Cristobalite in the 2011–2012 Cordón Caulle eruption (Chile)

  • C. Ian Schipper
  • Jonathan M. Castro
  • Hugh Tuffen
  • Fabian B. Wadsworth
  • Debra Chappell
  • Andres E. Pantoja
  • Mark P. Simpson
  • Eric C. Le Ru
Research Article

Abstract

Cristobalite is a low-pressure high-temperature polymorph of SiO2 found in many volcanic rocks. Its volcanogenic formation has received attention because (1) pure particulate cristobalite can be toxic when inhaled, and its dispersal in volcanic ash is therefore a potential hazard; and (2) its nominal stability field is at temperatures higher than those of magmatic systems, making it an interesting example of metastable crystallization. We present analyses (by XRD, SEM, EPMA, Laser Raman, and synchrotron μ-cT) of representative rhyolitic pyroclasts and of samples from different facies of the compound lava flow from the 2011–2012 eruption of Cordón Caulle (Chile). Cristobalite was not detected in pyroclasts, negating any concern for respiratory hazards, but it makes up 0–23 wt% of lava samples, occurring as prismatic vapour-deposited crystals in vesicles and/or as a groundmass phase in microcrystalline samples. Textures of lava collected near the vent, which best represent those generated in the conduit, indicate that pore isolation promotes vapour deposition of cristobalite. Mass balance shows that the SiO2 deposited in isolated pore space can have originated from corrosion of the adjacent groundmass. Textures of lava collected down-flow were modified during transport in the insulated interior of the flow, where protracted cooling, additional vesiculation events, and shearing overprint original textures. In the most slowly cooled and intensely sheared samples from the core of the flow, nearly all original pore space is lost, and vapour-deposited cristobalite crystals are crushed and incorporated into the groundmass as the vesicles in which they formed collapse by strain and compaction of the surrounding matrix. Holocrystalline lava from the core of the flow achieves high mass concentrations of cristobalite as slow cooling allows extensive microlite crystallization and devitrification to form groundmass cristobalite. Vapour deposition and devitrification act concurrently but semi-independently. Both are promoted by slow cooling, and it is ultimately devitrification that most strongly contributes to total cristobalite content in a given flow facies. Our findings provide a new field context in which to address questions that have arisen from the study of cristobalite in dome eruptions, with insight afforded by the fundamentally different emplacement geometries of flows and domes.

Keywords

Cristobalite Puyehue-Cordón Caulle Vapour phase crystallization Rhyolite Glass corrosion Devitrification 

References

  1. Adams PB (1984) Glass corrosion. J Non-Cryst Solids 67:193–205CrossRefGoogle Scholar
  2. Baxter PJ, Bonadonna C, Dupree R, Hards VL, Kohn SC, Murphy MD, Nichols A, Nicholson RA, Norton GE, Searl A, Sparks RSJ, Vickers BP (1999) Cristobalite in volcanic ash of the Soufriere Hills Volcano, Montserrat, British West Indies. Science 283:1142–1145CrossRefGoogle Scholar
  3. Bernard A, Le Guern F (1986) Condensation of volatile elements in high-temperature gases of Mount St. Helens. J Volcanol Geotherm Res 28:91–105CrossRefGoogle Scholar
  4. Bonadonna C, Cioni R, Pistolesi M, Elissondo M, Baumann V (2015) Sedimentation of long-lasting wind-affected volcanic plumes: the example of the 2011 rhyolitic Cordón Caulle eruption, Chile. Bull Volcanol 77:13. doi:10.1007/s00445-015-0900-8 CrossRefGoogle Scholar
  5. Bunker BC (1994) Molecular mechanisms for corrosion of silica and silicate glasses. J Non-Cryst Solids 179:300–308CrossRefGoogle Scholar
  6. Cailleteau C, Angeli F, Devreux F, Gin S, Jestin J, Jollivet P, Spalla O (2008) Insight into silicate-glass corrosion mechanisms. Nat Mater 7:978–983. doi:10.1038/nmat2301 CrossRefGoogle Scholar
  7. Caneiro A, Mogni L, Serquis A, Cotaro C, Wilberger D, Ayala C, Daga R, Poire D, Scerbo E (2011) Análisis de cenizas volcánicas Cordón Caulle (Complejo Volcanico Puyehue-Cordón Caulle) Erupción 4 de Junio de 2011. Informe Cenizas Volcánicas - CNEA:1-17Google Scholar
  8. Casey WH, Westrich HR, Holdren GR (1991) Dissolution rates of plagioclase at pH = 2 and 3. Am Mineral 76:211–217Google Scholar
  9. Castro JM, Beck P, Tuffen H, Nichols ARL, Dingwell DB, Martin MC (2008) Timescales of spherulite crystallization in obsidian inferred from water concentration profiles. Am Mineral 93:1816–1822CrossRefGoogle Scholar
  10. Castro JM, Schipper CI, Amigo A, Silva Parejas C, Mueller S, Jacob D, Militzer AS (2013) Storage and eruption of near-liquidus rhyolite magma at Cordón Caulle, Chile. Bull Volcanol 75:702. doi:10.1007/s00445-013-0702-9 CrossRefGoogle Scholar
  11. Castro JM, Bindeman IN, Tuffen H, Schipper CI (2014) Explosive origin of silicic lava: Textural and δD-H2O evidence for pyroclastic degassing during rhyolite effusion. Earth Planet Sci Lett 405:52–61. doi:10.1016/j.epsl.2014.08.012 CrossRefGoogle Scholar
  12. Clark DE, Yen-Bower EL (1980) Corrosion of glass surfaces. Surf Sci 100:53–70CrossRefGoogle Scholar
  13. Cressey G, Schofield PF (1996) Rapid whole-pattern profile-stripping method for the quantification of multiphase samples. Powder Diffract 11:35–39CrossRefGoogle Scholar
  14. Damby DE (2012) From dome to disease: The respiratory toxicity of volcanic cristobalite. PhD thesis. Durham University, Durham, p 359. http://etheses.dur.ac.uk/7328/
  15. Damby DE, Horwell CJ, Llewellin EW, Nattrass C (2013) Cristobalite in volcanic domes: crystallization of a meta-stable mineral. In: IAVCEI 2013 Scientific Assembly. Kagoshima, JapanGoogle Scholar
  16. Damby DE, Llewellin EW, Horwell CJ, Williamson BJ, Najorka J, Cressey G, Carpenter M (2014) The α-β phase transition in volcanic cristobalite. J Appl Cristallogr 47:1205–1215. doi:10.1107/S160057671401070X CrossRefGoogle Scholar
  17. de Hoog JCM, van Bergen MJ, Jacobs MHG (2005) Vapour-phase crystallisation of silica from SiF4-bearing volcanic gases. Ann Geophys 48:775–785Google Scholar
  18. de Lima EF, Sommer CA, Cordeiro Silva IM, Netta AP, Lindenberg M, Marques Alves RC (2012) Morfologia e química de cenizas do vulcão Puyehue depositadas na região metropolitana de Porto Alegre em junho de 2011. Revista Brasiliera de Geociencias 42:265–280. doi:10.5327/Z0375-75362012000200004 CrossRefGoogle Scholar
  19. Declercq J, Diedrich T, Perrot M, Gislason SR, Oelkers EH (2013) Experimental determination of rhyolitic glass dissolution rates at 40–200 °C and 2 < pH < 10.1. Geochim Cosmochim Acta 100:251–263. doi:10.1016/j.gca.2012.10.006 CrossRefGoogle Scholar
  20. Deer WA, Howie RA, Zussman J (1992) An Introduction to the Rock-Forming MInerals 2nd Edition. John Wiley and Sons, New YorkGoogle Scholar
  21. Delmelle P, Lambert M, Dufrêne Y, Gerin P, Óskarsson (2007) Gas/aerosol-ash interaction in volcanic plumes: New insights from surface analyses of fine ash particles. Earth Planet Sci Lett 259:159–170. doi:10.1016/j.epsl.2007.04.052 CrossRefGoogle Scholar
  22. Dyson DJ, Butler MA, Hughes RJ, Fisher R, Hicks GW (1997) The de-vitrification of alumino-silicate ceramic fibre materials - The kinetics of the formation of different crystalline phases. Ann Occup Hyg 41:561–590CrossRefGoogle Scholar
  23. Ewart A (1971) Chemical changes accompanying spherulitic crystallization in rhyolitic lavas, Central Volcanic Region, New Zealand. Mineral Mag 38:424–434CrossRefGoogle Scholar
  24. Fink JH, Anderson SW (2000) Lava Domes and Coulees. In: Sigurdsson H, Houghton B, McNutt SR, Rymer H, Stix J (eds) Encyclopedia of Volcanoes. Academic Press, New York, pp 307–319Google Scholar
  25. Foustoukos DI, Seyfried WE Jr (2007) Quartz solubility in the two-phase and critical region of the NaCl-KCl-H2O system: Implications for submarine hydrothermal vent systems at 9o50' N East Pacific Rise. Geochim Cosmochim Acta 71:186–201. doi:10.1016/j.gca.2006.08.038 CrossRefGoogle Scholar
  26. Freeman JJ, Wang A, Kuebler KE, Jolliff BL, Haskin LA (2008) Characterization of natural feldspars by raman spectroscopy for future planetary exploration. Can Mineral 46:1477–1500. doi:10.3749/canmin.46.6.1477 CrossRefGoogle Scholar
  27. Gerlach DC, Frey FA, Moreno-Roa H, Lopez-Escobar L (1988) Recent volcanism in the Puyehue-Cordón Caulle region, southern Andes, Chile (40.5o S): Petrogenesis of evolved lavas. J Petrol 29:333–382CrossRefGoogle Scholar
  28. Gillet P, Le Cléac'h A (1990) High-temperature raman spectroscopy of SiO2 and GeO2 polymorphs: Anharmonicity and thermodynamic properties at high-temperatures. J Geophys Res 95(B13):21635–21655. doi:10.1029/JB095iB13p21635 CrossRefGoogle Scholar
  29. Hamilton JP, Pantano CG (1997) Effects of glass structure on the corrosion behavior of sodium-aluminosilicate glasses. J Non-Cryst Solids 222:167–174CrossRefGoogle Scholar
  30. Heaney PJ (1994) Structure and chemistry of the low-pressure silica polymorphs. Rev Mineral 29:1–40Google Scholar
  31. Hench LL, Clark DE, Yen-Bower EL (1980) Corrosion of glasses and glass-ceramics. Nucl Chem Waste Manag 1:59–75CrossRefGoogle Scholar
  32. Higgins MD (1994) Numerical modeling of crystal shapes in thin sections: Estimation of crystal habit and true size. Am Mineral 79:113–119Google Scholar
  33. Hillman SE, Horwell CJ, Densmore AL, Damby DE, Fubini B, Ishimine Y, Tomatis M (2012) Sakurajima volcano: a physico-chemical study of the health consequences of long-term exposure to volcanic ash. Bull Volcanol 74:913–930. doi:10.1007/s00445-012-0575-3 CrossRefGoogle Scholar
  34. Horwell CJ, Baxter PJ (2006) The respiratory health hazards of volcanic ash: a review for volcanic risk mitigation. Bull Volcanol 69:1–24. doi:10.1007/s00445-006-0052-y CrossRefGoogle Scholar
  35. Horwell CJ, Sparks RSJ, Brewer TS, Llewellin EW, Williamson BJ (2003) Characterization of respirable volcanic ash from the Soufrière Hills volcano, Montserrat, with implications for human health hazards. Bull Volcanol 65:346–362. doi:10.1007/s00445-002-0266-6 CrossRefGoogle Scholar
  36. Horwell CJ, Le Blond JS, Michnowicz SAK, Cressey G (2010) Cristobalite in a rhyolitic lava dome: evolution of ash hazard. Bull Volcanol 72:249–253. doi:10.1007/s00445-009-0327-1 CrossRefGoogle Scholar
  37. Horwell CJ, Williamson BJ, Donaldson K, Le Blond JS, Damby DE, Bowen L (2012) The structure of volcanic cristobalite in relation to its toxicity; relevance for the variable crystalline silica hazard. Particle Fibre Tech 9:44CrossRefGoogle Scholar
  38. Horwell CJ, Williamson BJ, Llewellin EW, Damby DE, Le Blond JS (2013) The nature and formation of cristobalite at the Soufrière Hills volcano, Montserrat: implications for the petrology and stability of silicic lava domes. Bull Volcanol 75:696. doi:10.1007/s00445-013-0696-3 CrossRefGoogle Scholar
  39. Horwell CJ, Hillman SE, Cole PD, Loughlin SC, Llewellin EW, Damby DE, Christopher TE (2014) Controls on variations in cristobalite abundance in ash generated by the Soufrière Hills Volcano, Montserrat in the period 1997-2010. Geol Soc Lond Mem 39:399–406. doi:10.1144/M39.21 CrossRefGoogle Scholar
  40. Icenhower JP, Samson S, Lüttge A, McGrail BP (2004) Towards a consistent rate law: glass corrosion kinetics near saturation. Geol Soc London Spec Pub 236:579–594. doi:10.1144/GSL.SP.2004.236.01.32 CrossRefGoogle Scholar
  41. Jay J, Costa F, Pritchard M, Lara LE, Singer BS, Herrin J (2014) Locating magma reservoirs using InSAR and petrology before and during the 2011-2012 Cordón Caulle silicic eruption. Earth Planet Sci Lett 395:254–266. doi:10.1016/j.epsl.2014.03.046 CrossRefGoogle Scholar
  42. Jones MT, Gislason SR (2008) Rapid release of metal salts and nutrients following the deposition of volcanic ash into aqueous environments. Geochim Cosmochim Acta 72:3661–3680. doi:10.1016/j.gca.2008.05.030 CrossRefGoogle Scholar
  43. Jones JB, Segnit ER (1972) Genesis of cristobalite and tridymite at low temperatures. J Geol Soc Aust 18:419–422. doi:10.1080/00167617208728780 CrossRefGoogle Scholar
  44. Kendrick JE, Lavallée Y, Hess K-U, De Angelis S, Ferk A, Gaunt HE, Meredith PG, Dingwell DB, Leonhardt R (2014) Seismogenic frictional melting in the magmatic column. Solid Earth 5:199–208. doi:10.5194/se-5-199-2014 CrossRefGoogle Scholar
  45. Kingma KJ, Hemley RJ (1994) Raman spectroscopic study of microcrystalline silica. Am Mineral 79:269–273Google Scholar
  46. Lange RA, Carmichael ISE (1990) Thermodynamic properties of silicate liquids with an emphasis on density, thermal expansion and compressibility. Rev Mineral 24:25–64Google Scholar
  47. Lara LE, Naranjo JA, Moreno H (2004) Rhyodacitic fissure eruption in Southern Andes (Cordón Caulle; 40.5°S) after the 1960 (Mw: 9.5) Chilean earthquake: A structural interpretation. J Volcanol Geotherm Res 138:127–138CrossRefGoogle Scholar
  48. Lara LE, Moreno H, Naranjo JA, Matthews S, Pérez de Arce C (2006) Magmatic evolution of the Puyehue-Cordón Caulle Volcanic Complex (40° S), Southern Andean Volcanic Zone: From shield to unusual rhyolite fissure volcanism. J Volcanol Geotherm Res 157:343–366CrossRefGoogle Scholar
  49. Le Blond JS, Cressey G, Horwell CJ, Williamson BJ (2009) A rapid method for quantifying single mineral phases in heterogeneous natural dusts using X-ray diffraction. Powder Diffract 24:17–23CrossRefGoogle Scholar
  50. Le Guern F, Bernard A (1982) A new method for sampling and analyzing volcanic sublimates - Application to Merapi Volcano, Java. J Volcanol Geotherm Res 12:133–146CrossRefGoogle Scholar
  51. Limaye A (2012) Drishti: a volume exploration and presentation tool. Depvelopments in X-Ray Tomography 85060X. doi:10.1117/12.935640
  52. Lofgren G (1970) Experimental devitrification rate of rhyolite glass. Geol Soc Am Bull 81:553–560CrossRefGoogle Scholar
  53. Lofgren G (1971a) Experimentally produced devitrification textures in natural rhyolitic glass. Geol Soc Am Bull 82:111–124CrossRefGoogle Scholar
  54. Lofgren GE (1971b) Experimentally produced devitrification textures in natural rhyloitic glass. Geol Soc Am Bull 82:111–124CrossRefGoogle Scholar
  55. Martel C, Bourdier J-L, Pichavant M, Traineau H (2000) Textures, water content and degassing of silicic andesites from recent plinian and dome-forming eruptions at Mount Pelée volcano (Martinique, Lesser Antilles arc). J Volcanol Geotherm Res 96:191–206CrossRefGoogle Scholar
  56. Militzer AS (2013) The P-T-x evolution of the 2011-12 explosively and effusively erupted rhyolites at Puyehue-Cordón Caulle, Chile. Diplomarbeit zum Thema thesis. Unviersity of Mainz, Mainz, p 100Google Scholar
  57. Mosesman MA, Pitzer KS (1941) Thermodynamic properties of the crystalline forms of silica. J Am Chem Soc 63:2348–2356. doi:10.1021/ja01854a013 CrossRefGoogle Scholar
  58. Mossman BT, Glenn RE (2013) Bioreactivity of the crystalline silica polymorphs, quartz and cristobalite, and implications for occupational exposure limits (OELs). Crit Rev Toxicol 43:1–29. doi:10.3109/10408444.2013.818617 CrossRefGoogle Scholar
  59. Mueller S, Melnik O, Spieler O, Scheu B, Dingwell DB (2005) Permeability and degassing of dome lavas undergoing rapid decompression: An experimental determination. Bull Volcanol 67:526–538. doi:10.1007/s00445-004-0392-4 CrossRefGoogle Scholar
  60. Murphy MD, Sparks RSJ, Barclay J, Carroll MR, Brewer TS (2000) Remobilization of andesite magma by intrusion of mafic magma at the Soufriere Hills Volcano, Montserrat, West Indies. J Petrol 41:21–42CrossRefGoogle Scholar
  61. Mysen B, Richet P (2005) Silicate Glasses and Melts: Properties and Structure. Elsevier, Amsterdam, p 560Google Scholar
  62. Nakada S, Motomura Y (1999) Petrology of the 1991-1995 eruption at Unzen: effusion pulsation and groundmass crystallization. J Volcanol Geotherm Res 89:173–196CrossRefGoogle Scholar
  63. Oelkers EH (2001) General kinetic description of multioxide silicate mineral and glass dissolution. Geochim Cosmochim Acta 65:3703–3719CrossRefGoogle Scholar
  64. Okumura S, Nakamura M, Tsuchiyama A, Nakano T, Uesugi K (2008) Evolution of bubble microstructure in sheared rhyolite: Formation of a channel-like bubble network. J Geophys Res 113(B07208). doi:10.1029/2007JB005362
  65. Okumura S, Nakamura M, Takeuchi S, Tsuchiyama A, Nakano T, Uesugi K (2009) Magma deformation may induce non-explosive volcanism via degassing through bubble networks. Earth Planet Sci Lett 281:267–274. doi:10.1016/j.epsl.2009.02.036 CrossRefGoogle Scholar
  66. Oxburgh R, Drever JI, Sun Y-T (1994) Mechanism of plagioclase dissolution in acid solution at 25 oC. Geochim Cosmochim Acta 58:661–669CrossRefGoogle Scholar
  67. Pallister JS, Thornber CR, Cashman KV, Clynne MA, Lowers HA, Mandeville CW, Brownfield IK, Meeker GP (2008) Petrology of the 2004-2006 Mount St. Helens lava dome - Implications for magmatic plumbing and eruption triggering. In: Sherrod DR, Scott WE, Stauffer PH (eds) A volcano rekindled: the renewed eruption of Mount St. Helens, 2004-2006. US Geological Survey Professional Paper. pp 647-702Google Scholar
  68. Patrick MR, Dehn J, Dean K (2004) Numerical modeling of lava flow cooling applied to the 1997 Okmok eruption: Approach and analysis. J Geophys Res 109:B03202. doi:10.1029/2003JB002537 Google Scholar
  69. Pistolesi M, Cioni R, Bonadonna C, Elissondo M, Baumann V, Bertagnini A, Chiari L, Gonzales R, Rosi M, RFrancalanci L (2015) Complex dynamics of small-moderate volcanic events: the example of the 2011-12 rhyolitic Cordón Caulle eruption, Chile. Bull Volcanol 77:3. doi:10.1007/s00445-014-0898-3 CrossRefGoogle Scholar
  70. Raga GB, Baumgardner D, Ulke AG, Torres Brizuela M, Kucienska B (2013) The environmental impact of the Puyehue–Cordon Caulle 2011 volcanic eruption on Buenos Aires. Nat Hazards Earth Syst Sci 13:2319–2330. doi:10.5194/nhess-13-2319-2013 CrossRefGoogle Scholar
  71. Reich M, Zúñiga A, Amigo Á, Vargas G, Morata D, Palacios C, Parada MÁ, Garreaud RD (2009) Formation of cristobalite nanofibers during explosive volcanic eruptions. Geology 37:435–438. doi:10.1130/G25457A.1 CrossRefGoogle Scholar
  72. Renders PJN, Gammons CH, Barnes HL (1995) Precipitation and dissolution rate constants for cristobalite from 150 to 300 oC. Geochim Cosmochim Acta 59:77–85. doi:10.1016/0016-7037(94)00232-B CrossRefGoogle Scholar
  73. Rosenberg PE (1988) Aluminum fluoride hydrates, volcanogenic salts from Mount Erebus, Antarctica. Am Mineral 73:855–860Google Scholar
  74. Schipper CI, Castro JM, Tuffen H, James MR, How P (2013) Shallow vent architecture during hybrid explosive-effusive activity at Cordón Caulle (Chile, 2011-12): Evidence from direct observations and pyroclast textures. J Volcanol Geotherm Res 262:25–37. doi:10.1016/j.jvolgeores.2013.06.005 CrossRefGoogle Scholar
  75. Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675CrossRefGoogle Scholar
  76. Shmulovich KI, Yardley BWD, Graham CM (2006) Solubility of quartz in crustal fluids: experiments and general equations for salt solutions and H2O-CO2 mixtures at 400-800 oC and 0.1-0.9 GPa. Geofluids 6:154–167. doi:10.1111/j.1468-8123.2006.00140.x CrossRefGoogle Scholar
  77. Silva Parejas C, Lara LE, Bertin D, Amigo A, Orozco G (2012) The 2011-2012 eruption of Cordón Caulle volcano (Southern Andes): Evolution, crisis management and current hazards. EGU General Assembly Abstracts 14(EGU2012-9382-2)Google Scholar
  78. Singer BS, Jicha BR, Harper MA, Naranjo JA, Lara LE, Moreno-Roa H (2008) Eruptive history, geochronology, and magmatic evolution of the Puyehue-Cordón Caulle volcanic complex, Chile. Geol Soc Am Bull 120:599–618. doi:10.1130/B26276.1 CrossRefGoogle Scholar
  79. Swanson SE, Naney MT, Westrich HR, Eichelberger JC (1989) Crystallization history of Obsidian Dome, Inyo Domes, California. Bull Volcanol 51:161–176CrossRefGoogle Scholar
  80. Talvitie NH (1964) Determination of free silica: Gravimetric and spectrophotometric procedures applicable to airborne settled dust. Am Ind Hyg Assoc J 25:169–178CrossRefGoogle Scholar
  81. Tuffen H, James MR, Castro JM, Schipper CI (2013) Exceptional mobility of an advancing rhyolitic obsidian flow at Cordón Caulle volcano in Chile. Nat Commun 4:2709. doi:10.1038/ncomms3709 CrossRefGoogle Scholar
  82. Verma DK, Johnson DM, Des Tombe K (2002) A method for determining crystalline silica in bulk samples by Fourier transform infrared spectrophotometry. Ann Occup Hyg 46:609–615. doi:10.1093/annhyg/mef077 CrossRefGoogle Scholar
  83. Vernier J-P, Fairlie TD, Murray JJ, Tupper A, Trepte C, Winker D, Pelon J, Garnier A, Jumelet J, Pavolonis M, Momar AH, Powell KA (2013) An Advanced System to Monitor the 3D Structure of Diffuse Volcanic Ash Clouds. J Appl Meteorol Climatol 52:2125–2138. doi:10.1175/JAMC-D-12-0279.1 CrossRefGoogle Scholar
  84. Watkins J, Manga M, Huber C, Martin MC (2009) Diffusion-controlled spherulite growth in obsidian inferred from H2O concentration profiles. Contrib Mineral Petrol 157:163–172CrossRefGoogle Scholar
  85. Wilson T, Stewart C, Bickerton H, Baxter PJ, Outes V, Villarosa G, Rovere E (2013) Impacts of the June 2011 Puyehue-Cordón Caulle volcanic complex eruption on urban infrastructure, agriculture and public health. p 98Google Scholar
  86. Wolff-Boenisch D, Gislarson SR, Oelkers EH (2004a) The effect of fluoride on the dissolution rates of natural glasses at pH 4 and 25 °C. Geochim Cosmochim Acta 68:4571–4582. doi:10.1016/j.gca.2004.05.026 CrossRefGoogle Scholar
  87. Wolff-Boenisch D, Gislason SR, Oelkers EH, Putnis CV (2004b) The dissolution rates of natural glasses as a function of their composition at pH 4 and 10.6, and temperatures from 25 to 74 °C. Geochim Cosmochim Acta 68:4843–4858. doi:10.1016/j.gca.2004.05.027 CrossRefGoogle Scholar
  88. Wright HMN, Weinberg RF (2009) Strain localization in vesicular magma: Implications for rheology and fragmentation. Geology 37:1023–1026. doi:10.1130/G30199A.1 CrossRefGoogle Scholar
  89. Zhang Y (2008) Geochemical Kinetics. Princeton University Press, p 631Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • C. Ian Schipper
    • 1
  • Jonathan M. Castro
    • 2
  • Hugh Tuffen
    • 3
  • Fabian B. Wadsworth
    • 4
  • Debra Chappell
    • 5
  • Andres E. Pantoja
    • 6
  • Mark P. Simpson
    • 5
  • Eric C. Le Ru
    • 6
  1. 1.School of Geography, Environment and Earth SciencesVictoria University of WellingtonWellingtonNew Zealand
  2. 2.Institute of GeosciencesUniversity of MainzMainzGermany
  3. 3.Lancaster Environment CentreLancaster UniversityLancasterUK
  4. 4.Department of Earth and Environmental SciencesLudwig-Maximilians-Universität MünchenMunichGermany
  5. 5.Wairakei Research Centre, GNS ScienceTaupoNew Zealand
  6. 6.The MacDiarmid Institute for Advanced Materials and Nanotechnology, School of Chemical and Physical SciencesVictoria University of WellingtonWellingtonNew Zealand

Personalised recommendations