Bulletin of Volcanology

, 77:22 | Cite as

Studying monogenetic volcanoes with a terrestrial laser scanner: case study at Croscat volcano (Garrotxa Volcanic Field, Spain)

  • A. GeyerEmail author
  • D. García-Sellés
  • D. Pedrazzi
  • S. Barde-Cabusson
  • J. Marti
  • J.A. Muñoz
Research Article


Erosional processes (natural or anthropogenic) may partly destroy the relatively small-sized volcanic edifices characteristic of monogenetic volcanic zones, leaving their internal structure well exposed. Nevertheless, the study of these outcrops may be extremely challenging due to restricted accessibility or safety issues. Digital representations of the outcrop surface have been lately used to overcome such difficulties. Data acquired with terrestrial laser scanning instruments using Light Detection and Ranging technology enables the construction of such digital outcrops. The obtained high-precision 3-D terrain models are of greater coverage and accuracy than conventional methods and, when taken at different times, allow description of geological processes in time and space. Despite its intrinsic advantages and the proven satisfactory results, this technique has been little applied in volcanology-related studies. Here, we want to introduce it to the volcanological community together with a new and user-friendly digital outcrop analysis methodology for inexperienced users. This tool may be useful, not only for volcano monitoring purposes, but also to describe the internal structure of exposed volcanic edifices or to estimate outcrop erosion rates that may be helpful in terms of hazard assessment or preservation of volcanic landscapes. We apply it to the Croscat volcano, a monogenetic cone in the La Garrotxa Volcanic Field (Catalan Volcanic Zone, NE Spain), quarrying of which leads to a perfect view of its interior but restricts access to its uppermost parts. Croscat is additionally one of the most emblematic symbols of the La Garrotxa Volcanic Field Natural Park, and its preservation is a main target of the park administration.


Terrestrial laser scanner Digital outcrop Croscat volcano La Garrotxa Volcanic Field Catalan Volcanic Zone 



We thank the Natural Park of the La Garrotxa Volcanic Field and its staff for permission to undertake this research and for all their support that we have always received from them. AG is grateful for her Juan de la Cierva post-doctoral grant (JCI-2010-06092) and her Ramón y Cajal contract (RYC-2012-11024). SBC acknowledges the JAE-Doc postdoctoral personal grant program of CSIC (JAEDoc_09_01319). This work was partly financed by projects CGL2010-21968-C02-01, CGL2010-18609 and CGL2013-40828-R of the Spanish Ministry of Science and Innovation. The editor Vern Manville and the reviewers Gabor Kereszturi and Laurent Michon are thanked for their thorough and constructive reviews, which resulted in substantial improvements to this paper.


  1. Abellan A, Calvet J, Vilaplana JM, Blanchard J (2010) Detection and spatial prediction of rockfalls by means of terrestrial laser scanner monitoring. Geomorphology 119:162–171CrossRefGoogle Scholar
  2. Adams EW, Grotzinger JP, Waters WA, Schroder S, McCormick D, Al-Siyabi H (2005) Digital characterization of thrombolite–stromatolite reef distribution in a carbonate ramp system (terminal Proterozoic, Nama Group, Namibia). Am Assoc Pet Geol Bull 89:1293–1318Google Scholar
  3. Baldi P, Bonvalot S, Briole P, Marsella M (2000) Digital photogrammetry and kinematic GPS applied to the monitoring of Vulcano Island, Aeolian Arc, Italy. Geophys J Int 142(3):801–811CrossRefGoogle Scholar
  4. Barabási A-L, Albert R, Schiffer P (1999) The physics of sand castles: maximum angle of stability in wet and dry granular media. Phys A: Stat Mech Appl 266(1–4):366–371CrossRefGoogle Scholar
  5. Bellian JA, Kerans C, Jennette DC (2005) Digital outcrop models: applications of terrestrial scanning LIDAR technology in stratigraphic modelling. J Sediment Res 72:166–176CrossRefGoogle Scholar
  6. Bemis K, Walker J, Borgia A, Turrin B, Neri M, Swisher Iii C (2011) The growth and erosion of cinder cones in Guatemala and El Salvador: models and statistics. J Volcanol Geotherm Res 201(1–4):39–52CrossRefGoogle Scholar
  7. Besl PJ, McKay ND (1992) A method for registration of 3-D shapes. IEEE Trans Pattern Anal Mach Intell 14(2):239–256CrossRefGoogle Scholar
  8. Bolós X, Planagumà L, Martí J (2014) Volcanic stratigraphy of the Quaternary La Garrotxa Volcanic Field (north-east Iberian Peninsula). J Quat Sci 29(6):547–560CrossRefGoogle Scholar
  9. Buckley SJ, Howell JA, Enge HD, Kurz TH (2008) Terrestrial laser scanning in geology: data acquisition, processing and accuracy considerations. J Geol Soc 165(3):625–638CrossRefGoogle Scholar
  10. Cimarelli C, Di Traglia F, Taddeucci J (2010) Basaltic scoria textures from a zoned conduit as precursors to violent Strombolian activity. Geology 38(5):439–442CrossRefGoogle Scholar
  11. Conforti C, DEline P, Mortara G, Tamburini A (2005) Terrestrial scanning LiDAR technology applied to study the evolution of the ice-contact image lake (Mont Blanc, Italy). In: Proceedings of the 9th Alpine Glaciological Meeting. MilanGoogle Scholar
  12. Conforti D, Pesci A, Fabris M, Loddo F, Anzidei M, Baldi P, Pingue F, Pinto L (2006) Terrestrial lidar (laser) scanner technology applied to survey the Vesuvio volcano (Italy) for geological and geo-morphological analysis. In: European Geosciences Union. Geophysical Research Abstracts, Vienna, p 08236Google Scholar
  13. Crow R, Karlstrom KE, McIntosh W, Peters L, Dunbar N (2008) History of Quaternary volcanism and lava dams in western Grand Canyon based on lidar analysis, 40Ar/39Ar dating, and field studies: implications for flow stratigraphy, timing of volcanic events, and lava dams. Geosphere 4(1):183–206CrossRefGoogle Scholar
  14. Di Traglia F, Cimarelli C, de Rita D, Gimeno Torrente D (2009) Changing eruptive styles in basaltic explosive volcanism: examples from Croscat complex scoria cone, Garrotxa Volcanic Field (NE Iberian Peninsula). J Volcanol Geotherm Res 180(2–4):89–109CrossRefGoogle Scholar
  15. Dueholm KS, Olsen T (1993) Reservoir analog studies using multimodel photogrammetry: a new tool for the petroleum industry. Am Assoc Pet Geol Bull 77:2023–2031Google Scholar
  16. Enge HD, Buckley SJ, Rotevatn A, Howell J (2007) From outcrop to reservoir simulation model: workflow and procedures. Geosphere 3:469–490CrossRefGoogle Scholar
  17. Fabuel-Perez I, Hodgetts D, Redfern J (2009) A new approach for outcrop characterization and geostatistical analysis of a low-sinuosity fluvial-dominated succession using digital outcrop models: upper Triassic Oukaimeden Sandstone Formation, central High Atlas, Morocco. Am Assoc Pet Geol Bull 93:795–827Google Scholar
  18. Favalli M, Dv K, Mazzarini F, Pareschi MT, Boschi E (2009) Morphometry of scoria cones located on a volcano flank: a case study from Mt. Etna (Italy), based on high-resolution LiDAR data. J Volcanol Geotherm Res 186(3–4):320–330CrossRefGoogle Scholar
  19. Favalli M, Fornaciai A, Mazzarini F, Harris A, Neri M, Behncke B, Pareschi MT, Tarquini S, Boschi E (2010) Evolution of an active lava flow field using a multitemporal LIDAR acquisition. J Geophys Res: Solid Earth 115(B11), B11203CrossRefGoogle Scholar
  20. Fisher RV, Waters AC (1970) Base surge bed forms in Maar volcanoes. Am J Sci 268:157–180CrossRefGoogle Scholar
  21. García-Sellés D, Falivene O, Arbués P, Gratacos O, Tavani S, Muñoz JA (2011) Supervised identification and reconstruction of near-planar geological surfaces from terrestrial laser scanning. Comput Geosci 37(10):1584–1594CrossRefGoogle Scholar
  22. Gruen A, Akca D (2005) Least squares 3D surface and curve matching. ISPRS J Photogramm Remote Sens 59(3):151–174CrossRefGoogle Scholar
  23. Guérin G, Behamoun G, Mallarach JM (1985) Un exemple de fusióparcial en medi continental. El vulcanisme quaternari de la Garrotxa. Publicació del Museu Comarcal de la Garrotxa, Vitrina: 19-26Google Scholar
  24. Heiken GH (1971) Tuff Rings: examples from the Fort Rock-Christmas Lake Valley Basin, South-Central Oregon. J Geophys Res 76(23):5615–5626CrossRefGoogle Scholar
  25. Hodgetts D, Drinkwater NJ, Hodgson D, Kavanagh J, Flint S, Keogh KJ, Howell J (2004) Three dimensional geological models from outcrop data using digital collection techniques: an example from theTanqua Karoo depocentre, South Africa. In: Curtis A, Wood R (eds) Geological Prior Information: Information Science and Engineering. Geological Society of London Special Publications, London, p 57–75Google Scholar
  26. Hunter G, Pinkerton H, Airey R, Calvari S (2003) The application of a long-range laser scanner for monitoring volcanic activity on Mount Etna. J Volcanol Geotherm Res 123(1–2):203–210CrossRefGoogle Scholar
  27. Jaboyedoff M, Oppikofer T, Abellan A, Derron M-H, Loye A, Metzger R, Pedrazzini A (2012) Use of LIDAR in landslide investigations: a review. Nat Hazards 61:5–28CrossRefGoogle Scholar
  28. James MR, Pinkerton H, Applegarth LJ (2009) Detecting the development of active lava flow fields with a very-long-range terrestrial laser scanner and thermal imagery. Geophys Res Lett 36(22), L22305CrossRefGoogle Scholar
  29. Jones LD (2006) Monitoring landslides in hazardous terrain using terrestrial LiDAR: an example from Montserrat. Q J Eng Geol Hydrogeol 39(4):371–373CrossRefGoogle Scholar
  30. Jones LD (2007) The application of terrestrial lidar to volcano monitoring—an example from the Montserrat Volcano Observatory. Civ Eng Surveyor: 21-23Google Scholar
  31. Jones RR, McCaffrey KJW, Clegg P, Wilson RW, Holliman NS, Holdsworth RE, Imber J, Waggot S (2009) Integration of regional to outcrop digital data: 3D visualization of multi-scale geological models. Comput Geosci 35:4–18CrossRefGoogle Scholar
  32. Kaab A, Funk A (1999) Modelling mass balance using photogrammetric and geophysical data: a pilot study at Griesgletscher, Swiss Alps. J Glaciol 45:575–583Google Scholar
  33. Kokelaar P (1986) Magma-water interactions in subaqueous and emergent basaltic volcanism. Bull Volcanol 48:275–289CrossRefGoogle Scholar
  34. Lorenz V (1973) On the formation of maars. Bull Volcanol 37:183–204CrossRefGoogle Scholar
  35. Lorenz V (1986) On the growth of maars and diatremes and its relevance to the formation of tuff rings. Bull Volcanol 48:256–274CrossRefGoogle Scholar
  36. Lorenz V (1987) Phreatomagmatism and its relevance. Chem Geol 62:149–156CrossRefGoogle Scholar
  37. Marsella M, Scifoni S, Coltelli M, Proietti C (2011) Quantitative analysis of the 1981 and 2001 Etna flank eruptions: a contribution for future hazard evaluation and mitigation. Ann Geophys 54(5)Google Scholar
  38. Martí J, Mitjavila J, Roca E, Aparicio A (1992) Cenozoic magmatism of the Valencia trough (western Mediterranean): relationship between structural evolution and volcanism. Tectonophysics 203:145–165CrossRefGoogle Scholar
  39. Martí J, Planagumà L, Geyer A, Canal E, Pedrazzi D (2011) Complex interaction between Strombolian and phreatomagmatic eruptions in the Quaternary monogenetic volcanism of the Catalan Volcanic Zone (NE of Spain). J Volcanol Geotherm Res 201(1–4):178–193CrossRefGoogle Scholar
  40. Massey C, Manville V, Hancox G, Keys H, Lawrence C, McSaveney M (2010) Out-burst flood (lahar) triggered by retrogressive landsliding, 18 March 2007 at Mt Ruapehu, New Zealand—a successful early warning. Landslides 7(3):303–315CrossRefGoogle Scholar
  41. McCaffrey KJW, Jones RR, Holdsworth RE, Wilson RW, Clegg P, Imber J, Holliman N, Trinks I (2005) Unlocking the spatial dimension: digital technologies and the future of geoscience fieldwork. J Geol Soc 162:927–938CrossRefGoogle Scholar
  42. McGetchin TR, Settle M, Chouet BA (1974) Cinder cone growth modeled after Northeast Crater, Mount Etna, Sicily. J Geophys Res 79(23):3257–3272CrossRefGoogle Scholar
  43. Mora P, Baldi P, Casula G, Fabris M, Ghirotti M, Mazzini E, Pesci A (2003) Global Positioning Systems and digital photogrammetry for the monitoring of mass movements: application to the Ca' di Malta landslide (northern Apennines, Italy). Eng Geol 68(1–2):103–121CrossRefGoogle Scholar
  44. Nelson CE, Jerram DA, Hobbs RW, Terrington R, Kessler H (2011) Reconstructing flood basalt lava flows in three dimensions using terrestrial laser scanning. Geosphere 7(1):87–96CrossRefGoogle Scholar
  45. Németh K, Haller MJ, Siebe C (2011) Maars and scoria cones: the enigma of monogenetic volcanic fields. Journal of Volcanology and Geothermal Research 201(1-4):v-viiiGoogle Scholar
  46. Németh, K., Agustin-Flores, J., Briggs, R., Cronin, S.J., Kereszturi, G., Lindsay, J.M., Pittari, A. and Smith, I.E.M. (2012a). Monogenetic volcanism of the South Auckland and Auckland Volcanic Fields IAVCEI-CMV/CVS-IAS Fourth International Maar Conference: a multidisciplinary congress on monogenetic volcanism [20–24 February 2012]. Geoscience Society of New Zealand Miscellaneous Publication, AucklandGoogle Scholar
  47. Németh K, Risso C, Nullo F, Smith IEM, Pécskay Z (2012b) Facies architecture of an isolated long-lived, nested polygenetic silicic tuff ring erupted in a braided river system: The Los Loros volcano, Mendoza, Argentina. J Volcanol Geotherm Res 239–240:33–48CrossRefGoogle Scholar
  48. Nissen E, Krishnan AK, Arrowsmith JR, Saripalli S (2012) Three-dimensional surface displacements and rotations from differencing pre- and post-earthquake LiDAR point clouds. Geophys Res Lett 39(16), L16301CrossRefGoogle Scholar
  49. Pedrazzi D, Martí J, Geyer A (2013) Stratigraphy, sedimentology and eruptive mechanisms in the tuff cone of El Golfo (Lanzarote, Canary Islands). Bull Volcanol 75:1–17. doi: 10.1007/s00445-013-0740-3 CrossRefGoogle Scholar
  50. Pedrazzi D, Bolós X, Martí J (2014) Phreatomagmatic volcanism in complex hydrogeological environments: La Crosa de Sant Dalmai maar (Catalan Volcanic Zone, NE Spain). Geosphere 10(1):170–184CrossRefGoogle Scholar
  51. Pesci A, Baldi P, Bedin A, Casula G, Cenni N, Fabris M, Loddo F, Mora P, Bacchetti M (2004) Digital elevation models for landslide evolution monitoring: application on two areas located in the Reno River Valley (Italy). Ann Geophys 47:1339–1353Google Scholar
  52. Pesci A, Loddo F, Conforti C (2007) The first terrestrial laser scanner application over Vesuvius: high resolution model of a volcano crater. Int J Remote Sens 28(1):203–219CrossRefGoogle Scholar
  53. Petrie G, Toth CK (2008a) I. Introduction to laser ranging, profiling and scanning. In: Shan J, Toth CK (eds) Topographic laser ranging and scanning: principles and processing. CRC Press, Taylor & FrancisGoogle Scholar
  54. Petrie G, Toth CK (2008b) III. Terrestrial laser scanners. In: Shan J, Toth CK (eds) Topographic laser ranging and scanning: principles and processing. CRC Press, Taylor & FrancisGoogle Scholar
  55. Pringle JK, Westerman AR, Clark JD, Drinkwater NJ, Gardiner AR (2004) 3D high-resolution digital models of outcrop analogue study sites to constrain reservoir model uncertainty: an example from Alport Castles, Derbyshire, UK. Pet Geosci 10:343–352CrossRefGoogle Scholar
  56. Procter J, Cronin SJ, Fuller IC, Lube G, Manville V (2010) Quantifying the geomorphic impacts of a lake-breakout lahar, Mount Ruapehu, New Zealand. Geology 38(1):67–70CrossRefGoogle Scholar
  57. Riedel C, Ernst GGJ, Riley M (2003) Controls on the growth and geometry of pyroclastic constructs. J Volcanol Geotherm Res 127(1–2):121–152CrossRefGoogle Scholar
  58. Robinson DA, Friedman SP (2002) Observations of the effects of particle shape and particle size distribution on avalanching of granular media. Phys A: Stat Mech Appl 311(1–2):97–110CrossRefGoogle Scholar
  59. Settle M (1979) Formation and deposition of volcanic sulfate aerosols on Mars. J Geophys Res: Solid Earth 84(B14):8343–8354CrossRefGoogle Scholar
  60. Sohn YK (1996) Hydrovolcanic processes forming basaltic tuff rings and cones on Cheju Island, Korea. Geol Soc Am Bull 108(10):1199–1211CrossRefGoogle Scholar
  61. Sohn YK, Chough SK (1989) Depositional processes of the Suwolbong tuff ring, Cheju Island (Korea). Sedimentology 36(5):837–855CrossRefGoogle Scholar
  62. Teza G, Galgaro A, Zaltron N, Genevois R (2007) Terrestrial laser scanner to detect landslide displacement fields: a new approach. Int J Remote Sens 28:3425–3446CrossRefGoogle Scholar
  63. Trinks I, Clegg P, McCaffrey KJW, Jones RR, Hobbs R, Holdsworth RE, Holliman N, Imber J, Waggot S, Wilson RW (2006) Mapping and analysing virtual outcrops. Vis Geosci 10:13–19CrossRefGoogle Scholar
  64. van Westen CJ, Lulie Getahun F (2003) Analyzing the evolution of the Tessina landslide using aerial photographs and digital elevation models. Geomorphology 54(1–2):77–89CrossRefGoogle Scholar
  65. Ventura G, Vilardo G (2008) Emplacement mechanism of gravity flows inferred from high resolution Lidar data: the 1944 Somma-Vesuvius lava flow (Italy). Geomorphology 95(3–4):223–235CrossRefGoogle Scholar
  66. Walker GPL (2000) Basaltic volcanoes and volcanic systems. In: Sigurdsson H (ed) Encyclopedia of Volcanoes. Academic Press San Francisco (CA), pp 283-289Google Scholar
  67. Waters AC, Fisher RV (1971) Base-surges and their deposits: Capelinhos and Taal volcanoes. J Geophys Res 76:5596–5614CrossRefGoogle Scholar
  68. White JDL (1996) Impure coolants and interaction dynamics of phreatomagmatic eruptions. J Volcanol Geotherm Res 74(3–4):155–170CrossRefGoogle Scholar
  69. White JDL, Houghton B (2000) Surtseyan and related phreatomagmatic eruptions. In: Sigurdsson H, Houghton BF, McNutt SR, Rymer H, Stix J (eds) Encyclopedia of volcanoes. Academic Press, San Diego, pp 495–511Google Scholar
  70. White JDL, Ross PS (2011) Maar-diatreme volcanoes: a review. J Volcanol Geotherm Res 201(1–4):1–29CrossRefGoogle Scholar
  71. Wohletz KH (1986) Explosive magma-water interactions: thermodynamics, explosion mechanisms, and field studies. Bull Volcanol 48:245–264CrossRefGoogle Scholar
  72. Wong KW (1980) Basic mathematics of photogrammetry. In: Slama CC (ed) Manual of photogrammetry. American Society of Photogrammetry, Falls Church, pp 37–101Google Scholar
  73. Xu X, Aiken CL, Bhattacharya JP, Corbeanu R, Nielsen KC, McMechan GA, Abdelsalam MG (2000) Creating virtual 3-D outcrop. Lead Edge: 197–202Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • A. Geyer
    • 1
    Email author
  • D. García-Sellés
    • 2
  • D. Pedrazzi
    • 1
    • 3
  • S. Barde-Cabusson
    • 1
  • J. Marti
    • 1
  • J.A. Muñoz
    • 2
  1. 1.Group of Volcanology, SIMGEO (UB-CSIC), Institute of Earth Sciences Jaume AlmeraICTJA-CSICBarcelonaSpain
  2. 2.Institut de Recerca Geomodels, Departament de Geodinàmica i Geofísica, Facultat de GeologiaUniversitat de Barcelona (UB)BarcelonaSpain
  3. 3.Centro de GeocienciasUniversidad Nacional Autónoma de México, Campus JuriquillaQuerétaroMexico

Personalised recommendations