Spatio-volumetric hazard estimation in the Auckland volcanic field

  • Mark S. Bebbington
Research Article


The idea of a volcanic field ‘boundary’ is prevalent in the literature, but ill-defined at best. We use the elliptically constrained vents in the Auckland Volcanic Field to examine how spatial intensity models can be tested to assess whether they are consistent with such features. A means of modifying the anisotropic Gaussian kernel density estimate to reflect the existence of a ‘hard’ boundary is then suggested, and the result shown to reproduce the observed elliptical distribution. A new idea, that of a spatio-volumetric model, is introduced as being more relevant to hazard in a monogenetic volcanic field than the spatiotemporal hazard model due to the low temporal rates in volcanic fields. Significant dependencies between the locations and erupted volumes of the observed centres are deduced, and expressed in the form of a spatially-varying probability density. In the future, larger volumes are to be expected in the ‘gaps’ between existing centres, with the location of the greatest forecast volume lying in the shipping channel between Rangitoto and Castor Bay. The results argue for tectonic control over location and magmatic control over erupted volume. The spatio-volumetric model is consistent with the hypothesis of a flat elliptical area in the mantle where tensional stresses, related to the local tectonics and geology, allow decompressional melting.


Monogenetic volcanism Vent distribution Spatial intensity Eruptive volume 



The author is supported by the New Zealand Natural Hazards Research Platform. Annalisa Cappello and an anonymous reviewer provided welcomed feedback on the original draft. Equation 2 was the product of discussions with Shane Cronin.


  1. Allen SR, Smith IEM (1994) Eruption styles and volcanic hazard in the Auckland Volcanic Field, New Zealand. Geosci Rep Shizuoka Uni 20:5–14Google Scholar
  2. Barde-Cabusson S, Gottsmann J, Marti J, Bolos X, Camacho AG, Geyer A, Ll Planaguma, Ronchin E, Sanchez A (2014) Structural control of monogenetic volcanism in the Garrotxa volcanic field (Northeastern Spain) from gravity and self-potential measurements. Bull Volcanol 76:788CrossRefGoogle Scholar
  3. Bebbington M (2008) Incorporating the eruptive history in a stochastic model for volcanic eruptions. J Volcanol Geotherm Res 175:325–333CrossRefGoogle Scholar
  4. Bebbington M (2010) Trends and clustering in the onsets of volcanic eruptions. J Geophys Res 115:B01203Google Scholar
  5. Bebbington MS (2013a) Assessing spatio-temporal eruption forecasts in a monogenetic volcanic field. J Volcanol Geotherm Res 252:14–28CrossRefGoogle Scholar
  6. Bebbington MS (2013b) Models for temporal volcanic hazard. Statistics in Volcanology 1:1–24CrossRefGoogle Scholar
  7. Bebbington MS (2014) Long-term forecasting of volcanic explosivity. Geophys J Int 197:1500–1515CrossRefGoogle Scholar
  8. Bebbington M., Cronin SJ (2011) Spatio-temporal hazard estimation in the Auckland Volcanic Field, New Zealand, with a new event-order model. Bull Volcanol 73:55–72CrossRefGoogle Scholar
  9. Bebbington MS, Lai CD (1996) On nonhomogeneous models for volcanic eruptions. Math Geol 28:585–600CrossRefGoogle Scholar
  10. Bebbington MS, Marzocchi W (2011) Stochastic models for earthquake triggering of volcanic eruptions. J Geophys Res 116:B05204. doi: 10.1029/2010JB008114 Google Scholar
  11. Bebbington M, Cronin S, Chapman I, Turner M (2008) Quantifying volcanic ash fall hazard to electricity infrastructure. J Volcanol Geotherm Res 177:1055–1062CrossRefGoogle Scholar
  12. Becerril L, Cappello A, Galindo I, Neri M, Del Negro C (2013) Spatial probability distribution of future volcanic eruptions at El Hierro Island. J Volcanol Geotherm Res 257:21–30CrossRefGoogle Scholar
  13. Burt ML, Wadge G, Scott WA (1994) Simple stochastic modelling of the eruption history of a basaltic volcano: Nyamuragira, Zaire. Bull Volcanol 56:87–97CrossRefGoogle Scholar
  14. Cappello A, Neri M, Acocella V, Gallo G, Vicari A, Del Negro C (2012) Spatial vent opening probability map of Etna volcano (Sicily, Italy). Bull Volcanol 74:2083–2094CrossRefGoogle Scholar
  15. Cappello A, Bilotta G, Neri M, Del Negro C (2013) Probabilistic modeling of future volcnic eruptions at Mount Etna. J Geophys Res 118:1925–1935CrossRefGoogle Scholar
  16. Cebria JM, Martin-Escora C, Lopez-Ruiz J, Moran-Zenteno DJ, Martiny BM (2011) Numerical recognition of alignments in monogenetic areas: examples from the Michoacan-Guanajuato Volcanic Field in Mexico and Calatrava in Spain. J Volcanol Geotherm Res 201:73–82CrossRefGoogle Scholar
  17. Christensen R, Johnson W, Branscum A, Hanson TE (2011) Bayesian Ideas and Data Analysis. CRC PressGoogle Scholar
  18. Clark PJ, Evans FC (1954) Distance to nearest neighbor as a measure of spatial realtionships in populations. Ecology 35:445– 453CrossRefGoogle Scholar
  19. Connor CB (1990) Cinder cone clustering in the TransMexican Volcanic Belt: implications for structural and petrologic models. J Geophys Res 95:19395–19405CrossRefGoogle Scholar
  20. Connor CB, Connor LJ (2009) Estimating spatial density with kernel methods. In: Connor C B, Chapman N A, Connor L J (eds) Volcanic and tectonic hazard assessment for nuclear facilities. Cambridge University Press, Cambridge, pp 346–368Google Scholar
  21. Connor CB, Conway FM (2000) Basaltic volcanic fields. In: Sigurdsson H, et al. (eds) Encyclopedia of Volcanoes. Academic Press, New York, pp 331–343Google Scholar
  22. Connor CB, Hill BE (1995) Three nonhomogeneous Poisson models for the probability of basaltic volcanism: application to the Yucca Mountain region, Nevada. J Geophys Res 100:10107– 10125CrossRefGoogle Scholar
  23. Connor CB, Condit CD, Crumpler LS, Aubele JC (1992) Evidence of regional structural controls on vent distribution: Springerville Volcanic Field, Arizona. J Geophys Res 97:12349–12359CrossRefGoogle Scholar
  24. Conway FM, Connor CB, Hill BE, Condit CD, Mullaney K, Hall CM (1998) Recurrence rates of basaltic volcanism in SP cluster, San Francisco volcanic field, Arizona. Geology 26:655–658CrossRefGoogle Scholar
  25. Cronin S, Bebbington M, Lai CD (2001) A probabilistic assessment of eruption recurrence on Taveuni volcano, Fiji. Bull Volcanol 63:274–288CrossRefGoogle Scholar
  26. Duong T (2007) ks: kernel density estimations and kernel discriminant analysis for multivariate data in R. J Statist Software 21:116Google Scholar
  27. Duong T, Hazelton ML (2003) Plug-in bandwidth selectors for bivariate kernel density estimation. J Nonparametric Statist 15:17–30CrossRefGoogle Scholar
  28. El-Difrawy MA, Runge M, Moufti MR, Cronin SJ, Bebbington M (2013) A first hazard analysis of the Quaternary Harrat Al-Madinah volcanic field, Saudi Arabia. J Volcanol Geotherm Res 267:39–46CrossRefGoogle Scholar
  29. Garcia-Aristizabal A, Marzocchi W, Fujita E (2012) A Brownian model for recurrent volcanic eruptions: an application to Miyakejima volcano (Japan). Bull Volcanol 74:545–558CrossRefGoogle Scholar
  30. Germa A, Connor LJ, Canon-Tapia E, Le Corvec N (2013) Tectonic and magmatic controls on the location of post-subduction monogenetic volcanoes in Baja California, Mexico, revealed through spatial analysis of eruptive vents. Bull Volcanol 75:782Google Scholar
  31. Green R, Bebbington MS, Cronin SJ, Jones G (2013) Geochemical precursors for eruption repose length. Geophys J Int 193:855– 873CrossRefGoogle Scholar
  32. Hayward BW, Kenny JA, Grenfell HR (2011) More volcanoes recognised in Auckland Volcanic Field. Geosci Soc NZ Newsletter 5:11–16Google Scholar
  33. Hayward BW (2011) Volcanoes of Auckland. Auckland University Press, Maitland GGoogle Scholar
  34. Hazelton ML, Marshall JC (2009) Linear boundary kernels for bivariate density estimation. Statist Prob Lett 79:999–1003CrossRefGoogle Scholar
  35. Hill BE, Connor CB, Jarzemba MS, La Femina PC, Navarro M, Strauch W (1998) 1995 eruptions of Cerro Negro volcano, Nicaragua, and risk assessment for future eruptions. Geol Soc Amer Bull 110:1231–1241CrossRefGoogle Scholar
  36. Ho C-H (1991) Nonhomogeneous Poisson model for volcanic eruptions. Math Geol 23:167–173CrossRefGoogle Scholar
  37. Jaquet O, Lantuejoul C, Goto J (2012) Probabilistic estimation of long-term volcanic hazard with assimilation of geophysics and tectonic data. J Volcanol Geotherm Res 235-236:29–36CrossRefGoogle Scholar
  38. Kawabata E, Cronin SJ, Bebbington MS, Moufti MR, El-Masry N, Wang T (2015) The AD1256 Al-Madinah eruption, Saudi Arabia: identifying multiple eruption phases from a compound tephra blanket. Bull Volcanol 77:6CrossRefGoogle Scholar
  39. Kereszturi G, Procter J, Cronin SJ, Nemeth K, Bebbington M, Lindsay J (2012) LiDAR-based quantification of lava flow susceptibility in the City of Auckland (New Zealand). Remote Sensing of Environment 125:198–213CrossRefGoogle Scholar
  40. Kereszturi G, Nemeth K, Cronin SJ, Agustin-Flores J, Smith IEM, Lindsay J (2013) A model for calculating eruptive volumes for monogenetic volcanoes—implication for the Quaternary Auckland Volcanic Field, New Zealand. J Volcanol Geotherm Res 266:16–33CrossRefGoogle Scholar
  41. Kereszturi G, Cappello A, Ganci G, Procter J, Nemeth K, Del Negro C, Cronin SJ (2014a) Numerical simulation of basaltic lava flows in the Auckland Volcanic Field, New Zealand—implication for volcanic hazard assessment. Bull Volcanol 76:879CrossRefGoogle Scholar
  42. Kereszturi G, Nemeth K, Cronin SJ, Procter J, Agustin-Flores J (2014b) Influences on the variability of eruption sequences and style transitions in the Auckland Volcanic Field, New Zealand. J Volcanol Geotherm Res 286:101–115CrossRefGoogle Scholar
  43. Khachiyan LG (1996) Rounding of polytopes in the real number model of computation. Math Oper Res 21:307–320CrossRefGoogle Scholar
  44. Kiyosugi K, Connor CB, Zhao D, Connor LJ, Tanaka K (2010) Relationships between volcano distribution, crustal structure, and P-wave tomography: an example from the Abu Monogenetic Volcano Group, SW Japan. Bull Volcanol 72:331– 340CrossRefGoogle Scholar
  45. Le Corvec N, Sporli KB, Rowland J, Lindsay J (2013a) Spatial distribution and alignments of volcanic centres: clues to the formation of monogenetic volcanic fields. Earth Sci Rev 124:96– 114CrossRefGoogle Scholar
  46. Le Corvec N, Bebbington MS, Lindsay JM, McGee LE (2013b) Age, distance and geochemical evolution within a monogenetic volcanic field: analyzing patterns in the Auckland volcanic field eruption sequence. Geochem Geophys Geosyst 14:3648–3665CrossRefGoogle Scholar
  47. Lindsay J, Marzocchi W, Jolly G, Constantinescu R, Selva J, Sandri L (2010) Towards real-time eruption forecasting in the Auckland Volcanic Field: application of BET_EF during the New Zealand national disaster exercise ‘Ruaumoko’. Bull Volcanol 72:185–204CrossRefGoogle Scholar
  48. Lutz TM, Gutmann JT (1995) An improved method for determining and characterizing alignments of point-like features and its implications for the Pinacate volcanic field, Sonora, Mexico. J Geophys Res 100:17659–17670CrossRefGoogle Scholar
  49. Lunn DJ, Thomas A, Best N, Spiegelhalter D (2000) WinBUGS—a Bayesian modelling framework: concepts, structure, and extensibility. Statistics and Computing 10:325–337CrossRefGoogle Scholar
  50. Magill CR, McAneney KJ, Smith IEM (2005) Probabilistic assessment of vent locations for the next Auckland volcanic field event. Math Geol 37:227–242CrossRefGoogle Scholar
  51. Marti J, Felpeto A (2010) Methodology for the computation of volcanic susceptibility: an example for mafic and felsic eruptions on Tenerife (Canary Islands). J Volcanol Geotherm Res 195:69–77CrossRefGoogle Scholar
  52. Martin AJ, Umeda K, Connor CB, Weller JN, Zhao D, Takahashi M (2004) Modeling long-term volcanic hazards through Bayesian inference: an example from the Tohoku volcanic arc, Japan. J Geophys Res 109:B10208CrossRefGoogle Scholar
  53. Marzocchi W, Bebbington M (2012) Probabilistic eruption forecasting at short and long time scales. Bull Volcanol 74:1777–1805CrossRefGoogle Scholar
  54. Marzocchi W, Zaccarelli L (2006) A quantitative model for the time-size distribution of eruptions. J Geophys Res 111:B04204Google Scholar
  55. Marzocchi W, Sandri L, Gasparini P, Newhall C, Boschi E (2004) Quantifying probabilities of volcanic events: the example of volcanic hazard at Mount Vesuvius. J Geophys Res 109:B11201Google Scholar
  56. Mendoza-Rosas AT, De La Cruz-Reyna S (2008) A statistical method linking geological and historical eruption time series for volcanic hazard estimations: Applications to active polygenetic volcanoes. J Volcanol Geotherm Res 176:277–290CrossRefGoogle Scholar
  57. Mulargia F, Tinti S, Boschi E (1985) A statistical analysis of flank eruptions on Etna volcano. J Volcanol Geotherm Res 23:263–272CrossRefGoogle Scholar
  58. Muller HG, Stadtmuller U (1999) Multivariate boundary kernels and a ocntinuous least squares principle. J Roy Statist Soc Ser B 61:439–458CrossRefGoogle Scholar
  59. Richter DH, Eaton JP, Murata KJ, Ault WU, Krivoy HL (1970) Chronological narrative of the 1959-60 eruption of Kilauea volcano, Hawaii. US Geological Survey Professional Paper 537-E :73Google Scholar
  60. Ripley BD (1979) Tests of ‘randomness’ for spatial point patterns. J Roy Statist Soc B 41:368–374Google Scholar
  61. Rubin DB (1984) Bayesianly justifiable and relevant frequency calculations for the applied statistician. Ann Statist 12:1151– 1172CrossRefGoogle Scholar
  62. Sato H, Taniguchi H (1997) Relationship between crater size and ejecta volume of recent magmatic and phreato-magmatic eruptions: implications for energy partitioning. Geophys Res Lett 24:205–208CrossRefGoogle Scholar
  63. Sandri L, Jolly G, Lindsay J, Howe T, Marzocchi W (2012) Combining long- and short-term probabilistic volcanic hazard assessment with cost-benefit analysis to support decision making in a volcanic crisis from the Auckland Volcanic Field, New Zealand. Bull Volcanol 74:705–723CrossRefGoogle Scholar
  64. Self S, Sparks RSJ, Booth B, Walker GPL (1974) The 1973 Heimaey Strombolian scoria deposit, Iceland. Geol Mag 111:539– 548CrossRefGoogle Scholar
  65. Self S, Kienle J, Huot J-P (1980) Ukinrek Maars, Alaska, II. Deposits and formation of the 1977 craters. J Volcanol Geotherm Res 7:39–65CrossRefGoogle Scholar
  66. Selva J, Costa A, Marzocchi W, Sandri L (2010) BET_VH: exploring the influence of natural uncertainties on long-term hazard from tephra fallout at Campi Flegrei (Italy). Bull Volcanol 72:717–733CrossRefGoogle Scholar
  67. Selva J, Orsi G, Di Vito M, Marzocchi W, Sandri L (2012) Probability hazard map for future vent opening at the Campi Flegrei caldera, Italy. Bull Volcanol 74:497–510CrossRefGoogle Scholar
  68. Smethurst L, James MR, Pinkerton H, Tawn JA (2009) A statistical analysis of eruptive activity on Mount Etna, Sicily. Geophys J Int 179:655–666CrossRefGoogle Scholar
  69. Spiegelhalter DJ, Best NG, Carlin BP, van der Linde A (2002) Bayesian measures of model complexity and fit (with discussion). J Roy Statist Soc, Ser B 64:583–639CrossRefGoogle Scholar
  70. Sporli K, Eastwood VR (1997) Elliptical boundary of an intraplate volcanic field, Auckland, New Zealand. J Volcanol Geotherm Res 79:169–179CrossRefGoogle Scholar
  71. Tadini A, Bonali FL, Corazzato C, Cortes JA, Tibaldi A, Valentine GA (2014) Spatial distribution and structural analysis of vents in the Lunar Crater Volcanic Field (Nevada USA). Bull Volcanol 76:877CrossRefGoogle Scholar
  72. Valentine GA, Gregg TKP (2008) Continental basaltic volcanoes—processes and problems. J Volcanol Geotherm Res 177:857–873CrossRefGoogle Scholar
  73. Valentine GA, Perry FV (2006) Decreasing magmatic footprints of individual volcanoes in a waning basaltic field. Geophys Res Lett 33:L14305CrossRefGoogle Scholar
  74. Valentine GA, Perry FV (2007) Tectonically controlled, time-predictable basaltic volcanism from a lithospheric mantle source (central Basin and Range Province, USA). Earth Planet Sci Lett 261:201–216CrossRefGoogle Scholar
  75. Vere-Jones D (1992) Statistical methods for the description and display of earthquake catalogs. In: Walden A T, Guttorp P (eds) Statistics in the Environmental and Earth Sciences. Edward Arnold, London, pp 220–246Google Scholar
  76. Von Veh MW, Nemeth K (2009) An assessment of the alignments of vents on geostatistical analysis in the Auckland volcanic field, New Zealand. Geomorphologie 3:175–186CrossRefGoogle Scholar
  77. Wadge G, Cross A (1988) Quantitative methods for detecting aligned points: an application to the volcanic vents of the Michoacan-Guanajuato volcanic field, Mexico. Geology 16:815–818CrossRefGoogle Scholar
  78. Weller JN (2004) Bayesian inference in forecasting volcanic hazards: an example from Armenia, Unpublished MS thesis. University of South FloridaGoogle Scholar
  79. Weller JN, Martin AJ, Connor CB, Connor LJ, Karakhanian A (2006) Modelling the spatial distribution of volcanoes: an example from Armenia. In: Mader H M, Coles S G, Connor C B, Connor L J (eds) Statistics in Volcanology. Geological Society, London, pp 77–87Google Scholar
  80. Zhang D, Lutz T (1989) Structural control of igneous complexes and kimberlites: a new statistical method. Tectonophysics 159:137–148CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Volcanic Risk SolutionsMassey UniversityPalmerston NorthNew Zealand

Personalised recommendations