrut stratovolcano, eastern Turkey. Comput Geosci 32:936–946Google Scholar
  128. Eychenne J, Le Pennec JL (2012) Sigmoidal particle density distribution in a subplinian scoria fall deposit. Bull Volcanol 74:2243–2249Google Scholar
  129. Eychenne J, Le Pennec JL, Troncoso L, Gouhier M, Nedelec JM (2012) Causes and consequences of bimodal grain-size distribution of tephra fall deposited during the August 2006 Tungurahua eruption (Ecuador). Bull Volcanol 74:187–205. doi: 10.1007/s00445-011-0517-5 Google Scholar
  130. Eychenne J, Le Pennec JL, Ramón P, Yepes H (2013) Dynamics of explosive paroxysms at open-vent andesitic systems: high-resolution mass distribution analyses of the 2006 Tungurahua fall deposit (Ecuador). Earth Planet Sci Lett 361:343–355. doi: 10.1016/j.epsl.2012.11.002 Google Scholar
  131. Eychenne J, Houghton BF, Swanson DA, Carey RJ, Swavely L (2015) Dynamics of an open basaltic magma system: the 2008 activity of the Halema‘uma‘u Overlook vent, Kīlauea Caldera. Earth Planet Sci Lett 409:49–60Google Scholar
  132. Fagents SA, Gregg TKP, Lopes RMC (2013) Modeling volcanic processes. The physics and mathematics of volcanism. Cambridge University Press, Cambridge. Cambridge Books OnlineGoogle Scholar
  133. Faure F, Trolliard G, Nicollet C, Montel J-M (2003) A developmental model of olivine morphology as a function of the cooling rate and the degree of undercooling. Contrib Mineral Petrol 145(2):251–263. doi: 10.1007/s00410-003-0449-y Google Scholar
  134. Faure F, Schiano P, Trolliard G, Nicollet C, Soulestin B (2007) Textural evolution of polyhedral olivine experiencing rapid cooling rates. Contrib Mineral Petrol 153:405–416Google Scholar
  135. Ferguson DJ, Plank TA, Hauri EH, Houghton BF, Gonnermann HM, Swanson DA, Blaser AP (2013) Comparing eruptions of varying intensity at Kilauea via melt inclusion analysis. American Geophysical Union, Fall Meeting 2013, abstract #V33F-07Google Scholar
  136. Fierstein J, Nathenson M (1992) Another look at the calculation of fallout tephra volumes. Bull Volcanol 54:156–167Google Scholar
  137. Fierstein J, Houghton BF, Wilson CJN, Hildreth W (1997) Complexities of plinian fall deposition at vent: an example from the 1912 Novarupta eruption (Alaska). J Volcanol Geotherm Res 76:215–227Google Scholar
  138. Fischer TP (2008) Fluxes of volatiles (H2O, CO2, N2, Cl, F) from arc volcanoes. Geochem J 42:21–38. doi: 10.2343/geochemj.42.21 Google Scholar
  139. Fisher RV, Schmincke H-U (1984) Pyroclastic rocks. Springer, Berlin Heidelberg New YorkGoogle Scholar
  140. Fiske RS, Rose TR, Swanson D, Champion D, McGeehin J (2009) Kulanaokuaiki Tephra (ca. A.D. 400–1000): newly recognized evidence for highly explosive eruptions at Kīlauea Volcano, Hawai’i. GSA Bull 121:712–728Google Scholar
  141. Formenti Y, Druitt TH (2003) Vesicle connectivity in pyroclasts and implications for the fluidisation of fountain-collapse pyroclastic flows, Montserrat (West Indies). Earth Planet Sci Lett 214:561–574Google Scholar
  142. Freundt A, Rosi M (1998) From magma to tephra. Elsevier, New YorkGoogle Scholar
  143. Friese K-I, Cichy SB, Wolter F-E, Botcharnikov RE (2013) Analysis of tomographic mineral data using YaDiV—overview and practical case study. Comput Geosci 56:92–103Google Scholar
  144. Gaonac’h H, Lovejoy S, Stix J, Schertzer D (1996a) A scaling growth model for bubbles in basaltic flows. Earth Planet Sci Lett 139:395–409Google Scholar
  145. Gaonac’h H, Stix J, Lovejoy S (1996b) Scaling effects on vesicles shape, size and heterogeneity of lavas from Mount Etna. J Volcanol Geotherm Res 74:131–153Google Scholar
  146. Gaonac’h H, Lovejoy S, Schertzer D (2005) Scaling vesicle distributions and volcanic eruptions. Bull Volcanol 67(4):350–357Google Scholar
  147. Gaonac’h H, Lovejoy S, Schertzer D (2003) Percolating magmas and explosive volcanism. Geophys Res Lett 30(11):1559. doi: 10.1029/2002GL0116022
  148. Gardner JE (2007) Heterogeneous bubble nucleation in highly viscous silicate melts during instantaneous decompression from high pressure. Chem Geol 236:1–12Google Scholar
  149. Gaudin D, Moroni M, Taddeucci J, Scarlato P, Shindler L (2014a) Pyroclast tracking velocimetry: a particle tracking velocimetry-based tool for the study of strombolian explosive eruptions. J Geophys Res Solid Earth 119:5369–5383. doi: 10.1002/2014JB011095 Google Scholar
  150. Gaudin D, Taddeucci J, Scarlato P, Moroni M, Freda C, Gaeta M, Palladino DM (2014b) Pyroclast tracking velocimetry illuminates bomb ejection and explosion dynamics at Stromboli (Italy) and Yasur (Vanuatu) volcanoes. J Geophys Res Solid Earth 119:5384–5397. doi: 10.1002/2014JB011096 Google Scholar
  151. Genareau K, Proussevitch AA, Durant AJ, Mulukutla GK, Sahagian DL (2012) Sizing up the bubbles that produce very fine ash during explosive volcanic eruptions. Geophys Res Lett 39:LI5306. doi: 10.1029/292GL052471
  152. Genareau K, Mulukutla GK, Proussevitch AA, Durant AJ, Rose WI, Sahagian DL (2013) The size range of bubbles that produce ash during explosive volcanic eruptions. J Appl Volcanol 2:4. doi: 10.1186/2191-5040-2-4 Google Scholar
  153. Genco R, Ripepe M (2010) Inflation-deflation cycles revealed by tilt and seismic records at Stromboli volcano. Geophys Res Lett 37:L12302. doi: 10.1029/2010GL042925 Google Scholar
  154. Gerst A, Hort M, Aster RC, Johnson JB, Kyle PR (2013) The first second of volcanic eruptions from the Erebus volcano lava lake, Antarctica—energies, pressures, seismology, and infrasound. J Geophys Res 118:3318–3340. doi: 10.1002/jgrb.50234 Google Scholar
  155. Ghiorso MS, Sack RO (1995) Chemical mass transfer in magmatic processes. IV. A revised and internally consistent thermodynamic model for the interpolation and extrapolation of liquid-solid equilibria in magmatic systems at elevated temperatures and pressures. Contrib Mineral Petrol 119:197–212Google Scholar
  156. Giachetti T, Gonnermann HM (2013) Water in pumices: rehydration or incomplete degassing? Earth Planet Sci Lett 369–370:317–332Google Scholar
  157. Giachetti T, Druitt TH, Burgisser A, Arbaret L, Galven C (2010) Bubble nucleation and growth during the 1997 Vulcanian explosions of Soufrière Hills Volcano, Montserrat. J Volcanol Geotherm Res 193(3–4):215–231. doi: 10.1016/j.jvolgeores.2010.04.001 Google Scholar
  158. Giachetti T, Burgisser A, Arbaret L, Druitt TH, Kelfoun K (2011) Quantitative textural analysis of Vulcanian pyroclasts (Montserrat) using multi-scale X-ray computed microtomography: comparison with results from 2D image analysis. Bull Volcanol 73(9):1295–1309. doi: 10.1007/s00445-011-0472-1 Google Scholar
  159. Goldstein P, Chouet B (1994) Array measurements and modeling of sources of shallow volcanic tremor at Kilauea Volcano, Hawai’i. J Geophys Res 99(B2):2637–2652Google Scholar
  160. Gonnermann HM, Houghton BF (2012) Magma degassing and fragmentation during the Plinian eruption of Novarupta, Alaska, 1912. Geochem Geophys Geosyst 13:Q10009. doi: 10.1029/2012GC004273
  161. Gonnermann HM, Manga M (2013) Dynamics of magma ascent in the volcanic conduit. In: Fagents S, Gregg TKP, Lopes RMC (eds) Modelling volcanic processes: the physics and mathematics of volcanism. Cambridge University Press, New York, pp 55–84Google Scholar
  162. Goodchild JS, Fueten F (1998) Edge detection in petrographic images using the rotating polarizer stage. Comput Geosci 24:745–751Google Scholar
  163. Gouhier M, Donnadieu F (2008) Mass estimations of ejecta from Strombolian explosions by inversion of Doppler radar measurements. J Geophys Res 113, B10202. doi: 10.1029/2007JB005383 Google Scholar
  164. Gouhier M, Donnadieu F (2011) Systematic retrieval of ejecta velocities and gas fluxes at Etna volcano using L-Band Doppler radar. Bull Volcanol 73(9):1139–1145. doi: 10.1007/s00445-011-0500-1 Google Scholar
  165. Gualda GAR (2006) Crystal size distributions derived from 3D datasets: sample size versus uncertainties. J Petrol 47(6):1245–1254Google Scholar
  166. Gualda GAR, Rivers M (2006) Quantitative 3D petrography using X-ray tomography: application to Bishop Tuff pumice clasts. J Volcanol Geotherm Res 154(1–2):48–62Google Scholar
  167. Gualda GAR, Baker DR, Polacci M (2010a) Introduction: advances in 3D imaging and analysis of geomaterials. Geosphere, special issue. Advances in 3D imaging and analysis of geomaterials 6-5:468–469. doi: 10.1130/GES00639.1
  168. Gualda GAR, Pamukcu AS, Claiborne LL, Rivers ML (2010b) Quantitative 3D petrography using X-ray tomography 3: documenting accessory phases with differential absorption tomography. Geosphere 6(6):782–792Google Scholar
  169. Gurioli L, Houghton B, Cashman K, Cioni R (2005) Complex changes in eruption dynamics and the transition between Plinian and phreatomagmatic activity during the 79AD eruption of Vesuvius. Bull Volcanol 67:144–159. doi: 10.1007/s00445-004-0368-4 Google Scholar
  170. Gurioli L, Harris AJL, Houghton BF, Polacci M, Ripepe M (2008) Textural and geophysical characterization of explosive basaltic activity at Villarrica volcano. J Geophys Res 113, B08206. doi: 10.1029/2007JB005328 Google Scholar
  171. Gurioli L, Harris AJL, Colò L, Bernard J, Favalli M, Ripepe M, Andronico D (2013) Classification, landing distribution and associated flight parameters for a bomb field emplaced during a single major explosion at Stromboli, Italy. Geology 41(5):559–562. doi: 10.1130/G33967.1 Google Scholar
  172. Gurioli L, Colò L, Bollasina AJ, Harris AJL, Whittington A, Ripepe M (2014) Dynamics of strombolian explosions: inferences from inferences from field and laboratory studies of erupted bombs from Stromboli volcano. J Geophys Res 119:319–345. doi: 10.1002/2013JB010355
  173. Hamada M, Laporte D, Cluzel N, Koga KT (2010) Simulating bubble number density of rhyolitic pumices from Plinian eruptions: constraints from fast decompression experiments. Bull Volcanol 72:735–746Google Scholar
  174. Hammer JE (2008) Experimental studies of the kinetics and energetics of magma crystallization. Rev Mineral Geochem 69:9–59Google Scholar
  175. Hammer JE, Rutherford MJ (2002) An experimental study of the kinetics of decompression-induced crystallization in silicic melt. J Geophys Res 107(B1):2021. doi: 10.1029/2001JB000281
  176. Hammer JE, Cashman KV, Hoblitt RP, Newman S (1999) Degassing and microlite crystallization during pre-climactic events of the 1991 eruption of Mt. Pinatubo, Philippines. Bull Volcanol 60:355–380Google Scholar
  177. Hammer JE, Sharp TG, Wessel P (2010) Heterogeneous nucleation and epitaxial crystal growth of magmatic minerals. Geology 38:367–370Google Scholar
  178. Harris A (2013) Thermal remote sensing of active volcanoes: a user’s manual. Cambridge University Press, Cambridge, 728 pGoogle Scholar
  179. Harris AJL, Ripepe M (2007) Synergy of multiple geophysical approaches to unravel explosive eruption conduit and source dynamics—a case study from Stromboli. Chem Erde 67:1–35Google Scholar
  180. Harris AJL, Ripepe M, Hort M (2004) Foreward. J Volcanol Geotherm Res 137(1-3):vii–viii. doi: 10.1016/S0377-0273(04)00276-8 Google Scholar
  181. Harris AJL, Ripepe M, Hughes EE (2012) Detailed analysis of particle launch velocities, size distributions and gas densities during normal explosions at Stromboli. J Volcanol Geotherm Res 231–232:109–131Google Scholar
  182. Harris AJL, Delle Donne D, Dehn J, Ripepe M, Worden K (2013a) Volcanic plume and bomb field masses from thermal infrared camera imagery. Earth Planet Sci Lett 365:77–85. doi: 10.1016/j.epsl.2013.01.004 Google Scholar
  183. Harris AJL, Battaglia J, Donnadieu F, Gurioli L, Kelfoun K, Labazuy P, Sawyer G, Valade S, Bombun M, Barra V, Delle Donne D, Lacanna G (2013b) Full bandwidth remote sensing for total parameterization of volcanic plumes. Eos 94(37):321–322Google Scholar
  184. Heiken G, Pitts DE (1975) Identification of eruption clouds with the Landsat satellites. Bull Volcanol 39(2):255–265Google Scholar
  185. Heiken G, Wohletz KH (1985) Volcanic ash. University of California Press, BerkeleyGoogle Scholar
  186. Heilbronner R (2000) Automatic grain boundary detection and grain size analysis using polarization micrographs or orientation images. J Struct Geol 22:969–981Google Scholar
  187. Herd R, Pinkerton H (1997) Bubble coalescence in basaltic lava: its impact on the evolution of bubble populations. J Volcanol Geotherm Res 75:137–157Google Scholar
  188. Higgins MD (2000) Measurement of crystal size distributions. Am Mineral 85:1105–1116Google Scholar
  189. Higgins MD (2002a) A crystal size-distribution study of the Kiglapait layered mafic intrusion, Labrador, Canada: evidence for textural coarsening. Contrib Mineral Petrol 144:314–330Google Scholar
  190. Higgins MD (2002b) Closure in crystal size distributions (CSD), verification of CSD calculations, and the significance of CSD fans. Am Mineral 87:171–175Google Scholar
  191. Higgins MD (2006) Quantitative textural measurements in igneous and metamorphic petrology. Cambridge University Press, CambridgeGoogle Scholar
  192. Higgins MD (2011) Textural coarsening in igneous rocks. Int Geol Rev 53:354–376Google Scholar
  193. Hoblitt RP, Harmon RS (1993) Bimodal density distribution of cryptodome dacite from the 1980 Mount St. Helens, Washington. Bull Volcanol 55:421–437Google Scholar
  194. Holasek RE, Self S (1995) GOES weather satellite observations and measurements of the May 18, 1980, Mount St. Helens eruption. J Geophys Res 100(B5):8469–8487Google Scholar
  195. Holasek RE, Self S, Woods AW (1996) Satellite observations and interpretation of the 1991 Mount Pinatubo eruption plumes. J Geophys Res 101(B12):27635–27655Google Scholar
  196. Holland ASP, Watson M, Phillips JC, Caricchi L, Dalton MP (2011) Degassing processes during lava dome growth: insights from Santiaguito lava dome, Guatemala. J Volcanol Geotherm Res 202(1–2):153–166Google Scholar
  197. Hort M, Seyfried R (1998) Volcanic eruption velocities measured with a micro radar. Geophys Res Lett 25:113–116Google Scholar
  198. Hort M, Seyfried R, Vöge M (2003) Radar Doppler velocimity of volcanic eruptions: theoretical considerations and quantitative documentation of changes in eruptive behaviour at Stromboli volcano, Italy. Geophys J Int 154:515–532Google Scholar
  199. Horton K, Williams-Jones G, Garbeil H, Elias T, Sutton AJ, Mouginis-Mark P, Porter JN, Clegg S (2005) Real-time measurement of volcanic SO2 emissions: validation of a new UV correlation spectrometer (FLYSPEC). Bull Volcanol. doi: 10.1007/s00445-005-0014-9 Google Scholar
  200. Houghton BF, Wilson CJN (1989) A vesicularity index for pyroclastic deposits. Bull Volcanol 51:451–462. doi: 10.1007/BF01078811 Google Scholar
  201. Houghton BF, Carey RJ, Cashman KV, Wilson CJN, Hobden BJ, Hammer JE (2010) Diverse patterns of ascent, degassing, and eruption of rhyolite magma during the 1.8 ka Taupo eruption. New Zealand: evidence from clast vesicularity. J Volcanol Geotherm Res 195:31–47Google Scholar
  202. Houghton BF, Swanson DA, Rausch J, Carey RJ, Fagents SA, Orr TR (2013) Pushing the volcanic explosivity index to its limit and beyond: constraints from exceptionally weak explosive eruptions at Kılauea in 2008. Geology 41(6):627–630Google Scholar
  203. Humphreys MCS, Menand T, Blundy JD, Klimm K (2008a) Magma ascent rates in explosive eruptions: constraints from H2O diffusion in melt inclusions. Earth Planet Sci Lett 270:25–40Google Scholar
  204. Humphreys MC, Blundy JD, Sparks RSJ (2008b) Shallow-level decompression crystallization and deep magma supply at Shiveluch volcano. Contrib Mineral Petrol 155:45–61Google Scholar
  205. Hurwitz S, Navon O (1994) Bubble nucleation in rhyolitic melts: experiments at high pressure, temperature, and water content. Earth Planet Sci Lett 122:267–280Google Scholar
  206. Iguchi M, Yakiwara H, Tameguri T, Hendrasto M, Hirabayashi J (2008) Mechanism of explosive eruption revealed by geophysical observations at the Sakurajima, Suwanosejima and Semeru volcanoes. J Volcanol Geotherm Res 178(1):1–9Google Scholar
  207. Innocenti S, Andreastuti S, Furman T, del Marmol M-A, Voight B (2013) The pre-eruption conditions for explosive eruptions at Merapi volcano as revealed by crystal texture and mineralogy. J Volcanol Geotherm Res. doi: 10.1016/j.jvolgeores.2012.12.028 Google Scholar
  208. Ishibashi H, Sato H (2007) Viscosity measurements of subliquidus magmas: alkali olivine basalt from the Higashi-Matsuura district, Southwest Japan. J Volcanol Geotherm Res 160:223–238Google Scholar
  209. Jerram DA, Cheadle MJ, Philpotts AR (2003) Quantifying the building blocks of igneous rocks: are clustered crystal frameworks the foundation? J Petrol 44:2033–2051Google Scholar
  210. Jouniaux L, Bernard ML, Zamora M, Pozzi JP (2000) Streaming potential in volcanic rocks from Mount Pelée. J Geophys Res 105:8391–8401Google Scholar
  211. Kahl M, Chakraborty S, Costa F, Pompilio M (2011) Dynamic plumbing system beneath volcanoes revealed by kinetic modeling, and the connection to monitoring data: an example from Mt. Etna. Earth Planet Sc Lett 308:11–22. doi: 10.1016/j.epsl.2011.05.008 Google Scholar
  212. Kaneshima S, Kawakatsu H, Matsubayashi H, Sudo Y, Tsutsui T, Ohminato T, Ito H, Uhira K, Yamasato H, Oikawa J, Takeo M, Iidaka T (1996) Mechanism of phreatic eruptions at Aso Volcano inferred from near-field broadband seismic observations. Science 273(5275):643–645Google Scholar
  213. Kennedy B, Spieler O, Scheu B, Kueppers U, Taddeucci J, Dingwell DB (2005) Conduit implosion during Vulcanian eruptions. Geology 33:581–584. doi: 10.1130/G21488.1 Google Scholar
  214. Kent AJR (2008) Melt inclusions in basaltic and related volcanic rocks. Rev Mineral Geochem 69:273–331Google Scholar
  215. Kent AJR, Blundy J, Cashman K, Cooper KM, Donnelly C et al (2007) Vapor transfer prior to the October 2004 eruption of Mount St. Helens, Washington. Geology 35:231–234Google Scholar
  216. Ketcham RA (2005) Computational methods for quantitative analysis of three-dimensional features in geological specimens. Geosphere 1:32–41Google Scholar
  217. Ketcham RA, Carlson WD (2001) Acquisition, optimization and interpretation of X-ray computed tomographic imagery: applications to the geosciences. Comput Geosci 27:381–400Google Scholar
  218. Klawonn M, Houghton BF, Swanson DA, Fagents SA, Wessel P, Wolfe CJ (2014) Constraining explosive volcanism: subjective choices during estimates of eruption magnitude. Bull Volcanol 76:793. doi: 10.1007/s00445-013-0793-3 Google Scholar
  219. Klug C, Cashman KV (1994) Vesiculation of May 18, 1980, Mount St. Helens magma. Geology 22:468–472Google Scholar
  220. Klug C, Cashman KV (1996) Permeability development in vesiculating magmas: implications for fragmentation. Bull Volcanol 58:87–100Google Scholar
  221. Klug C, Cashman KV, Bacon CR (2002) Structure and physical characteristics of pumice from the climatic eruption of Mount Mazama (Crater Lake), Oregon. Bull Volcanol 64:486–501Google Scholar
  222. Koyaguchi T, Tokuno M (1993) Origin of the giant eruption cloud of Pinatubo, June 15, 1991. J Volcanol Geotherm Res 55:85–96Google Scholar
  223. Krueger AJ, Walter LS, Doiron SD (1990) TOMS measurement of sulfur dioxide emitted during the 1985 Nevado del Ruiz eruptions. J Volcanol Geotherm Res 41:7–15Google Scholar
  224. Kueppers U, Scheu B, Spieler O, Dingwell DB (2005) Field-based density measurements as tool to identify pre-eruption dome structure: set-up and first results from Unzen volcano, Japan. J Volcanol Geotherm Res 141:65–75Google Scholar
  225. Kueppers U, Scheu B, Spieler O, Dingwell DB (2006) Fragmentation efficiency of explosive volcanic eruptions: a study of experimentally generated pyroclasts. J Volcanol Geotherm Res 153((1–2)):125–135Google Scholar
  226. Kyser TK, O’Neil JR (1984) Hydrogen isotope systematic of submarine basalts. Geochim Cosmochim Acta 48:2123–2133Google Scholar
  227. Lak M, Néraudeau D, Nel A, Cloetens P, Perrichot V, Tafforeau P (2008) Phase contrast X-ray synchrotron imaging: opening access to fossil inclusions in opaque amber. Microsc Microanal 14(3):251–259Google Scholar
  228. Landi P, Marchetti E, La Felice S, Ripepe M, Rosi M (2011) Integrated petrochemical and geophysical data reveals thermal distribution of the feeding conduits at Stromboli volcano, Italy. Geophys Res Lett 38, L08305Google Scholar
  229. Lanza R, Meloni A (2006) The Earth’s magnetism: an introduction for geologists. Springer-Verlag Berlin, Heidelberg, New York, 278 ppGoogle Scholar
  230. Larsen JF (2008) Heterogeneous bubble nucleation and disequilibrium H2O exsolution in Vesuvius K-phonolite melts. J Volcanol Geotherm Res 275:278–288Google Scholar
  231. Larsen JF, Gardner JE (2000) Experimental constraints on bubble interactions in rhyolite melts: implications for vesicle size distributions. Earth Planet Sci Lett 180:201–214Google Scholar
  232. LaRue A, Baker DR, Polacci M, Allard P, Sodini N (2013) Can vesicle size distributions assess eruption intensity during volcanic activity? J Geophys Res Solid Earth 4:373–80. doi: 10.5194/se-4-373-2013 Google Scholar
  233. Laumonier M, Arbaret L, Burgisser A, Champallier R (2011) Porosity redistribution enhanced by strain localization in crystal-rich magmas. Geology 39:715–718. doi: 10.1130/G31803.1 Google Scholar
  234. Launeau P, Cruden AR (1998) Magmatic fabric acquisition mechanisms in a syenite: results of a combined anisotropy of magnetic susceptibility and image analysis study. J Geophys Res 103:5067–5089Google Scholar
  235. Launeau P, Bouchez JL, Benn K (1990) Shape preferred orientation of object populations: automatic analysis of digitized images. Tectonophysics 180:201–211Google Scholar
  236. Launeau P, Cruden AR, Bouchez JL (1994) Mineral recognition in digital images of rocks: a new approach using multichannel classification. Can Mineral 32:919–933Google Scholar
  237. Lautze NC, Houghton BF (2005) Physical mingling of magma and complex eruption dynamics in the shallow conduit at Stromboli volcano, Italy. Geology 33:425–428Google Scholar
  238. Lautze NC, Houghton BF (2007) Linking variable explosion style and magma textures during 2002 at Stromboli volcano, Italy. Bull Volcanol 69:445–460Google Scholar
  239. Lautze NC, Houghton BF (2008) Single explosions at Stromboli in 2002: use of clast microtextures to map physical diversity across a fragmentation zone. J Volcanol Geotherm Res 170:262–268Google Scholar
  240. Lautze N, Taddeucci J, Andronico D, Cannata C, Tornetta L, Scarlato P, Houghton B, Lo Castro D (2012) SEM-based methods for the analysis of basaltic ash from weak explosive activity at Etna in 2006 and the 2007 eruptive crisis at Stromboli. Phys Chem Earth 45–46:113–127. doi: 10.1016/j.pce.2011.02.001 Google Scholar
  241. Lautze N, Taddeucci J, Andronico D, Houghton B, Niemeijer A, Scarlato P (2013) Insights into explosion dynamics and the production of ash at Stromboli from samples collected in real time, October 2009. Geol Soc Am Special paper 498:125–139Google Scholar
  242. Lavallée Y, Varley N, Alatorre-Ibargüengoitia MA, Hess KU, Mueller S, Richard D, Scheu B, Spieler O, Dingwell DB (2012) Magmatic architecture of dome-building eruptions at Volcán de Colima, Mexico. Bull Volcanol 74:249–260Google Scholar
  243. Le Losq C, Neuville DR, Moretti R, Roux J (2012) Determination of water content in silicate glasses using Raman spectrometry: implications for the study of explosive volcanism. Am Mineral 97:779–790Google Scholar
  244. Le Pennec JL, Hermitte D, Isya D, Pezard P, Coulon C, Cochemé J-J, Mulyadi E, Ollagnier F, Revest C (2001) Electrical conductivity and pore-space topology of Merapi lavas: implication for the degassing of porphyritic andesite magmas. Geophys Res Lett 28(22):4283–4286Google Scholar
  245. Le Voyer M, Rose-Koga EF, Shimizu N, Grove TL, Schiano P (2010) Two contrasting H2O-rich components in primary melt inclusions from Mount Shasta. J Petrol 5(7):1571–1595. doi: 10.1093/petrology/egq030 Google Scholar
  246. Leduc L, Gurioli L, Harris AJL, Colò L, Rose-Koga E (2015) Dynamics of a gas-dominated strombolian explosion. Bull Volcanol 77:8. doi: 10.1007/s00445-014-0888-5 Google Scholar
  247. Lesne P, Kohn SC, Blundy J, Witham F, Botcharnikov RE, Behrens H (2011) Experimental simulation of closed-system degassing in the system basalt-H2O-CO2-S-Cl. J Petrol 52:1737–1762Google Scholar
  248. Liu Y, Anderson AT, Wilson CJN (2007) Melt pockets in phenocrysts and decompression rates of silicic magmas before fragmentation. J Geophys Res 112:B06204. doi: 10.1029/2006JB004500
  249. Lovejoy S, Gaonac’h H, Schertzer D (2004) Bubble distributions, and dynamics: the expansion-coalescence equation. J Geophys Res 109, B11203. doi: 10.1029/2003JB002823 Google Scholar
  250. Lumbreras F, Serrat J (1996) Segmentation of petrographical images of marbles. Comput Geosci 22:547–558Google Scholar
  251. Magee C, O’Driscoll B, Chambers AD (2010) Crystallization and textural evolution of a closed-system magma chamber: insights from a crystal size distribution study of the Lilloise layered intrusion, east Greenland. Geol Mag 147:363–379Google Scholar
  252. Manga M (1998) Orientation distribution of microlites in obsidian. J Volcanol Geotherm Res 86:107–115Google Scholar
  253. Mangan M (1990) Crystal size distribution systematics and the determination of magma storage times: the 1959 eruption of Kilauea volcano, Hawai’i. J Volcanol Geotherm Res 44:295–302Google Scholar
  254. Mangan MT, Cashman KV (1996) The structure of basaltic scoria and reticulite and inferences for vesiculation, foam formation, and fragmentation in lava fountains. J Volcanol Geotherm Res 73:1–18Google Scholar
  255. Mangan M, Sisson T (2000) Delayed, disequilibrium degassing in rhyolite magma: decompression experiments and implications for explosive volcanism. Earth Planet Sci Lett 183:441–55Google Scholar
  256. Mangan M, Sisson T (2005) Evolution of melt-vapor surface tension in silicic volcanic systems: experiments with hydrous melts. J Geophys Res 110, B01202. doi: 10.1029/2004JB003215 Google Scholar
  257. Mangan MT, Cashman KV, Newman S (1993) Vesiculation of basaltic magma during eruption. Geology 21:157–160Google Scholar
  258. Marchetti E, Ripepe M, Harris AJL, Delle Donne D (2009) Tracing the differences between Vulcanian and Strombolian explosions using infrasonic and thermal radiation energy. Earth Planet Sci Lett 279:273–281Google Scholar
  259. Marchetti E, Poggi P, Bonadonna C, Pistolesi M, Hoskuldsson A (2013) Towards real-time measurements of tephra fallout grain-size distribution. MeMoVolc Meeting, Geneve SwitzerlandGoogle Scholar
  260. Maria A, Carey S (2007) Quantitative discrimination of magma fragmentation and pyroclastic transport processes using the fractal spectrum technique. J Volcanol Geotherm Res 161:234–246Google Scholar
  261. Maria A, Carey S, Maria A, Carey S (2002) Using fractal analysis to quantitatively characterize the shapes of volcanic particles. J Geophys Res 107(B11):2283. doi: 10.1029/2001JB000822 Google Scholar
  262. Marschallinger R (1998a) A method for three-dimensional reconstruction of macroscopic features in geological materials. Comput Geosci 24:875–883Google Scholar
  263. Marschallinger R (1998b) Correction of geometric errors associated with the 3-D reconstruction of geological materials by precision serial lapping. Mineral Mag 62:783–792Google Scholar
  264. Marschallinger R (1998c) 3-D reconstruction and volume modelling of the grain fabric of geological materials. Phys Chem Earth 23:267–271Google Scholar
  265. Marsh BD (1988) Crystal size distribution (CSD) in rocks and the kinetics and dynamics of crystallization: I. Theory. Contrib Mineral Petrol 99:277–91Google Scholar
  266. Marsh BD (1998) On the interpretation of crystal size distributions in magmatic systems. J Petrol 39:553–599Google Scholar
  267. Marsh BD (2007) Crystallization of silicate magmas deciphered using crystal size distributions. J Am Ceram Society 90:746–757Google Scholar
  268. Marshall JR (1987) Clastic particles: scanning electron microscopy and shape analysis of sedimentary and volcanic clasts. Van Nostrand Reinhold Company, New York, 346 pGoogle Scholar
  269. Martel C (2012) Eruption Dynamics inferred from microlite crystallization experiments: application to Plinian and dome-forming eruptions of Mt. Pelée (Martinique, Lesser Antilles). J Petrol 53:699–725Google Scholar
  270. Martel C, Radadi Ali A, Poussineau S, Gourgaud A, Pichavant M (2006) Basalt-inherited microlites in silicic magmas: evidence from Mt. Pelée (Martinique, F.W.I.). Geology 34:905–908Google Scholar
  271. Marti J, Soriano C, Dingwell DB (1999) Tube pumices as strain markers of the ductile-brittle transition during magma fragmentation. Nature 402(6762):650–653Google Scholar
  272. Martí J, Castro A, Rodríguez C, Costa F, Carrasquilla S, Pedreira R, Bolos X (2013) Correlation of magma evolution and geophysical monitoring during the 2011–2012 El Hierro (Canary Islands) submarine eruption. J Petrol 54(7):1349–1373. doi: 10.1093/petrology/egt014 Google Scholar
  273. Mattsson HB (2010) Textural variation in juvenile pyroclasts from an emergent, Surteyan-type, volcanic eruption: the Capelas tuff cone, São Miguel (Azores). J Volcanol Geotherm Res 189:81–91Google Scholar
  274. McNutt SR (1986) Observations and analysis of B-type earthquakes, explosions, and volcanic tremor at Pavlof Volcano, Alaska. Bull Seismol Soc Am 76:153–175Google Scholar
  275. Mele D, Dellino P, Sulpizio R, Braia G (2011) A systematic investigation on the aerodynamics of ash particles. J Volcanol Geotherm Res 203:1–11. doi: 10.1016/j.jvolgeores.2011.04.004 Google Scholar
  276. Melnik O, Sparks RSJ (2002) Dynamics of magma ascent and lava extrusion at Soufrière Hills Volcano, Montserrat. In: Druitt T, Kokelaar B (eds) The eruption of Soufrière Hills Volcano, Montserrat, from 1995 to 1999. The Geological Society of London, United Kingdom, pp 153–171Google Scholar
  277. Métrich N, Wallace PJ (2008) Volatile abundances in basaltic magmas and their degassing paths tracked by melt inclusions. In Putirka KD, Tepley FJ (Eds) Minerals, inclusions and volcanic processes. Rev Mineral Geochem 69:363-402Google Scholar
  278. Métrich N, Bertagnini A, Landi P, Rosi M (2001) Crystallization driven by decompression and water loss at Stromboli volcano (Aeolian Islands, Italy). J Petrol 42:1471–1490. doi: 10.1093/petrology/42.8.1471 Google Scholar
  279. Métrich N, Bertagnini A, Di Muro A (2010) Conditions of magma storage, degassing and ascent at Stromboli: new insights into the volcano plumbing system with inferences on the eruptive dynamics. J Petrol 51(3):603–626Google Scholar
  280. Miwa T, Toramaru A (2013) Conduit process in vulcanian eruptions at Sakurajima volcano, Japan: inference from comparison of volcanic ash with pressure wave and seismic data. Bull Volcanol 75:685Google Scholar
  281. Miwa T, Toramaru A, Iguchi M (2009) Correlations of volcanic ash texture with explosion earthquakes from vulcanian eruptions at Sakurajima volcano, Japan. J Volcanol Geotherm Res 184(3–4):473–486Google Scholar
  282. Miwa T, Geshi N, Shinohara H (2013) Temporal variation in volcanic ash texture during a vulcanian eruption at the Sakurajima volcano, Japan. J Volcanol Geotherm Res 260:80–89Google Scholar
  283. Mock A, Jerram DA (2005) Crystal size distributions (CSD) in three dimensions: insights from the 3D reconstruction of a highly porphyritic rhyolite. J Petrol 46:1525–1541. doi: 10.1093/petrology/egi024 Google Scholar
  284. Mock A, Jerram DA, Breitkreuz C (2003) Using quantitative textural analysis to understand the emplacement of shallow-level rhyolitic laccoliths a case study from the Halle volcanic complex, Germany. J Petrol 44:833–849Google Scholar
  285. Moitra P, Gonnermann HM, Houghton BF, Giachetti T (2013) Relating vesicle shapes in pyroclasts to eruption styles. Bull Volcanol 75:691. doi: 10.1007/s00445-013-0691-8 Google Scholar
  286. Morgan DJ, Jerram DA, Chertkoff DG, Davidson JP, Pearson DG, Kronz A, Nowell GM (2007) Combining CSD and isotopic microanalysis: magma supply and mixing processes at Stromboli volcano, Aeolian islands, Italy. Earth Planet Sci Lett 260(3–4):419–431Google Scholar
  287. Mori T, Burton M (2006) The SO2 camera: a simple, fast and cheap method for ground-based imaging of SO2 in volcanic plumes. Geophys Res Lett 33:L24804. doi: 10.1029/2006GL027916
  288. Mori T, Burton M (2009) Quantification of the gas mass emitted during single explosions on Stromboli with the SO2 imaging camera. J Volcanol Geotherm Res 188:395–400. doi: 10.1016/j.jvolgeores.2009.10.005 Google Scholar
  289. Mori J, Patia H, McKee C, Itikarai I, Lowenstein P, De Saint OP, Talai B (1989) Seismicity associated with eruptive activity at Langila volcano, Papua New Guinea. J Volcanol Geotherm Res 38(3–4):243–255Google Scholar
  290. Mourtada-Bonnefoi CC, Laporte D (2002) Homogenous bubble nucleation in rhyolitic magmas: an experimental study on the effect of H2O and CO2. J Geophys Res 107:B4. doi: 10.1029/2001JB000290 Google Scholar
  291. Mourtada-Bonnefoi CC, Laporte D (2004) Kinetics of bubble nucleation in a rhyolitic melt: an experimental study of the effect of ascent rate. Earth Planet Sci Lett 218:521–537Google Scholar
  292. Mueller S, Melnik O, Spieler O, Scheu B, Dingwell DB (2005) Permeability and degassing of dome lavas undergoing rapid decompression: an experimental determination. Bull Volcanol 67(6):526–538. doi: 10.1007/s00445-004-0392-4 Google Scholar
  293. Mueller S, Scheu B, Spieler O, Dingwell DB (2008) Permeability control on magma fragmentation. Geology 36(5):399–402. doi: 10.1130/G24605A.1 Google Scholar
  294. Mueller S, Scheu B, Kueppers U, Spieker O, Richard D, Dingwell DB (2011) The porosity of pyroclasts as an indicator of volcanic explosivity. J Volcanol Geotherm Res 203:168–174Google Scholar
  295. Muir DD, Blundy JD, Rust AC (2012) Multiphase petrography of volcanic rocks using element maps: a method applied to Mount St. Helens, 1980–2005. Bull Volcanol 74:1101–1120Google Scholar
  296. Murtagh RM, White JDL (2013) Pyroclast characteristics of a subaqueous to emergent Surtseyan eruption, Black Point volcano, California. J Volcanol Geotherm Res 267:75–91Google Scholar
  297. Murtagh RM, White JDL, Sohn YK (2011) Pyroclast textures of the Ilchulbong ‘wet’ tuff cone, Jeju Island, South Korea. J Volcanol Geotherm Res 201:385–396Google Scholar
  298. Nakamura K (2006) Textures of plagioclase microlite and vesicles within volcanic products of the 1914–1915 eruptions of Sakurajima Volcano, Kyushu, Japan. J Mineral Petrol Sci 101:178–198Google Scholar
  299. Nakamura M, Otaki K, Takeuchi S (2008) Permeability and pore-connectivity variation of pumices from a single pyroclastic flow eruption: implications for partial fragmentation. J Volcanol Geotherm Res 176:302–314Google Scholar
  300. Németh K (2010) Volcanic glass textures, shape characteristics and compositions of phreatomagmatic rock units from the Western Hungarian monogenetic volcanic fields and their implications for magma fragmentation. Cent Eur J Geosci 2:399–419Google Scholar
  301. Neuberg J, Luckett R, Ripepe M, Braun T (1994) Highlights from a seismic broadband array on Stromboli volcano. Geophys Res Lett 21:749–752Google Scholar
  302. Newman S, Lowenstern JB (2002) VolatileCalc: a silicate melt-H2O-CO2 solution model written in visual basic for excel. Comput Geosci 28(5):597–604Google Scholar
  303. Newman S, Epstein S, Stolper E (1988) Water, carbon dioxide, and hydrogen isotopes in glasses from the CA. 1340 A.D. eruption of the Mono Craters, California: constraints on degassing phenomena and initial volatile content. J Volcanol Geotherm Res 35:75–96Google Scholar
  304. Nguyen CT, Gonnermann HM, Chen Y, Huber C, Maiorano AA, Gouldstone A, Dufek J (2013) Film drainage and the lifetime of bubbles. Geochem Geophys Geosyst 14:3616–3631Google Scholar
  305. Nguyen CT, Gonnermann HM, Houghton BF (2014) Explosive to effusive transition during the largest volcanic eruption of the 20th century (Novarupta 1912, Alaska). Geology 42(8):703–706. doi: 10.1130/G35593.1
  306. Nishimura T, McNutt SR (2008) Volcanic tremor during eruptions: temporal characteristics, scaling and estimates of vent radius. J Volcanol Geotherm Res 178:10–18Google Scholar
  307. Noguchi S, Toramaru A, Shimano T (2006) Crystallization of microlites and degassing during magma ascent: constraints on the fluid mechanical behavior of magma during the Tenjo Eruption on Kozu Island, Japan. Bull Volcanol 68:432–449. doi: 10.1007/s00445-005-0019-4 Google Scholar
  308. Noguchi S, Toramaru A, Nakada S (2008) Relation between microlite textures and discharge rate during the 1991–1995 eruptions at Unzen, Japan. J Volcanol Geotherm Res 175(1–2):141–155Google Scholar
  309. O’Driscoll B, Donaldson CH, Troll VR, Jerram DA, Emeleus CH (2007) An origin for harrisitic and granular olivine in the rum layered suite, NW Scotland: a crystal size distribution study. J Petrol 48(2):253–270Google Scholar
  310. Okumura S, Nakamura M, Tsuchiyama A (2006) Shear-induced bubble coalescence in rhyolitic melts with low vesicularity. Geophys Res Lett 33, L20316. doi: 10.1029/2006GL027347 Google Scholar
  311. Okumura S, Nakamura M, Tsuchiyama A, Nakano T, Uesugi K (2008) Evolution of bubble microstructure in sheared rhyolite: formation of a channel-like bubble network. J Geophys Res 113:B07208. doi: 10.1029/2007JB005362 Google Scholar
  312. Okumura S, Nakamura M, Uesugi K, Nakano T, Fujioka T (2013) Coupled effect of magma degassing and rheology on silicic volcanism. Earth Planet Sci Lett 362:163–170Google Scholar
  313. Oppenheimer C, Scaillet B, Martin RS (2011) Sulfur degassing from volcanoes: source conditions, surveillance, plume chemistry and impacts. Rev Mineral Geochem 73:363–421. doi: 10.2138/rmg.2011.73.13 Google Scholar
  314. Palladino DM, Taddeucci J (1998) The basal ash deposit of the Sovana Eruption (Vulsini Volcanoes, central Italy): the product of a dilute pyroclastic density current. J Volcanol Geotherm Res 87:233–254Google Scholar
  315. Pamukcu AS, Gualda GAR (2010) Quantitative 3D petrography using X-ray tomography 2: combining information at various resolutions. Geosphere 6:775–781. doi: 10.1130/GES00565.1 Google Scholar
  316. Pamukcu AS, Gualda GAR, Anderson AT (2012) Crystallization stages of the Bishop Tuff magma body recorded in crystal textures in pumice clasts. J Petrol 63:589–609Google Scholar
  317. Pardo N et al (2014a) Perils in distinguishing phreatic from phreatomagmatic ash; insights into the eruption mechanisms of the 6 August 2012 Mt. Tongariro eruption, New Zealand. J Volcanol Geotherm Res. doi: 10.1016/j.jvolgeores.2014.05.001 Google Scholar
  318. Pardo N, Cronin SJ, Wright HMN, Schipper IC, Smith I, Stewart B (2014b) Pyroclast textural variation as an indicator of eruption column steadiness in andesitic Plinian eruptions at Mt. Ruapehu. Bull Volcanol 76:822Google Scholar
  319. Patrick MR (2007) Dynamics of Strombolian ash plumes from thermal video: motion, morphology, and air entrainment. J Geophys Res 112, B06202. doi: 10.1029/2006JB004387 Google Scholar
  320. Perugini D, Poli G, Properini N (2002) Morphometric analysis of magmatic enclaves: a tool for understanding magma vesiculation and ascent. Lithos 61:225–235Google Scholar
  321. Perugini D, Valentini L, Poli G (2007) Insights into magma chamber processes from the analysis of size distribution of enclaves in lava flows: a case study from Vulcano Island (Southern Italy). J Volcanol Geotherm Res 166:193–203Google Scholar
  322. Perugini D, Speziali A, Caricchi L, Kueppers U (2011) Application of fractal fragmentation theory to natural pyroclastic deposits: insights into volcanic explosivity of the Valentano scoria cone (Italy). J Volcanol Geotherm Res 202(3-4):200–210Google Scholar
  323. Pfeiffer T, Costa A, Macedonio G (2005) A model for the numerical simulation of tephra fall deposits. J Volcanol Geotherm Res 140:273–294Google Scholar
  324. Pichavant M, Martel C, Bourdier JL, Scaillet B (2002) Physical conditions, structure, and dynamics of a zoned magma chamber: Mount Pelée (Martinique, Lesser Antilles Arc). J Geophys Res 107(B5):2093. doi: 10.1029/2001JB000315
  325. Pichavant M, Costa F, Burgisser A et al (2007) Equilibration scales in silicic to intermediate magmas: implications for experimental studies. J Petrol 48:1955–1972. doi: 10.1093/petrology/egm045 Google Scholar
  326. Pichavant M, Carlo I, Rotolo SG et al (2013) Generation of CO2-rich melts during basalt magma ascent and degassing. Contrib Mineral Petrol. doi: 10.1007/s00410-013-0890-5 Google Scholar
  327. Pickering G, Bull JM, Sanderson DJ (1995) Sampling power-law distributions. Tectonophysics 248:1–20. doi: 10.1016/0040-1951(95)00030-Q Google Scholar
  328. Piochi M, Mastrolorenzo G, Pappalardo L (2005) Magma ascent and eruptive processes from textural and compositional features of Monte Nuovo pyroclastic products, Campi Flegrei, Italy. Bull Volcanol 67:663–678Google Scholar
  329. Piochi M, Polacci M, De Astis G, Zanetti A, Mangiacapra A, Vannucci R, Giordano D (2008) Texture and composition from pumices and scoriae of the Campi Flegrei caldera (Italy): implications on the dynamics of explosive eruptions. Geochem Geophys Geosyst 9, Q03013. doi: 10.1029/2007GC001746 Google Scholar
  330. Pioli L, Erlund E, Johnson E, Cashman K, Wallace P, Rosi M, Delgado Granados H (2008) Explosive dynamics of violent strombolian eruptions: the eruption of Parícutin volcano 1943–1952 (Mexico). Earth Planet Sci Lett 271:359–368Google Scholar
  331. Pioli L, Pistolesi M, Rosi M (2014) Transient explosions at open-vent volcanoes: the case of Stromboli (Italy). Geology 42:863–866Google Scholar
  332. Pistolesi M, Rosi M, Pioli L, Renzulli A, Bertagnini A, Andronico D (2008) The paroxysmal explosion and its deposits. In: Calvari S et al (eds) The Stromboli Volcano: an integrated study of the 2002–2003 Eruption, Geophys. Monogr. Ser. vol. 182. AGU, Washington, pp 317–329. doi: 10.1029/182GM26 Google Scholar
  333. Pistolesi M, Delle Donne D, Pioli L, Rosi M, Ripepe M (2011) The 15 March 2007 explosive crisis at Stromboli volcano, Italy: assessing physical parameters through a multidisciplinary approach. J Geophys Res 116(B12). doi: 958  10.1029/2011JB008527
  334. Platz T, Cronin SJ, Cashman KV, Stewart RB, Smith IEM (2007) Transition from effusive to explosive phases in andesite eruptions—a case-study from the AD1655 eruption of Mt. Taranaki, New Zealand. J Volcanol Geotherm Res 161:15–34Google Scholar
  335. Polacci M, Papale P, Rosi M (2001) Textural heterogeneities in pumices from the climatic eruption of Mount Pinatubo, 15 June 1991, and implications for magma ascent dynamics. Bull Volcanol 63:83–97Google Scholar
  336. Polacci M, Pioli L, Rosi M (2003) The Plinian phase of the Campanian Ignimbrite eruption (Phlegrean Fields, Italy): evidence from density measurements and textural characterization of pumice. Bull Volcanol 65:418–432Google Scholar
  337. Polacci M, Corsaro R, Andronico D (2006a) Coupled textural and compositional characterization of basaltic scoria: insights into the transition from Strombolian to fire fountain activity at Mount Etna, Italy. Geology 34(3):201–204. doi: 10.1130/G223181.1 Google Scholar
  338. Polacci M, Baker DR, Mancini L, Tromba G, Zanini F (2006b) Three-dimensional investigation of volcanic textures by X-ray microtomography and implications for conduit processes. Geophys Res Lett 33(13), L13312. doi: 10.1029/2006GL026241 Google Scholar
  339. Polacci M, Baker DR, Bai L, Mancini L (2008) Large vesicles record pathways of degassing at basaltic volcanoes. Bull Volcanol 70:1023–1029. doi: 10.1007/s00445-007-0184-8 Google Scholar
  340. Polacci M, Baker DR, Mancini L, Favretto S, Hill RJ (2009a) Vesiculation in magmas from Stromboli and implications for normal Strombolian activity and paroxysmal explosions in basaltic systems. J Geophys Res 114:B01206. doi: 10.1029/2008JB005672 Google Scholar
  341. Polacci M, Burton MR, La Spina A, Murè F, Favretto S, Zanini F (2009b) The role of syn-eruptive vesiculation on explosive basaltic activity at Mt. Etna, Italy. J Volcanol Geotherm Res 179:265–269Google Scholar
  342. Polacci M, Mancini L, Baker DR (2010) The contribution of synchrotron X-ray computed microtomography to understanding volcanic processes. J Synchrotron Radiat 17:215–221Google Scholar
  343. Polacci M, Baker DR, La Rue A, Mancini L (2012) Degassing behaviour of vesiculated basaltic magmas: an example from Ambrym volcano, Vanuatu Arc, and comparison to Stromboli, Aeolian Islands, Italy. J Volcanol Geotherm Res 233–234:55–64. doi: 10.1016/j.jvolgeores.2012.04.019 Google Scholar
  344. Polacci M, Bouvet de Maisonneuve C, Giordano D, Piochi M, Mancini L, Degruyter W, Bachmanng O (2014) Permeability measurements of Campi Flegrei pyroclastic products: an example from the Campanian Ignimbrite and Monte Nuovo eruptions. J Volcanol Geotherm Res 272:16–22Google Scholar
  345. Prata AJ (1989) Infrared radiative transfer calculations for volcanic ash clouds. Geophys Res Lett 15(11):1293–1296Google Scholar
  346. Prata AJ, Bernardo C (2009) Retrieval of volcanic ash particle size, mass and optical depth from a ground-based thermal infrared camera. J Volcanol Geotherm Res 186:91–107Google Scholar
  347. Prejean SG, Brodsky EE (2011) Volcanic plume height measured by seismic waves based on a mechanical model. J Geophys Res Solid Earth 116(B1):B01306. doi: 10.1029/2010JB007620
  348. Prior DJ (1999) Problems in determining the orientations of crystal misorientation axes, for small angular misorientations, using electron backscatter diffraction in the SEM. J Microsc 195:217–225Google Scholar
  349. Prior DJ, Boyle AP, Brenker F, Cheadle MC, Day A, Lopez G, Peruzzo L, Potts GJ, Reddy S, Spiess R, Timms NE, Trimby P, Wheeler J, Zetterström L (1999) The application of electron backscatter diffraction and orientation contrast imaging in the SEM to textural problems in rocks. Am Mineral 84:1741–1759Google Scholar
  350. Prodi F, Caracciolo D, Adderio LP, Gnuffi M, Lanzinger E (2011) Comparative investigation of Pludix disdrometer capability as Present Weather Sensor (PWS) during the Wasserkuppe campaign. Atmos Res 99(1):162–173Google Scholar
  351. Proussevitch AA, Sahagian DL, Tsentalovich EP (2007a) Statistical analysis of bubble and crystal size distributions: formulations and procedures. J Volcanol Geotherm Res 164:95–111Google Scholar
  352. Proussevitch AA, Sahagian DL, Carlson W (2007b) Statistical analysis of bubble and crystal size distributions: application to Colorado Plateau basalts. J Volcanol Geotherm Res 164:112–126Google Scholar
  353. Proussevitch AA, Mulukutla GK, Sahagian DL (2011) A new 3D method of measuring bubble size distributions from vesicle fragments preserved on surfaces of volcanic ash particles. Geosphere 7:1–8Google Scholar
  354. Pyle M (1989) The thickness, volume and grainsize of tephra fall deposits. Bull Volcanol 51:1–15Google Scholar
  355. Pyle DM, Mather TA (2009) Halogens in igneous processes and their fluxes to the atmosphere and oceans from volcanic activity: a review. Chem Geol 263(1-4):110–121. doi: 10.1016/j.chemgeo.2008.11.013 Google Scholar
  356. Riley CM, Rose WI, Bluth GJS (2003) Quantitative shape measurements of distal volcanic ash. J Geophys Res 108:B10. doi: 10.1029/2001JB000818 Google Scholar
  357. Ripepe M, Braun T (1994) Air-wave phases in strombolian explosion-quake seismograms: a possible indicator for the magma level? Acta Vulcanol 5:201–206Google Scholar
  358. Ripepe M, Marchetti E (2002) Array tracking of infrasonic sources at Stromboli volcano. Geophys Res Lett 29(22):2076Google Scholar
  359. Ripepe M, Rossi M, Saccorotti G (1993) Image processing of explosive activity at Stromboli. J Volcanol Geotherm Res 54:335–351Google Scholar
  360. Ripepe M, Poggi P, Braun T, Gordeev E (1996) Infrasonic waves and volcanic tremor at Stromboli. Geophys Res Lett 23:181–184Google Scholar
  361. Ripepe M, Ciliberto S, Della Schiava M (2001) Time constraints for modeling source dynamics of volcanic explosions at Stromboli. J Geophys Res 106(B5):8713–8727Google Scholar
  362. Ripepe M, Harris AJL, Carniel R (2002) Thermal, seismic and infrasonic evidences of variable degassing rates at Stromboli volcano. J Volcanol Geotherm Res 118:285–297Google Scholar
  363. Rix M, Valks P, Hao N, Loyola D, Schlager H, Huntrieser H, Flemming J, Koehler U, Schumann U, Inness A (2012) Volcanic SO2, BrO and plume height estimations using GOME-2 satellite measurements during the eruption of Eyjafjallajökull in May 2010. J Geophys Res 117:D00U19. doi: 10.1029/2011JD016718 Google Scholar
  364. Robock A, Matson M (1982) Circumglobal transport of the El Chichon volcanic dust cloud. Science 221:195–197Google Scholar
  365. Roggensack K, Hervig RL, McKnight SB, Williams SN (1997) Explosive basaltic volcanism from Cerro Negro volcano: influence of volatiles on eruptive style. Science 277:1639–1642Google Scholar
  366. Rose WI, Self S, Murrow PJ, Bonadonna C, Durant AJ, Ernst GGJ (2008) Nature and significance of small volume fall deposits at composite volcanoes: insights from the October 14, 1974 Fuego eruption, Guatemala. Bull Volcanol 70(9):1043–1067Google Scholar
  367. Rose-Koga EF, Koga K, Schiano P, Le Voyer M (2012) Mantle source heterogeneity for South Tyrrhenian magmas revealed by Pb isotopes and halogen contents of olivine-hosted melt inclusions. Chem Geol 334:266–279Google Scholar
  368. Rosi M, Bertagnini A, Harris AJL, Pioli L, Pistolesi M, Ripepe M (2006) A case history of paroxysmal explosion at Stromboli: timing and dynamics of the April 5, 2003 event. Earth Planet Sci Lett 243:594–606Google Scholar
  369. Rosseel JB, White JDL, Houghton BF (2006) Complex bombs of phreatomagmatic eruptions: role of agglomeration and welding in vents of the 1886 Rotomahana eruption, Tarawera, New Zealand. J Geophys Res 111, B12205. doi: 10.1029/2005JB004073 Google Scholar
  370. Rotella MD, Wilson CJN, Barker SJ, Wright IC (2013) Novel origins of highly vesicular pumice in a distinctive non-explosive submarine eruptive style. Nat Geosci 6:129–132Google Scholar
  371. Rotella MD, Wilson CJN, Barker SJ, Cashman KV, Houghton BF, Wright IC (2014) Bubble development in explosive silicic eruptions: insights from pyroclast vesicularity textures from Raoul volcano (Kermadec arc). Bull Volcanol 76:826Google Scholar
  372. Rust AC, Cashman KV (2004) Permeability of vesicular silicic magma: inertial and hysteresis effects. Earth Planet Sci Lett 228:93–107. doi: 10.1016/j.epsl.2004.09.025 Google Scholar
  373. Rust AC, Cashman KV (2007) Multiple origins of pyroclastic obsidian and implications for changes in the dynamics of the 1300 BP eruption of Newberry Volcano, OR. Bull Volcanol 69:825–845Google Scholar
  374. Rust AC, Cashman KV (2011) Permeability controls on expansion and size distributions of pyroclasts. J Geophys Res 116, B11202Google Scholar
  375. Rust AC, Manga M, Cashman KV (2003) Determining flow type, shear rate and shear stress in magmas from bubble shapes and orientations. J Volcanol Geotherm Res 122:111–132Google Scholar
  376. Ruth D, Calder E (2014) Plate tephra: preserved bubble walls from large slug bursts during violent Strombolian eruptions. Geology 42(1):11–14. doi: 10.1130/G34859.1 Google Scholar
  377. Rutherford MJ, Devine JD (2003) Magmatic conditions and magma ascent as indicated by hornblende phase equilibria and reactions in the 1995-2002 Soufrière Hills magma. J Petrol 44:1433–1454Google Scholar
  378. Rutherford MJ, Hill PM (1993) Magma ascent rates from amphibole breakdown: an experimental study applied to the 1980–1986 Mount St. Helens eruptions. J Geophys Res 98:19667–19685Google Scholar
  379. Rutherford MJ, Sigurdsson H, Carey S, Davis A (1985) The May 18, 1980 eruption of Mount St. Helens, 1. Melt compositions and experimental phase equilibria. J Geophys Res 90:2929–2947Google Scholar
  380. Saar MO, Manga M (1999) Permeability-porosity relationship in vesicular basalts. Geophys Res Lett 26(1):111–114Google Scholar
  381. Sable JE, Houghton BF, Del Carlo P, Coltelli M (2006) Changing conditions of magma ascent and fragmentation during the Etna 122 BC basaltic Plinian eruption: evidence from clast microtextures. J Volcanol Geotherm Res 158:333–354Google Scholar
  382. Sable JE, Houghton BF, Wilson CJN, Carey RJ (2009) Eruption mechanisms during the climax of the Tarawera 1886 basaltic Plinian eruption inferred from microtextural characteristics of the deposits. In: Studies in volcanology: the legacy of George Walker, Spec. Publ. IAVCEI, vol. 2. Geol. Soc, London, pp 129–154Google Scholar
  383. Sahagian DL, Proussevitch AA (1998) 3D particle size distributions from 2D observations: stereology for natural applications. J Volcanol Geotherm Res 84:173–196Google Scholar
  384. Sahetapy-Engel ST, Harris AJL (2009) Thermal-image-derived dynamics of vertical ash plumes at Santiaguito volcano, Guatemala. Bull Volcanol 71:827–830. doi: 10.1007/s00445-009-0284-8 Google Scholar
  385. Salisbury MJ, Bohrson WA, Clynne MA, Ramos FC, Hoskin P (2008) Multiple plagioclase crystal populations identified by crystal size distribution and in situ chemical data: implications for timescales of magma chamber processes associated with the 1915 eruption of Lassen Peak, CA. J Petrol 49:1755–1780Google Scholar
  386. Saunders K, Blundy J, Dohmen R, Cashman (2012) Linking petrology and seismology at an active volcano. Science 336(6084):1023–1027. doi: 10.1126/science.1220066 Google Scholar
  387. Scaillet B, Evans BW (1999) The 15 June 1991 eruption of Mount Pinatubo. I. Phase equilibria and pre-eruption P-T-fO2-fH2O conditions of the dacite magma. J Petrol 40(3):381–411Google Scholar
  388. Schiavi F, Kobayashi K, Moriguti T et al (2010) Degassing, crystallization and eruption dynamics at Stromboli: trace element and lithium isotopic evidence from 2003 ashes. Contrib Mineral Petrol 159:541–561Google Scholar
  389. Schiavi F, Kobayashi K, Nakamura E et al (2012) Trace element and Pb–B–Li isotope systematics of olivine-hosted melt inclusions: insights into source metasomatism beneath Stromboli (Southern Italy). Contrib Mineral Petrol 163:1011–1031Google Scholar
  390. Schipper CI, White JDL, Houghton BF (2010a) Syn- and post-fragmentation textures in submarine pyroclasts from Loihi Seamount, Hawaii. J Volcanol Geotherm Res 191:93–106. doi: 10.1016/j/jvolgeores.2010.01.002 Google Scholar
  391. Schipper CI, White JDL, Houghton BF, Shimizu N, Stewart RB (2010b) Explosive submarine eruptions driven by volatile-coupled degassing at Lo`ihi Seamount, Hawai’i. Earth Planet Sci Lett 295(3-4):497–510Google Scholar
  392. Schipper CI, White JDL, Houghton BF, Shimizu N, Stewart RB (2010c) “Poseidic” explosive eruptions at Loihi Seamount, Hawaii. Geology 38(4):291–294Google Scholar
  393. Schipper CI, White JDL, Houghton BF (2011) Textural, geochemical, and volatile evidence for a Strombolian-like eruption sequence at Lō`ihi Seamount, Hawai`i. J Volcanol Geotherm Res 207:16–32Google Scholar
  394. Schipper CI, White JDL, Nichols ARL, Burgisser A, Hellebrand E, Murtagh RM (2012) Incipient melt segregation as preserved in subaqueous pyroclasts. Geology 40(4):355–358Google Scholar
  395. Schipper CI, Castro JM, Tuffen H, James MR, How P (2013) Shallow vent architecture during hybrid explosive-effusive activity at Cordón Caulle (Chile, 2011-12): evidence from direct observations and pyroclast textures. J Volcanol Geotherm Res 262:25–37Google Scholar
  396. Sciotto M, Cannata A, Di Grazia G, Gresta S, Privitera E, Spina L (2011) Seismoacoustic investigations of paroxysmal activity at Mt. Etna volcano: new insights into the 16 November 2006 eruption. J Geophys Res 116:B09301. doi: 10.1029/2010JB008138 Google Scholar
  397. Shea T, Larsen JF, Gurioli L, Hammer JE, Houghton BF, Cioni R (2009) Leucite crystals: surviving witnesses of magmatic processes preceding the 79 AD eruption at Vesuvius, Italy. Earth Planet Sci Lett 281:88–98Google Scholar
  398. Shea T, Houghton BF, Gurioli L, Cashman KV, Hammer JE, Hobden B (2010a) Textural studies of vesicles in volcanic rocks: an integrated methodology. J Volcanol Geotherm Res 190:271–289Google Scholar
  399. Shea T, Gurioli L, Larsen JF, Houghton BF, Hammer JE, Cashman KV (2010b) Linking experimental and natural vesicle textures in Vesuvius 79 AD white pumice. J Volcanol Geotherm Res 192:69–84Google Scholar
  400. Shea T, Gurioli L, Houghton BF, Cashman KV, Cioni R (2011) Column collapse and generation of pyroclastic density currents during the A.D. 79 eruption of Vesuvius: the role of pyroclast density. Geology 39:695–698Google Scholar
  401. Shea T, Gurioli L, Houghton BF (2012) Transitions between fall phases and pyroclastic density currents during the AD 79 eruption at Vesuvius: building a transient conduit model from the textural and volatile record. Bull Volcanol 74:2363–2381. doi: 10.1007/s00445-012-0668-z Google Scholar
  402. Shea T, Hellebrand E, Gurioli L, Hugh T (2014) Conduit- to localized-scale degassing during Plinian eruptions: insights from major element and volatile (Cl and H2O) analysis within Vesuvius AD79 pumice. J Petrol. doi: 10.1093/petrology/egt069 Google Scholar
  403. Sheridan MF, Marshall JR (1983) Interpretation of pyroclast surface features using SEM images. J Volcanol Geotherm Res 16:153–159Google Scholar
  404. Sheridan MF, Marshall JR (1987) Comparative charts for quantitative analysis of grain-textural elements on pyroclasts, in Clastic particles: scanning electron microscopy and shape analysis of sedimentary and volcanic particles, edited by J. R. Marshall. Van Nostrand Reinhold Company, New YorkGoogle Scholar
  405. Shimano T, Nakada S (2006) Vesiculation path of ascending magma in the 1983 and the 2000 eruptions of Miyakejima volcano, Japan. Bull Volcanol 68:549–566. doi: 10.1007/s00445-005-0029-2 Google Scholar
  406. Shimano T, Nishimura T, Chiga N, Shibasaki Y, Iguchi M, Miki D, Yokoo A (2013) Development of an automatic volcanic ash sampling apparatus for active volcanoes. Bull Volcanol 75:73. doi: 10.1007/s00445-013-0773-7 Google Scholar
  407. Shin H, Lindquist WB, Sahagian DL, Song S-R (2005) Analysis of the vesicular structure of basalts. Comput Geosci 31(4):473–487. doi: 10.1016/j.cageo.2004.10.013 Google Scholar
  408. Simakin AG, Bindeman IN (2008) Evolution of crystal sizes in the series of dissolution and precipitation events in open magma systems. J Volcanol Geotherm Res 17:997–1010Google Scholar
  409. Simkin T, Howard KA (1970) Caldera collapse in the Galápagos Islands, 1968 The largest known collapse since 1912 followed a flank eruption and explosive volcanism within the caldera. Science 169(3944):429–437Google Scholar
  410. Sonder I, Graettinger A, Valentine G (2013) Large-scale blast experiments examine subsurface explosions. EOS Trans AGU 94(39):337–338. doi: 10.1002/2013EO390002 Google Scholar
  411. Song SR, Jones KW, Lindquist WB, Dowd BA, Sahagian DL (2001) Synchrotron X-ray computed microtomography: studies on vesiculated basaltic rocks. Bull Volcanol 63(4):252–263. doi: 10.1007/s004450100141 Google Scholar
  412. Sottili G, Taddeucci J, Palladino DM, Gaeta M, Scarlato P, Ventura G (2009) Subsurface dynamics and eruptive styles of maars in the Colli Albani Volcanic District, Central Italy. J Volcanol Geotherm Res 180:189–202Google Scholar
  413. Sottili G, Taddeucci J, Palladino DM (2010) Constraints on magma–wall rock thermal interaction during explosive eruptions from textural analysis of cored bombs. J Volcanol Geotherm Res 192:27–34Google Scholar
  414. Sparks RSJ (1978) The dynamics of bubble formation and growth in magmas. J Volcanol Geotherm Res 3:37. doi: 10.1016/0377-0273(78)90002-1 Google Scholar
  415. Sparks RSJ, Brazier S (1982) New evidence for degassing processes during explosive eruptions. Nature 295:218–220Google Scholar
  416. Sparks RSJ, Burski MI, Carey SN, Gilbert JS, Glaze LS, Sigurdsson H, Woods AW (1997) Volcanic plume. Wiley, New YorkGoogle Scholar
  417. Spillar V, Dolejs D (2013) Calculation of time-dependent nucleation and growth rates from quantitative textural data: inversion of crystal size distribution. J Petrol. doi: 10.1093/petrology/egs091 Google Scholar
  418. Stovall WK, Houghton BF, Gonnermann HM, Fagents SA, Swanson DA (2011) Eruption dynamics of Hawaiian-style fountains: the case study of episode 1 of the Kīlauea Iki 1959 eruption. Bull Volcanol 73:511–529. doi: 10.1007/s00445-010-0426-z Google Scholar
  419. Stovall WK, Houghton BF, Hammer JE, Fagents SA, Swanson DA (2012) Vesiculation of high fountaining Hawaiian eruptions: episodes 15 and 16 of 1959 Kīlauea Iki. Bull Volcanol 74:441–455. doi: 10.1007/s00445-011-0531-7 Google Scholar
  420. Streck MJ (2008) Mineral textures and zoning as evidence for open system processes. In: Putirka KD, Tepley FJ (Eds) Minerals, inclusions and volcanic processes. Rev Mineral Geochem 69:595-622Google Scholar
  421. Suzuki Y, Nakada S (2001) Timing of vesiculation and crystallization during magma ascent -Example of the phreatomagmatic phase in Usu 2000 eruption. Bull Earthq Res Inst 76:253–268Google Scholar
  422. Suzuki Y, Nakada S (2002) Vesiculation and magma ascent process in the Usu 2000 eruption, inferred from texture and size distribution of bubbles. Bull Volcanol Soc Jpn 47:675–688Google Scholar
  423. Swanson DA, Wooten K, Orr T (2009) Buckets of ash track tephra flux from Halema‘uma‘u crater, Hawai’i. Eos Trans AGU 90:427–428. doi: 10.1029/2009EO460003 Google Scholar
  424. Szramek L, Gardner JE, Larsen J (2006) Degassing and microlite crystallization of basaltic andesite magma erupting at Arenal Volcano, Costa Rica. J Volcanol Geotherm Res 157:182–201Google Scholar
  425. Taddeucci J, Pompilio M, Scarlato P (2002) Monitoring the explosive activity of the July–August 2001 eruption of Mt. Etna (Italy) by ash characterization. Geophys Res Lett 29(8):1029–1032. doi: 10.1029/2001GL014372 Google Scholar
  426. Taddeucci J, Pompilio M, Scarlato P (2004) Conduit processes during the July–August 2001 explosive activity of Mt. Etna (Italy): inferences from glass chemistry and crystal size distribution of ash particles. J Volcanol Geotherm Res 137:33–54Google Scholar
  427. Taddeucci J, Scarlato P, Capponi A, Del Bello E, Cimarelli C, Palladino D, Kueppers U (2012) High-speed imaging of Strombolian explosions: the ejection velocity of pyroclasts. Geophys Res Lett 39(2):L02301. doi: 10.1029/2011GL050404
  428. Takeuchi S, Nakashima S (2005) A new simple gas permeameter for permeability measurement of small samples of volcanic eruptive material and experimental run products (in Japanese with English abstract). Bull Volcanol Soc Jpn 50:1–8Google Scholar
  429. Takeuchi S, Nakashima S, Akihiko Tomiya A (2008) Permeability measurements of natural and experimental volcanic materials with a simple permeameter: toward an understanding of magmatic degassing processes. J Volcanol Geotherm Res 177:329–339. doi: 10.1016/j.jvolgeores.2008.05.010 Google Scholar
  430. Tarquini S, Favalli M (2010) A microscopic information system (MIS) for petrographic analysis. Comput Geosci 36:665–674Google Scholar
  431. Thomas N, Jaupart C, Vergniolle S (1994) On the vesicularity of pumice. J Geophys Res 99:15633–15644Google Scholar
  432. Thomas HE, Watson IM, Carn SA, Alfredo AJ, Prata F, Realmuto VJ (2011) A comparison of AIRS, MODIS and OMI sulphur dioxide retrievals in volcanic clouds. Geomat Nat Hazard Risk 2(3):217–232Google Scholar
  433. Thordarson T, Self S, Larsen G, Rowland SK, Hoskuldsson A (2009) Studies in volcanology: the legacy of George Walker. GSL Special Publication of IAVCEI 2, p 416Google Scholar
  434. Toramaru A (1989) Vesiculation process and bubble size distribution in ascending magmas with constant velocities. J Geophys Res 94(1):523–17,542. doi: 10.1029/JB094iB12p17523 Google Scholar
  435. Toramaru A (1990) Measurement of bubble size distributions in vesiculated rocks with implications for quantitative estimates of eruption processes. J Volcanol Geotherm Res 43:71–90Google Scholar
  436. Toramaru A (2006) BND (bubble number density) decompression rate meter for explosive volcanic eruptions. J Volcanol Geotherm Res 154:303–316Google Scholar
  437. Toramaru A, Noguchi S, Oyoshihara S, Tsune A (2008) MND (microlite number density) water exsolution rate meter. J Volcanol Geotherm Res 175(1–2):156–167Google Scholar
  438. Tsukui M, Suzuki Y (1995) Vesiculation of basaltic magma: magmatic versus phreatomagmatic eruption in 1983 eruption of Miyakejima. Bull Volcanol Soc Jpn 40:395–399Google Scholar
  439. Valade S, Donnadieu F (2011) Ballistics and ash plumes discriminated by Doppler radar. Geophys Res Lett 38, L22301. doi: 10.1029/2011GL049415 Google Scholar
  440. Valade SA, Harris AJL, Cerminara M (2014) Plume ascent tracker: interactive matlab software for analysis of ascending plumes in image data. Comput Geosci 66:132–144. doi: 10.1016/j.cageo.2013.12.015 Google Scholar
  441. Villemant B, Boudon G (1998) Transition between dome-forming and plinian eruptive styles: H20 and CL degassing behaviour. Nature 392:65–69Google Scholar
  442. Vinkler AP, Cashman K, Giordano G, Groppelli G (2012) Evolution of the mafic Villa Senni caldera-forming eruption at Colli Albani volcano, Italy, indicated by textural analysis of juvenile fragments. J Volcanol Geotherm Res 235–236:37–54Google Scholar
  443. Vlastélic I, Staudacher T, Bachèlery P, Télouk P, Neuville D, Benbakkar M (2011) lithium isotope fractionation during magma degassing: constraints from silicic differentiates and natural gas condensates from Piton de la Fournaise volcano (Réunion Island). Chem Geol 284:26–34Google Scholar
  444. Vöge M, Hort M, Seyfried R (2005) Monitoring volcano eruptions and lava domes with Doppler radar. EOS Trans AGU 86:537–541Google Scholar
  445. Voltolini M, Zandomeneghi D, Mancini L, Polacci M (2011) Texture analysis of volcanic rock samples: quantitative study of crystals and vesicles shape preferred orientation from X-ray microtomography data. J Volcanol Geotherm Res 202:83–95Google Scholar
  446. Walker JC, Carboni E, Dudhia A, Grainger RG (2012) Improved detection of sulphur dioxide in volcanic plumes using satellite-based hyperspectral infrared measurements: application to the Eyjafjallajökull 2010 eruption. J Geophys Res 117:D00U16. doi: 10.1029/2011JD016810 Google Scholar
  447. Wallace PJ (2001) Volcanic SO2 emissions and the abundance and distribution of exsolved gas in magma bodies. J Volcanol Geotherm Res 108:85–106Google Scholar
  448. Wallace PJ (2005) Volatiles in subduction zone magmas: concentrations and fluxes based on melt inclusion and volcanic gas data. J Volcanol Geotherm Res 140:217–240Google Scholar
  449. Watson IM, Realmuto VJ, Rose WI, Prata AJ, Bluth GJS, Gu Y, Bader CE, Yu T (2004) Thermal infrared remote sensing of volcanic emissions using the moderate resolution imaging spectroradiometer. J Volcanol Geotherm Res 135:75–89Google Scholar
  450. Wen S, Rose WI (1994) Retrieval of sizes and total masses of particles in volcanic clouds using AVHRR bands 4 and 5. J Geophys Res-Atmos 99(D3):5421–5431Google Scholar
  451. White JDL, Houghton BF (2006) Primary volcaniclastic rocks. Geology 34:677–680. doi: 10.1130/G22346.1 Google Scholar
  452. Whitham AG, Sparks RSJ (1986) Pumice. Bull Volcanol 48:209–223Google Scholar
  453. Wilhelm S, Worner G (1996) Crystal size distribution in Jurassic Ferrar flows and sills (Victoria Land, Antarctica): evidence for processes of cooling, nucleation, and crystallisation. Contrib Mineral Petrol 125:1–15Google Scholar
  454. Williams-Jones G, Stix J, Hickson C (2008) The COSPEC cookbook. IAVCEI: methods in volcanology I: 233 pGoogle Scholar
  455. Wilson L, Huang TC (1979) The influence of shape on the atmospheric settling velocity of volcanic ash particles. Earth Planet Sci Lett 44:311–324Google Scholar
  456. Wilson L, Self S (1980) Volcanic explosion clouds: density, temperature and particle content estimates from cloud motion. J Geophys Res 85:2567–2572Google Scholar
  457. Wohletz K (1983) Mechanisms of hydrovolcanic pyroclast formation: grain-size, scanning electron microscopy, and experimental studies. J Volcanol Geotherm Res 17:31–63Google Scholar
  458. Wohletz K (1986) Explosive magma–water interactions: thermodynamics, explosion mechanisms, and field studies. Bull Volcanol 48:245–264Google Scholar
  459. Wohletz K (1987) Chemical and textural surface features of pyroclasts from hydrovolcanic eruption sequences. In: Marsall JR (ed) Clastic particles. Van Nostrand Reinhold Co, New York, pp 79–97Google Scholar
  460. Wright HMN, Cashman KV (2014) Compaction and gas loss in welded pyroclastic deposits as revealed by porosity, permeability, and electrical conductivity measurements of the Shevlin Park Tuff. GSA Bull 126(1/2):234–247. doi: 10.1130/B30668.1 Google Scholar
  461. Wright HMN, Weinberg R (2009) Strain localization in vesicular magma: implications for rheology and fragmentation. Geology 37:1023–1026. doi: 10.1130/G30199A.1 Google Scholar
  462. Wright HMN, Roberts JJ, Cashman KV (2006) Permeability of anisotropic tube pumice: model calculations and measurements. Geophys Res Lett 33:L17316. doi: 10.1016/j.epsl.2009.01.023 Google Scholar
  463. Wright HMN, Cashman KV, Rosi M, Cioni R (2007) Breadcrust bombs as indicators of Vulcanian eruption dynamics at Guagua Pichincha volcano. Ecuador. Bull Volcanol 69:281–300Google Scholar
  464. Wright HMN, Cashman KV, Gottesfeld EH, Roberts JJ (2009) Pore structure of volcanic clasts: measurements of permeability and electrical conductivity. Earth Planet Sci Lett 280:93–104. doi: 10.1016/j.epsl.2009.01.023 Google Scholar
  465. Wright HMN, Folkes CB, Cas RAF, Cashman KV (2011) Heterogeneous pumice populations in the 2.08-Ma Cerro Galán Ignimbrite: implications for magma recharge and ascent preceding a large-volume silicic eruption. Bull Volcanol 73:1513–1533Google Scholar
  466. Wright HMN, Cashman KV, Mothes PA, Hall ML, Ruiz AG, Le Pennec J-L (2012) Estimating rates of decompression from textures of erupted ash particles produced by 1999-2006 eruptions of Tungurahua Volcano, Ecuador. Geology 40:619–622. doi: 10.1130/G32948 Google Scholar
  467. Yamada K, Emori H, Nakazawa K (2008) Time-evolution of bubble formation in a viscous liquid. Earth Planets Space 60:1–19Google Scholar
  468. Yang K, Krotkov NA, Krueger AJ, Carn SA, Bhartia PK, Levelt PF (2007) Retrieval of large volcanic SO2 columns from the Aura Ozone Monitoring Instrument (OMI): comparison and limitations. J Geophys Res 112:D24S43. doi: 10.1029/2007JD008825 Google Scholar
  469. Yokoyama T, Takeuchi S (2009) Porosimetry of vesicular volcanic products by a water-expulsion method and the relationship of pore characteristics to permeability. J Geophys Res 114:B02201. doi: 10.1029/2008JB005758 Google Scholar
  470. Yoshimoto M, Shimano T, Nakada S, Koyama E, Tsuji H, Iida A, Kurokawa M, Okayama Y, Nonaka M, Kaneko T, Hoshizumi H, Ishizuka Y, Furukawa R, Nogami K, Onizawa S, Niihori K, Sugimoto T, Nagai M (2005) Mass estimation and characteristics of ejecta from the 2004 eruption of Asama volcano. Bull Volcanol Soc Jpn 50:519–533 (In Japanese with English abstract)Google Scholar
  471. Zakšek K, Hort M, Zaletelj J, Langmann B (2013) Monitoring volcanic ash cloud top height through simultaneous retrieval of optical data from polar orbiting and geostationary satellites. Atmos Chem Phys 13(5):2589–2606Google Scholar
  472. Zandomeneghi D, Voltolini M, Mancini L, Brun F, Dreossi D, Polacci M (2010) Quantitative analysis of X-ray microtomography images of geomaterials: application to volcanic rocks. Geosphere, special issue. Advances in 3D imaging and analysis of geomaterials 6:793–804. doi: 10.1130/GES00561.1
  473. Zimanowski B, Wohletz K, Dellino P, Buttner R (2003) The volcanic ash problem. J Volcanol Geotherm Res 122:1–5Google Scholar
  474. Zobin VM, Santiago-Jiménez H, Ramírez-Ruiz JJ, Reyes-Dávila GA, Bretón-González M, Navarro-Ochoa C (2007) Quantification of volcanic explosions from tilt records: Volcán de Colima, México. J Volcanol Geotherm Res 166(2):117–124Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • L. Gurioli
    • 1
  • D. Andronico
    • 2
  • P. Bachelery
    • 1
  • H. Balcone-Boissard
    • 3
  • J. Battaglia
    • 1
  • G. Boudon
    • 4
  • A. Burgisser
    • 5
  • M. R. Burton
    • 6
  • K. Cashman
    • 7
  • S. Cichy
    • 1
  • R. Cioni
    • 8
  • A. Di Muro
    • 9
  • L. Dominguez
    • 10
  • C. D’Oriano
    • 6
  • T. Druitt
    • 1
  • A. J. L. Harris
    • 1
  • M. Hort
    • 11
  • K. Kelfoun
    • 1
  • J. C. Komorowski
    • 4
  • U. Kueppers
    • 12
  • J. L. Le Pennec
    • 1
  • T. Menand
    • 1
  • R. Paris
    • 1
  • L. Pioli
    • 10
  • M. Pistolesi
    • 13
  • M. Polacci
    • 6
  • M. Pompilio
    • 6
  • M. Ripepe
    • 8
  • O. Roche
    • 1
  • E. Rose-Koga
    • 1
  • A. Rust
    • 7
  • F. Schiavi
    • 1
  • L. Scharff
    • 11
  • R. Sulpizio
    • 14
  • J. Taddeucci
    • 15
  • T. Thordarson
    • 16
  1. 1.Laboratoire Magmas et VolcansUniversité Blaise Pascal-CNRS-IRD, OPGCClermont FerrandFrance
  2. 2.INGV, Osservatorio EtneoCataniaItaly
  3. 3.Institut des Sciences de la Terre Paris (iSTeP) and CNRSSorbonne Universités, UPMC Univ Paris 06, UMR 7193ParisFrance
  4. 4.Institut de Physique du Globe de Paris, Sorbonne Paris CitéUniv Paris Diderot, CNRSParisFrance
  5. 5.ISTerre Université de Savoie CNRSLe Bourget du lacFrance
  6. 6.INGVPisaItaly
  7. 7.School of Earth SciencesUniversity of BristolBristolUK
  8. 8.Dipartimento di Scienze della TerraUniversità degli Studi di FirenzeFlorenceItaly
  9. 9.Institut de Physique du Globe (IPGP), Sorbonne Paris-CitéCNRS UMR-7154, Université Paris Diderot, Observatoire Volcanologique du Piton de la Fournaise (OVPF)Bourg MuratFrance
  10. 10.Section des Sciences de la Terre et de l’EnvironnementUniversité de GenèveGenevaSwitzerland
  11. 11.Institute of GeophysicsUniversity of HamburgHarmburgGermany
  12. 12.Department of Earth and Environmental SciencesLudwig-Maximilians-University (LMU)MunichGermany
  13. 13.Dipartimento Scienze della TerraUniversità degli Studi di PisaPisaItaly
  14. 14.Dipartimento di Scienze della Terra e Geo-AmbientaliUniversità degli Studi di BariBariItaly
  15. 15.INGVRomaItaly
  16. 16.Institute of Earth Sciences (IES)University of IcelandReykjavíkIceland

Personalised recommendations